Proseminar - Data Mining

Größe: px
Ab Seite anzeigen:

Download "Proseminar - Data Mining"

Transkript

1 Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS

2 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: SS

3 Data Mining: Beispiele (2) Image Segmentation (Clustering), SS

4 Data Mining: Beispiele (3) Ähnliche Gene (Clustering) [Hastie et al.], SS

5 Data Mining: Beispiele (4) Vorausschauender Versand (Klassifikation) Source: SS

6 Warum Data Mining? Data Scientist: The Sexiest Job of the 21st Century (Harvard Business Review) We are drowning in information and starving for knowledge. (Rutherford D. Roger) The future belongs to the companies and people that turn data into products. (Mike Loukides, O Reilly) Rank 5 in Computerworld s Top IT skills wanted for 2012 Rank 1 in Computerworld s IT skills that employers can t say no to http: //www.itjobswatch.co.uk/jobs/uk/softwaredeveloper.do, SS

7 Finding Data Science Unicorn, SS

8 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen aus Daten extrahieren Planung. Finden des Problems. Was soll gemacht werden? Dafür nötige Daten sammeln. Aufbereitung. Rohdaten (unvollständig, redundant, verschiedene Formate, Einheiten, etc.) werden in eine brauchbare Form gebracht. Modellbildung. Daten werden mit verschiedenen Methoden (Regression, Klassifikation, Clustering, etc.) analysiert. Auswertung. Interpretation und Auswertung der Ergebnisse., SS

9 Themen I Überblick Genauere Darstellung der Data Mining Pipeline Beispiele wo Data Mining verwendet wird Einsatz von Data Mining in Industrie Software: Matlab und R Software: Python Software: RapidMiner Aufbereitung von Daten, Pre-Processing Hauptkomponentenanalyse Lineare Modelle für Regression Was sind lineare Modelle? Wieso lineare Modelle? Welche? Was ist Regression? Beispiele., SS

10 Themen II Lineare Modelle und Logistische Regression für Klassifikation Klassifikation mit Thresholding Vergleich mit z.b. k-nearest Neighbor Spam Filtering with Naive Bayes Classifier Entscheidungsbäume Merkmale in Reihenfolge der Wichtigkeit überprüfen Es entsteht ein Baum Neuronale Netze I: Grundlagen Neuronale Netze II: Deep Learning, SS

11 Themen III Association Rules Finde gemeinsame Belegung von Variablen die möglichst oft in Datenbank auftritt Z.B.: Bier und Windeln werden of zusammen gekauft Clustering Finde Struktur in Daten, kein outcome vorhanden k-means, mixture of gaussians Dichteschätzung Schätzen der Dichte P eines gegebenen Datensatzes X = {x 1,..., x M }. Histogram, Kerndichteschätzer, etc. Reinforcement Learning Das System bekommt sofort Feedback und reagiert darauf Welche Verfahren gibt es? Anwendungsbeispiele?, SS

12 Themen IV Ensemble Learning Verbinde mehrere verschiedene Algorithmen Gewichte einzelne Antworten entsprechend AdaBoost Kann als Ensemble Methode angesehen werden Verwendet optimale Gewicht (bzgl. exp. loss) Überblick: Data at Scale Wie große Datenmengen speichern und verwalten? Welcher Einsatzbereich? Hadoop, Cassandra, BigTable,... Big Learning Stochastic Gradient Descent Map-Reduce Parallelization Recommender Systems with Colaborative Filtering, SS

13 Themen V Natural Language Processing Latent Semantic Indexing Latent Dirichlet allocation Sequential Data Data Mining für soziale Netzwerke, SS

14 Tipps zur Recherche 1. Google Scholar und Google (filetype:pdf) 2. eaccess Zugriff mit MyTUM Account 20eAccess Funktioniert für Springer, ACM, IEEE (nicht Computer Society!), etc. 3. Zeitschriften/Proceedings über EZB suchen 4. Manche Bücher elektronisch über OPAC-Katalog abrufbar ( Volltext Button), SS

