DIE MATHEMATIK FÜR PHYSIK UND CHEMIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "DIE MATHEMATIK FÜR PHYSIK UND CHEMIE"

Transkript

1 612A9 DIE MATHEMATIK FÜR PHYSIK UND CHEMIE VON HENRY MARGENAU EUGENE HIGGINS PROFESSOR DER PHYSIK UND NATURPHILOSOPHIE YALE UNIVERSITÄT UND GEORGE MOSELEY MURPHY DIREKTOR DES INSTITUTS FÜR CHEMIE AM WASHINGTON SQUARE COLLEGE UNIVERSITÄT NEW YORK 1964 B. G.TEU BN ER VE RLAGSGES ELLSCHAFT-LEIPZIG

2 INHALT 1 DIE MATHEMATIK DER THERMODYNAMIK 1.1 Einführung Differentiation von Funktionen mit mehreren unabhängigen Variablen Totale Differentiale Differentiale höherer Ordnung Implizite Funktionen Implizite Funktionen in der Thermodynamik Totale Differentiale und Linienintegrale Totale und nichttotale Differentiale in der Thermodynamik Die Hauptsätze der Thermodynamik Systematische Herleitung der thermodynamischen partiellen Ableitungen Gewinnung thermodynamischer Ableitungen durch Funktionaldeterminanten Eigenschaften der Funktionaldeterminante Anwendung auf die Thermodynamik Thermodynamische Systeme mit veränderlicher Masse Das Prinzip von Caratheodory 47 2 GEWÖHNLICHE DIFFERENTIALGLEICHUNGEN 2.1 Vorbemerkungen Die Variablen sind trennbar Exakte Differentialgleichungen. Lineare Gleichungen Differentialgleichungen, die sich auf lineare zurückführen lassen Homogene Differentialgleichungen Bemerkung über singulare Lösungen. Die Clairautsche Differentialgleichung Homogene lineare Differentialgleichung mit konstanten Koeffizienten Inhomogene lineare Differentialgleichung mit konstanten Koeffizienten Andere spezielle Differentialgleichungen zweiter Ordnung Qualitative Betrachtungen zu Gleichung Ein Beispiel für die Integration durch Reihen. Die Legendresche Differentialgleichung Allgemeines über Integration durch Reihen. Das Fuchssche Theorem Die Hypergeometrische (Gaußsche) Differentialgleichung Die Besselsche Differentialgleichung 104

3 INHALT Die Hermitesche Differentialgleichung Die Laguerresche Differentialgleichung Die Mathieusche Differentialgleichung Die Pfaffsche Form und Differentialgleichung SPEZIELLE FUNKTIONEN 3.1 Grundlagen der Integration im Komplexen. Cauchysche Integralsätze a Der Satz von Laurent. Residuen Die Gammafunktion Die Legendreschen Polynome Die Integraleigenschaften der Legendreschen Polynome Rekursionsformeln für die Legendreschen Polynome Die zugeordneten Legendreschen Polynome Das Additionstheorem der Legendreschen Polynome Die Besselfunktionen Die Hankeischen Funktionen. Weitere Eigenschaften der Besselfunktionen Die Hermiteschen Polynome und Funktionen Die Laguerreschen Polynome und Funktionen Die erzeugenden Funktionen Die lineare Abhängigkeit Die Schwarzsehe Ungleichung VEKTORANALYSIS 4.1 Definition eines Vektors Einheitsvektoren Addition und Subtraktion von Vektoren Das Skalarprodukt zweier Vektoren Das Vektorprodukt zweier Vektoren Produkte, die drei Vektoren enthalten Differentiation von Vektoren Skalar- und Vektorfelder Der Gradient Die Divergenz Der Rotor Zusammengesetzte Funktionen, die V enthalten Sukzessive Anwendung von V Vektorintegration Kurvenintegrale Oberflächen- und Volumenintegrale Der Stokessche Satz Der Gaußsche Integralsatz 204