15 Organisatorisches I Jedem Teilnehmer wird ein Betreuer zugewiesen Vortrag: ca. 20min + Diskussion Ausarbeitung: 5 Seiten (L A T E X) im IEEE Format (Webseite), excl. Quellenangaben. Wichtige Termine: Anmeldung (3 Themen) bis 31.1, mit Betreff Proseminar Data Mining - Anmeldung Themenzuteilung: 3.2, Rückmeldung bis 24.2 Vortragstermin wird (geblockt) zugeteilt, voraussichtlich 1./2. Juni Woche 4 Wochen vor dem Vortrag - ein Entwurf der Ausarbeitung beim Betreuer einreichen (per ) 2 Wochen vor dem Vortrag - Folien beim Betreuer einreichen, SS

16 Organisatorisches II Am Tag des Vortrages - Abgabe der fertigen Ausarbeitun Webseite: oder Teaching Summer 14 Proseminar - Data Mining, SS

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Vorbesprechung Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2015 Vorbesprechung, SS 2015 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source:

Mehr

Einführung. Arbeitsgruppe. Proseminar Corporate Semantic Web. Prof. Dr. Adrian Paschke

Einführung. Arbeitsgruppe. Proseminar Corporate Semantic Web. Prof. Dr. Adrian Paschke Arbeitsgruppe Proseminar Corporate Semantic Web Einführung Prof. Dr. Adrian Paschke Arbeitsgruppe Corporate Semantic Web (AG-CSW) Institut für Informatik, Freie Universität Berlin paschke@inf.fu-berlin.de

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016 Citizen Data Science Balázs Bárány Linuxwochen Wien 2016 29. April 2016 Inhalt Einführung: Data Science Werkzeuge und Methoden Citizen Data Science Daten holen Daten verstehen Daten-Vorverarbeitung Prädiktive

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Text Mining Praktikum Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Rahmenbedingungen Gruppen von 2- (max)4 Personen Jede Gruppe erhält eine Aufgabe Die

Mehr

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014 Text Mining Joachim Schole Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg Grundseminar, WS 2014 Joachim Schole (HAW Hamburg) Text Mining Grundseminar, WS 2014 1 / 26 Agenda

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

Seminar Wirtschaftsinformatik II B.Sc.

Seminar Wirtschaftsinformatik II B.Sc. Seminar Wirtschaftsinformatik II B.Sc. Prof. Dr. Harald Ritz Sommersemester 2011 Organisatorisches Bewertungsgrundlage Seminar Wirtschaftsinformatik II (B.Sc.) (2 SWS): Vortragsdauer: eine Person, 60 min

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Entscheidungsunterstützende Systeme

Entscheidungsunterstützende Systeme Entscheidungsunterstützende Systeme (WS 015/016) Klaus Berberich (klaus.berberich@htwsaar.de) Rainer Lenz (rainer.lenz@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de)

Mehr

Seminar aus Netzwerke und Sicherheit

Seminar aus Netzwerke und Sicherheit Seminar aus Netzwerke und Sicherheit Security in Business Applications Vorbesprechung 16.10.2008 Dr. Andreas Putzinger WS09/10 1 Intention Seminar kann als 2h BAK Seminar angerechnet werden. Zweiergruppen

Mehr

Seminar im Sommersemester 2010 Datenbankanwendungen im Cloud Computing http://dbis.ipd.kit.edu/1535.php

Seminar im Sommersemester 2010 Datenbankanwendungen im Cloud Computing http://dbis.ipd.kit.edu/1535.php Seminar im Sommersemester 2010 Datenbankanwendungen im Cloud Computing http://dbis.ipd.kit.edu/1535.php www.kit.edu 06.09 Veranstalter Institut für Programmstrukturen und Datenorganisation (IPD) Lehrstuhl

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph Seminar Map/Reduce Algorithms on Hadoop Topics Alex, Christoph Organisatorisches Prioritisierte Liste mit allen vorgestellten Themen bis heute 23:59 an Alexander.Albrecht@hpi.uni-potsdam.de Vergabe der

Mehr

Kurze Einführung in Web Data Mining

Kurze Einführung in Web Data Mining Kurze Einführung in Web Data Mining Yeong Su Lee Centrum für Informations- und Sprachverarbeitung (CIS), LMU 17.10.2007 Kurze Einführung in Web Data Mining 1 Überblick Was ist Web? Kurze Geschichte von

Mehr

Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG

Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG Big Data Alter Wein in neuen Schläuchen? 27.11.2013 Josef Schmid M.A. Dynelytics AG 2 Big Data Gartner prognostiziert, dass Unternehmen im laufenden Jahr für IT-Lösungen im Big-Data- Bereich 34 Milliarden

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Automatisierte Dossier- Erstellung mittels Text-Mining

Automatisierte Dossier- Erstellung mittels Text-Mining Automatisierte Dossier- Erstellung mittels Text-Mining Paul Assendorp Grundseminar 11.12.2014 Paul Assendorp Automatisierte Dossier-Erstellung 1 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

connect.it Campus Literaturverwaltung mit Mendeley

connect.it Campus Literaturverwaltung mit Mendeley connect.it Campus Literaturverwaltung mit Mendeley Philipp Küller, 22.09.2015 Wann benötigen Sie Literatur? u Proseminar à Literaturanalyse u Seminar à Literaturanalyse u Projektstudie à Recherche, Berichtsband

Mehr

Cloud Computing ein Risiko beim Schutz der Privatsphäre??

Cloud Computing ein Risiko beim Schutz der Privatsphäre?? Cloud Computing ein Risiko beim Schutz der Privatsphäre?? Prof. Johann-Christoph Freytag, Ph.D. Datenbanken und Informationssysteme (DBIS) Humboldt-Universität zu Berlin Xinnovations 2012 Berlin, September

Mehr

Einführung in Data Mining mit Weka. Philippe Thomas Ulf Leser

Einführung in Data Mining mit Weka. Philippe Thomas Ulf Leser Einführung in Data Mining mit Weka Philippe Thomas Ulf Leser Data Mining Drowning in Data yet Starving for Knowledge Computers have promised us a fountain of wisdom but delivered a flood of data The non

Mehr

So#ware Engineering verteilter Systeme. Hauptseminar im SS 2013

So#ware Engineering verteilter Systeme. Hauptseminar im SS 2013 So#ware Engineering verteilter Systeme Hauptseminar im SS 2013 Organisatorisches n Bewerbung Email an Betreuer (hhp://www.informakk.uni- augsburg.de/lehrstuehle/swt/vs/mitarbeiter/) Name, Matrikelnummer,

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten

Synergien aus Graph-Theorie und Data-Mining für die Analyse von Netzwerkdaten für die Analyse von Netzwerkdaten Tanja Hartmann, Patricia Iglesias Sánchez, Andrea Kappes, Emmanuel Müller und Christopher Oßner IPD Institut für Programmstrukturen und Datenorganisation ITI Institut

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Seminar im Sommersemester 2012 Prozessanalyse und Privatheit in Workflowmanagementsystemen http://dbis.ipd.kit.edu/1848.php

Seminar im Sommersemester 2012 Prozessanalyse und Privatheit in Workflowmanagementsystemen http://dbis.ipd.kit.edu/1848.php Seminar im Sommersemester 2012 Prozessanalyse und Privatheit in Workflowmanagementsystemen http://dbis.ipd.kit.edu/1848.php www.kit.edu 06.09 Veranstalter Institut für Programmstrukturen und Datenorganisation

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Seminar Programmierung und Reaktive Systeme

Seminar Programmierung und Reaktive Systeme Seminar Programmierung und Reaktive Systeme Qualitätssicherung Softwareintensiver Eingebetteter Systeme Betreuer: Sascha Lity Kick-Off Meeting 03.04.2013 1 Eingebettete Systeme Computersysteme (Software

Mehr

Testing for and fixing common security issues

Testing for and fixing common security issues Testing for and fixing common security issues Fatih Kilic, Thomas Kittel [kilic kittel]@sec.in.tum.de Lehrstuhl für Sicherheit in der Informatik / I20 Prof. Dr. Claudia Eckert Technische Universtität München

Mehr

Wie schreibt man eine Masterarbeit in drei Tagen?