4 11 INHALT 4.19 Die Greenschen Sätze ; Tensoren Addition, Multiplikation und Verjüngung Differentiation von Tensoren Tensoren und der elastische Körper KOORDINATENSYSTEME (Vektoren und krummlinige Koordinaten) 5.1 Krummlinige Koordinaten Vektorbeziehungen in krummlinigen Koordinaten Kartesische Koordinaten Kugelkoordinaten Zylinderkoordinaten Elliptische Koordinaten Koordinaten des gestreckten Rotationsellipsoids Koordinaten des abgeplatteten Rotationsellipsoids Koordinaten des elliptischen Zylinders Kegelkoordinaten Parabolische Koordinaten Rotationsparabolische Koordinaten Koordinaten des parabolischen Zylinders Bipolarkoordinaten Toruskoordinaten Tensorbeziehungen in krummlinigen Koordinaten Die Differentialoperatoren in Tensorschreibweise VARIATIONSRECHNUNG 6.1 Eine unabhängige und eine abhängige Variable Mehrere abhängige Variable Beispiel: Das Hamiltonsche Prinzip Mehrere unabhängige Variable Nebenbedingungen; die Lagrangeschen Multiplikatoren Die Schrödingergleichung Schlußbemerkungen DIE PARTIELLEN DIFFERENTIALGLEICHUNGEN DER KLASSISCHEN PHYSIK 7.1 Allgemeines Die Laplacesche Differentialgleichung (Potentialgleichung) Die zweidimensionale Potentialgleichung 273

5 INHALT Die dreidimensionale Potentialgleichung Die Bewegung einer Kugel durch eine inkompressible Flüssigkeit ohne Wirbelbildung Einfache elektrostatische Potentiale Leitende Kugel im Feld einer Punktladung Die Wellengleichung Eindimensionaler Fall Zweidimensionaler Fall Dreidimensionaler Fall Beispiele für die Lösung der Wellengleichung Die Wärmeleitungs- und Diffusionsgleichung Beispiel: Die lineare Wärmeleitung Die zweidimensionale Wärmeleitung Die Wärmeleitung im Dreidimensionalen Die Poissonsche Gleichung EIGENWERTE UND EIGENFUNKTIONEN 8.1 Einfache Beispiele von Eigenwertproblemen Die schwingende Saite; Fourieranalyse Die Schwingung einer kreisförmigen Membran; Fourier-Bessel- Transformierte Die in sich schwingende Kugel bei festgehaltener Oberfläche Die Laplace- und ähnliche Transformationen Die Verwendung neuer Transformationen bei der Lösung von Differentialgleichungen Die Sturm-Liouvillesche Theorie Variationsrechnung und Eigenwertprobleme Die Verteilung höherer Eigenwerte, Die Vollständigkeit der Eigenfunktionen Weitere Bemerkungen und Verallgemeinerungen MECHANIK DER MOLEKÜLE 9.1 Einführung Allgemeine Prinzipien der klassischen Mechanik Der starre Körper in der klassischen Mechanik Geschwindigkeit, Drehimpuls und kinetische Energie Die Eulerschen Winkel Absolute und relative Geschwindigkeit Bewegung eines Moleküls Die kinetische Energie eines Moleküls 359

6 13 INHALT 9.9 Die Hamiltonsche Form der kinetischen Energie Die Schwingungsenergie eines Moleküls Schwingungen eines linearen dreiatomigen Moleküls Die quantenmechanische Hamilton-Funktion MATRIZEN UND MATRIZENALGEBRA 10.1 Anordnungen oder Schemata Determinanten Unterdeterminanten und algebraische Komplemente Multiplikation und Differentiation von Determinanten Vorläufige Bemerkungen über Matrizen Verknüpfung von Matrizen Spezielle Matrizen Reelle lineare Vektorräume Lineare Gleichungssysteme Lineare Transformationen Äquivalente Matrizen Bilineare und quadratische Formen Ähnlichkeitstransformationen Die charakteristische Gleichung einer Matrix Reduktion einer Matrix auf die Diagonalform Kongruenztransformationen Orthogonale Transformationen Der Hermitesche Vektorraum Hermitesche Matrizen Unitäre Matrizen Zusammenfassende Betrachtungen über die Diagonalisierung von Matrizen QUANTENMECHANIK 11.1 Einführung ' Definitionen Postulate Orthogonalität und Vollständigkeit der Eigenfunktionen Relative Wahrscheinlichkeit von Meßwerten Anschauliche Bedeutung der Zustandsfunktion Vertauschbare Operatoren Die Unbestimmtheitsrelation Freier Massenpunkt Eindimensionale Potentialschwellen Der einfache harmonische Oszillator 441