Wie schreibt man eine Masterarbeit in drei Tagen? Wie schreibt man eine Masterarbeit in drei Tagen? Magnus Pfeffer, Kai Eckert, Philipp Zumstein (Universitätsbibliothek Mannheim) Best-Practice-Wettbewerb Informationskompetenz 103. Deutscher Bibliothekartag

Mehr

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Iryna Gurevych Sprachtechnologie-Feuerwerk: Aktuelle Anwendungsbeispiele und Zukunftsvisionen

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr

Konferenzseminar IT-Sicherheit

Konferenzseminar IT-Sicherheit Konferenzseminar IT-Sicherheit SS 2014 Veranstalter: Felix Freiling, Hans-Georg Eßer Weitere Betreuer: Zinaida Benenson, Michael Gruhn, Norman Hänsch, Nadina Hintz, Sven Kälber, Philipp Klein, Werner Massonne,

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

Seminar SS 09 Amdahl`s Law and Cloud-Computing

Seminar SS 09 Amdahl`s Law and Cloud-Computing Seminar SS 09 Amdahl`s Law and Cloud-Computing Prof. G. Bengel Fakultät für Informatik SEMB 7IBW 8IB Raum HO609 Mo 9:45-11:15 1. Teil: Amdahl sches Gesetz 1. Vortrag Das Gesetz von Amdahl und Gustafson

Mehr

Finanzcontrolling-Seminar im Wintersemester. "Regulierung nach der Finanzkrise - Welche

Finanzcontrolling-Seminar im Wintersemester. Regulierung nach der Finanzkrise - Welche Finanzcontrolling-Seminar im Wintersemester 2009/10 "Regulierung nach der Finanzkrise - Welche Antworten liefert das Controlling?" Lehrstuhl für BWL Controlling Prof. Dr. Gunther Friedl Technische Universität

Mehr

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert:

Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: Studierende, die diese Vorlesung hören, haben sich auch für folgende Lehrveranstaltungen interessiert: 1 des FG Informationssysteme Datenbanken Internet-Suchmaschinen Information Retrieval Information

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

Huston, Geoff: Internet Performance Survival Guide, QoS Strategies for Multiservice Networks, John Wiley & Sons, 2000, 550 Seiten, DM 98.

Huston, Geoff: Internet Performance Survival Guide, QoS Strategies for Multiservice Networks, John Wiley & Sons, 2000, 550 Seiten, DM 98. Proseminar Gunter Bolch Informatik 4 SS 2004 Literatur Huston, Geoff: Survival Guide, QoS Strategies for Multiservice Networks, John Wiley & Sons, 2000, 550 Seiten, DM 98. Armitage, Grenville: Quality

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Thementisch Anwendungsgebiete und

Thementisch Anwendungsgebiete und Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven

Mehr

Seminar Visual Analytics and Visual Data Mining

Seminar Visual Analytics and Visual Data Mining Seminar Visual Analytics and Visual Data Mining Dozenten:, AG Visual Computing Steffen Oeltze, AG Visualisierung Organisatorisches Seminar für Diplom und Bachelor-Studenten (max. 18) (leider nicht für

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Industrie 4.0 und Smart Data

Industrie 4.0 und Smart Data Industrie 4.0 und Smart Data Herausforderungen für die IT-Infrastruktur bei der Auswertung großer heterogener Datenmengen Richard Göbel Inhalt Industrie 4.0 - Was ist das? Was ist neu? Herausforderungen

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

Seminar: Software Engineering verteilter Systeme

Seminar: Software Engineering verteilter Systeme Seminar: Software Engineering verteilter Systeme Hauptseminar im WS 2010/2011 Programmierung verteilter Systeme Institut für Informatik Universität Augsburg 86135 Augsburg Tel.: +49 821 598-2118 Fax: +49

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Informationssysteme im Gesundheitswesen. Institut für Medizinische Informatik

Informationssysteme im Gesundheitswesen. Institut für Medizinische Informatik Informationssysteme im Gesundheitswesen Institut für Medizinische Informatik Informationssysteme im Gesundheitswesen Organisatorisches Organisatorisches Vertiefungsmodul für Wirtschaftsinformatikstudenten