7 INHALT Der starre Rotator. Eigenwerte und Eigenfunktionen von L Bewegung in einem Zentralfeld Der symmetrische Kreisel Allgemeine Bemerkungen Der einfache harmonische Oszillator Die Äquivalenz von Operatoren- und Matrizenmethode :18 Variations- (Ritzsche) Methode Beispiel: Der Grundzustand des Heliumatoms Die Methode der Variation einer Linearkombination Beispiel: Das Ion des Wasserstoffmoleküls Störungstheorie Beispiel: Nichtentarteter Fall. Der Stark-Effekt Beispiel: Entarteter Fall. Der normale Zeeman-Effekt Allgemeine Überlegungen Das freie Teilchen; Wellenpakete Kontinuitätsgleichung. Teilchenstromdichte Anwendung der zeitabhängigen Schrödinger-Gleichung. Einfache Strahlungstheorie Grundlagen der Theorie Anwendungen Separation von Schwerpunktskoordinaten Unabhängige Systeme Das Ausschließungsprinzip Angeregte Zustände des Heliumatoms Das Wasserstoffmolekül STATISTISCHE MECHANIK 12.1 Permutationen und Kombinationen Binomialkoeffizienten Grundlagen der Wahrscheinlichkeitsrechnung Spezielle Verteilungen Die Gibbsschen Gesamtheiten Gesamtheiten und Thermodynamik Weitere Betrachtungen zur kanonischen Gesamtheit Die Methode von Darwin und Fowler Quantenmechanische Verteilungsgesetze Die Sattelpunktmethode NUMERISCHE METHODEN 13.1 Einführung Interpolation für gleiche Schrittweite des Arguments 568

8 15 INHALT 13.3 Interpolation bei ungleicher Schrittweite des Arguments Inverse Interpolation Zwei-Wege-Interpolation Differentiation unter Verwendung von Interpolationsformeln Differentiation durch Verwendung eines Polynoms Einführung Die Euler-Maclaurinsche Formel Die Formel von Gregory Die Newton-Cotessche Formel Die Methode von Gauß Bemerkungen über Quadraturformeln Einführung in die Methoden zur numerischen Lösung von Differentialgleichungen Integration mit Hilfe der Taylor-Reihe Das Verfahren von Picard (Methode der sukzessiven Approximation oder Iterationsverfahren) Das modifizierte Eulersche Verfahren Das Verfahren von Runge-Kutta Fortsetzung der Lösung Das Verfahren von Milne Systeme von Differentialgleichungen erster Ordnung Differentialgleichungen zweiter und höherer Ordnung Die numerische Auflösung von transzendenten Gleichungen Mehrere Gleichungen mit mehreren Unbekannten Numerische Bestimmung der Wurzeln von Polynomen Numerische Lösung von linearen Gleichungssystemen Berechnung von Determinanten Die Auflösung von Säkulargleichungen Fehler Das Prinzip der kleinsten Quadrate Fehler und Abweichungen Genauigkeitsmaße Genauigkeitsmaße und Abweichungen Experimentelle Messungen mit ungleichem Gewicht Der wahrscheinliche Fehler einer Funktion Verwerfung von Beobachtungsergebnissen Empirische Formeln LINEARE INTEGRALGLEICHUNGEN 14.1 Definition und Bezeichnungen Die Liouville-Neumannsche Reihe Das Fredholmsche Lösungsverfahren 642

9 INHALT Das Schmidt-Hilbertsche Lösungsverfahren Zusammenfassung der Lösungsverfahren Der Zusammenhang zwischen Differential- und Integralgleichungen Die Greensche Funktion Die inhomogene Sturm-Liouvillesche Gleichung Einige Beispiele für die Greensche Funktion Die Abelsche Integralgleichung Schwingungsprobleme GRUPPENTHEORIE (Die Eigenschaften einer Gruppe) 15.1 Definition Untergruppen Klassen Komplexe Konjugierte Untergruppen Der Isomorphismus Die Darstellung von Gruppen Die Reduktion einer Darstellung Der Charakter Das indirekte Produkt Die zyklische Gruppe Die symmetrische Gruppe Die alternierende Gruppe Die unitäre Gruppe Die dreidimensionale Drehgruppe Die zweidimensionalen Drehgruppen Die Diedergruppen Die kristallographischen Punktgruppen Anwendungen der Gruppentheorie 705

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Rechenmethoden der Physik

Rechenmethoden der Physik May-Britt Kallenrode Rechenmethoden der Physik Mathematischer Begleiter zur Experimentalphysik Mit47Abbildungen, 297AufgabenundLösungen 13 Professor Dr. May-Britt Kallenrode Universität Osnabrück Fachbereich

Mehr

Mathematik für Ingenieure und Naturwissenschaftler Band 2

Mathematik für Ingenieure und Naturwissenschaftler Band 2 Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler Band 2 Ein Lehr- und Arbeitsbuch für das Grundstudium 8., verbesserte Auflage Mit zahlreichen Beispielen aus Naturwissenschaft und Technik,

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine Einführung unter besonderer Berücksichtigung der Anwendungen Von Dr. phil. Dr. h. c. mult. Lothar Collatz em. o. Professor an der Universität Hamburg 6., überarbeitete und

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n- I. Lineare Algebra Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung 1. Determinanten (siehe Fischer/Kaul I, S.329-339) Matrix. Determinanten von 2 2- und 3 3-Matrizen. Alternierende Multilinearformen

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Theoretische Physik. Klassische. Römer. Eine Einführung. Dritte, durchgesehene und erweiterte Auflage mit 139 Abbildungen und 39 Übungen

Theoretische Physik. Klassische. Römer. Eine Einführung. Dritte, durchgesehene und erweiterte Auflage mit 139 Abbildungen und 39 Übungen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Römer Klassische Theoretische Physik Eine Einführung Dritte, durchgesehene

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25

Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25 Inhaltsverzeichnis Einleitung 19 Konventionen in diesem Buch 19 Törichte Annahmen über den Leser 20 Was Sie in diesem Buch finden 20 Was Sie in diesem Buch nicht finden 20 Wie dieses Buch aufgebaut ist

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Josef Trölß. Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch

Josef Trölß. Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch W Josef Trölß Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch Band 2: Komplexe Zahlen und Funktionen Vektoralgebra und Analytische Geometrie Matrizenrechnung Vektoranalysis SpringerWienNewYork

Mehr

Inhaltsverzeichnis Vorwort Grundlagen

Inhaltsverzeichnis Vorwort Grundlagen Inhaltsverzeichnis Vorwort... 1 Grundlagen... 1 1.1 Mengenlehre... 1 1.1.1 Mengenbegriff... 2 1.1.2 Mengenoperationen... 4 1.1.3 Abbildungen... 7 1.2 Logik... 12 1.2.1 Aussagenlogik... 12 1.2.2 Prädikatenlogik...

Mehr

Lineare Algebra Zusammenfassung

Lineare Algebra Zusammenfassung Lineare Algebra Zusammenfassung Gruppen, Körper, Vektorräume Gruppen Def.: Eine Gruppe (G, )besteht aus einer nicht-leeren Menge G und einer Verknüpfung zwischen Elementen dieser Gruppe. Folgende Eigenschaften

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Einführung in die Grundlagen der Theoretischen Physik

Einführung in die Grundlagen der Theoretischen Physik Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band 1: Raum, Zeit, Mechanik 2., durchgesehene und erweiterte Auflage Vieweg Inhalt Zur Einführung 1 /. Was theoretische Physik nicht

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Lehr- und Übungsbuch Mathematik für Informatiker

Lehr- und Übungsbuch Mathematik für Informatiker Lehr- und Übungsbuch Mathematik für Informatiker Lineare Algebra und Anwendungen Bearbeitet von Wolfgang Preuß, Günter Wenisch 1. Auflage 1996. Buch. 328 S. Hardcover ISBN 978 3 446 18702 3 Format (B x

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Differentialgleichungen mit MATHCAD und MATLAB

Differentialgleichungen mit MATHCAD und MATLAB Hans Benker Differentialgleichungen mit MATHCAD und MATLAB Mit 33 Abbildungen Sprin ger 1 Einleitung 1 1.1 Differentialgleichungen in Technik, Natur- und Wirtschaftswissenschaften 2 1.2 Lösung von Differentialgleichungen

Mehr

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele

Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation

Mehr

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23 Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18

Mehr

Theoretische Physik I

Theoretische Physik I Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik I Mechanik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort XV 1 Einleitung 1 1.1

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

\ ' \ \ I Vektorrechnung 1. 1 Einführung und Grunddefinitionen 1. 2 Das Skalarprodukt 3. 3 Komponentendaxsteilung eines Vektors 6

\ ' \ \ I Vektorrechnung 1. 1 Einführung und Grunddefinitionen 1. 2 Das Skalarprodukt 3. 3 Komponentendaxsteilung eines Vektors 6 r Inhaltsverzeichnis \ ' \ \ I I Vektorrechnung 1 1 Einführung und Grunddefinitionen 1 2 Das Skalarprodukt 3 3 Komponentendaxsteilung eines Vektors 6 4 Das Vektorprodukt (axialer Vektor) 9 5 Das Spatprodukt