Mehr

Vorlesung Automotive Software Engineering Prüfung Sommersemester 2015

Vorlesung Automotive Software Engineering Prüfung Sommersemester 2015 Vorlesung Automotive Software Engineering Prüfung Sommersemester 2015 Prof. Dr. rer. nat. Bernhard Hohlfeld Bernhard.Hohlfeld@mailbox.tu-dresden.de Technische Universität Dresden, Fakultät Informatik Honorarprofessur

Mehr

Seminar: Moderne Web Technologien (MWT)

Seminar: Moderne Web Technologien (MWT) Seminar: Moderne Web Technologien (MWT) Malgorzata Mochol Freie Universität Berlin Institut für Informatik Netzbasierte Informationssysteme mochol[at]inf.fu-berlin.de http://page.mi.fu-berlin.de/~mochol/

Mehr

Wirtschaftsinformatik-Seminar (Master) Sommersemester 2014

Wirtschaftsinformatik-Seminar (Master) Sommersemester 2014 Sommersemester 2014 Prof. Dr. Frédéric Thiesse Lehrstuhl für Wirtschaftsinformatik & Systementwicklung Julius-Maximilians-Universität Würzburg 07.02.2014 Die Studierenden sollen Kompetenzen in folgenden

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web.

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web. Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web.de Damages caused by Diprion pini Endangered Pine Regions in Germany

Mehr

Analyzing sample based consumption measurements on mainframe systems enriched with information from source code and other sources

Analyzing sample based consumption measurements on mainframe systems enriched with information from source code and other sources Fakultät für Informatik Technische Universität München Analyzing sample based consumption measurements on mainframe systems enriched with information from source code and other sources Analyse von gesampleten

Mehr

FORSCHUNG FÜR EINE MOBILE ZUKUNFT

FORSCHUNG FÜR EINE MOBILE ZUKUNFT FORSCHUNG FÜR EINE MOBILE ZUKUNFT DRESDEN Big Data & Open Data Chancen im Semantischen Web für die Integration von Informationen in das Unternehmensumfeld André Rauschert Fraunhofer Institut für Verkehr-

Mehr

Seminar: Software Engineering verteilter Systeme

Seminar: Software Engineering verteilter Systeme Seminar: Software Engineering verteilter Systeme Hauptseminar im Sommersemester 2011 Programmierung verteilter Systeme Institut für Informatik Universität Augsburg 86135 Augsburg Tel.: +49 821 598-2118

Mehr

Die Naturwissenschaftlich-Technische Fakultät 6 der Universität des Saarlandes Fachrichtung Informatik

Die Naturwissenschaftlich-Technische Fakultät 6 der Universität des Saarlandes Fachrichtung Informatik Die Naturwissenschaftlich-Technische Fakultät 6 der Universität des Saarlandes Fachrichtung Informatik Modulkatalog: Kernbereich des Schwerpunktfachs Informatik Fassung vom 17. September 2015 auf Grundlage

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Nugget

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Nugget Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Nugget Ansprechpartner/in: Frau Anja Klimek Tel. +49 (5341) 29359-20 E-Mail: a.klimek@aw-systems.net Website: www.aw-systems.net AW-SYSTEMS GmbH Moränenweg

Mehr

Vorbesprechung Hauptseminar "Cloud Computing"

Vorbesprechung Hauptseminar Cloud Computing Vorbesprechung Hauptseminar "Cloud Computing" Dimka Karastoyanova, Johannes Wettinger, Frank Leymann {karastoyanova, wettinger, leymann}@iaas.uni-stuttgart.de Institute of Architecture of Application Systems

Mehr

BI für Testmanagementtools am Beispiel von QMetry

BI für Testmanagementtools am Beispiel von QMetry BI für Testmanagementtools am Beispiel von QMetry Daniel Geppert Seminar Seminar Business Intelligence und Data Mining www.verifysoft.com 16. Januar 2013 Übersicht 2 22 Einführung Warum Software Testen?

Mehr

Medizinische Informatik 1. Einführung. Wintersemester 2010/11 Dozent: Univ. Prof. Dr. med. Stefan Schulz

Medizinische Informatik 1. Einführung. Wintersemester 2010/11 Dozent: Univ. Prof. Dr. med. Stefan Schulz Medizinische Informatik 1. Einführung Wintersemester 2010/11 Dozent: Univ. Prof. Dr. med. Stefan Schulz zur Person (I) geboren in Karlsruhe (D) Studium der Humanmedizin in Heidelberg, Mannheim und Porto

Mehr

Organisatorisches. Proseminar Technische Informatik - 18. Oktober 2013

Organisatorisches. Proseminar Technische Informatik - 18. Oktober 2013 Organisatorisches Proseminar Technische Informatik - 18. Oktober 2013 Michael Frey Distributed, embedded Systems Computer Systems and Telematics (CST) Freie Universität Berlin http://cst.mi.fu-berlin.de

Mehr

Wintersemester 2014/15 - Seminarorganisation

Wintersemester 2014/15 - Seminarorganisation Wintersemester 2014/15 - Seminarorganisation Lehrstuhl für Wirtschaftsinformatik Prof. Dr. Richard Lackes technische universität dortmund Organisatorisches Seminarkoordination Zwischenpräsentation: voraussichtlich

Mehr

Data Mining in SAP NetWeaver BI

Data Mining in SAP NetWeaver BI Martin Kießwetter, Dirk Vahl kam p Data Mining in SAP NetWeaver BI Galileo Press Bonn Boston 2.1 Was ist Data Mining? 17 2.2 Data Mining, KDD und Business Intelligence 20 2.3 KDD-Prozessmodelle 22 2.4

Mehr

Data Mining im Einzelhandel Methoden und Werkzeuge

Data Mining im Einzelhandel Methoden und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Professur Technische Informationssysteme Proseminar Technische Informationssysteme Data Mining im Einzelhandel Methoden und Werkzeuge Betreuer: Dipl.-Ing.

Mehr

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR AUTOMATISCHE ANALYSE VON GESICHTSAUSDRÜCKEN Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide

Mehr

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013 Forschunsprojekte und Independent Coursework Prof. Dr. Christian Herta 29. Januar 2013 Forschungsgebiete Suchtechnologie, Text- und Webmining Verarbeitung unstrukturierter Daten, insbesondere Text Large

Mehr

Arbeiten mit Datenbanken

Arbeiten mit Datenbanken Prof. Dr. Rüdiger Zarnekow TU Berlin, Fakultät VII Kommunikationsmanagement Kommunikationsmanagement Inhalte und Ziele 1. wichtige Hinweise 2. Freie Datenbanken der TU 3. Schlagwortsuche 4. Übung 1 5.

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr

Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome

Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome Big Data bei unstrukturierten Daten AW1 Vortrag Sebastian Krome Agenda Wiederholung Aspekte von Big Data Datenverarbeitungsprozess TextMining Aktuelle Paper Identification of Live News Events Using Twitter

Mehr

Information Mining - Einführung

Information Mining - Einführung Information Mining - Einführung Norbert Fuhr Abteilung Informatik und Angewandte Kognitionswissenschaften Fachgebiet Informationssysteme norbert.fuhr@uni-due.de 1 Aufgabenstellungen im Data Mining Klassifikation

Mehr

Prüfungsplan Master of Science in Wirtschaftsinformatik

Prüfungsplan Master of Science in Wirtschaftsinformatik Prüfungsplan Master of Science in Wirtschaftsinformatik Modul Art Creditpunkte Schwerpunkt Very Large Business Applications Module aus dem Bereich Wirtschaftsinformatik SWS Empfohlenes Semester Prüfungsart

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Organisationsmanagement

Organisationsmanagement Informations- und Organisationsmanagement Prof. Dr. Elvira Kuhn Seminarveranstaltung SS 2016 Hochschule Trier HS-Trier, SS 2016 Prof. Dr. Elvira 1 Kuhn 1 Organisatorisches 4-std. Veranstaltung während

Mehr