Mehr

PARTIELLE DIFFERENTIALGLEICHUNGEN DER PHYSIK

PARTIELLE DIFFERENTIALGLEICHUNGEN DER PHYSIK r. ' " ' ". =... - ' '. - '.. PARTIELLE DIFFERENTIALGLEICHUNGEN DER PHYSIK VON ARNOLD SOMMERFELD! 6. AUFLAGE,1. -, BEARBEITET UND ERGÄNZT VON FRITZ SAUTER PROFESSOR AN DER UNIVERSITÄT KÖLN MIT47 FIGUREN

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Kurze Geschichte der linearen Algebra

Kurze Geschichte der linearen Algebra Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Rotation, Divergenz und das Drumherum

Rotation, Divergenz und das Drumherum Rotation, Divergenz und das Drumherum Eine Einführung in die elektromagnetische Feldtheorie Von Akad. Direktor i. R. Dr.-Ing. Gottlieb Strassacker Universität Fridericiana (TH) Karlsruhe 4., vollständig

Mehr

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

Ingenieurmathematik mit MATLAB

Ingenieurmathematik mit MATLAB Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag

Mehr

Differentialgleichungen der Geometrie und der Physik

Differentialgleichungen der Geometrie und der Physik Friedrich Sauvigny Partie I le Differentialgleichungen der Geometrie und der Physik Grundlagen und Integraldarstellungen Unter Berücksichtigung der Vorlesungen von E. Heinz Springer Inhaltsverzeichnis

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

4.4 Eigenwerte und Eigenvektoren

4.4 Eigenwerte und Eigenvektoren 4.4-1 4.4 Eigenwerte und Eigenvektoren 4.4.1 Die Eulersche Gleichung Der Drehimpulsvektor kann folgendermaßen geschrieben werden, (1) worin die e i o Einheitsvektoren in Richtung der Hauptachsen sind,

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik für Ingenieure und Naturwissenschaftler BandS

Mathematik für Ingenieure und Naturwissenschaftler BandS Lothar Papula Mathematik für Ingenieure und Naturwissenschaftler BandS Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung 6., überarbeitete und erweiterte

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Mathematik. Aufgabensammlung mit Lösungen. 6., verbesserte und erweiterte Auflage. R. Oldenbourg Verlag München Wien. Von Professor Aribert Nieswandt

Mathematik. Aufgabensammlung mit Lösungen. 6., verbesserte und erweiterte Auflage. R. Oldenbourg Verlag München Wien. Von Professor Aribert Nieswandt Mathematik Aufgabensammlung mit Lösungen Von Professor Aribert Nieswandt 6., verbesserte und erweiterte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis Aufgaben zur Mengenalgebra und Kombinatorik

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Manfred Albach Grundlagen der Elektrotechnik 1 Erfahrungssätze, Bauelemente, Gleichstromschaltungen 3., aktualisierte Auflage Inhaltsverzeichnis Vorwort 11 Kapitel 1 Das elektrostatische Feld 15 1.1 Die

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

MATLAB 5 für Ingenieure

MATLAB 5 für Ingenieure Adrian Biran Moshe Breiner MATLAB 5 für Ingenieure Systematische und praktische Einführung 3., überarbeitete und erweiterte Auflage TT ADDISON-WESLEY An imprint of Pearson Education München Boston San

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Rotation, Divergenz und Gradient

Rotation, Divergenz und Gradient Gottlieb Strassacker, Roland Süße Rotation, Divergenz und Gradient Einführung in die elektromagnetische Feldtheorie 6. durchgesehene und ergänzte Auflage Mit 151 Abbildungen, 17 Tabellen und 70 Beispielen

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Mathematische Leitfäden Herausgegeben von Prof. Dr. Dr. h.c. mult. G. Köthe, Prof. Dr. K.-D. Bierstedt, Universität-Gesamthochschule Paderborn und Prof. Dr. G. Trautmann, Universität Kaiserslautern Gewöhnliche

Mehr

EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen

EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen EdM Hessen Qualifikationsphase 978-3-507-87911-9 Bleib fit in Differenzialrechnung 1 Integralrechnung Lernfeld: Wie groß ist? 1.1 Der Begriff des Integrals 1.1.1 Aus Änderungsraten rekonstruierter Bestand

Mehr

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004

W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS

RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS P. K. RASCHEWSKI RIEMANNSCHE GEOMETRIE UND TENSORANALYSIS 2. unveränderte Auflage mit 32 Abbildungen VERLAG HARRI DEUTSCH INHALTSVERZEICHNIS L Tensoren im dreidimensionalen euklidischen Baum 1. Einstufige

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME KOMPLEXE ZHLEN UND LINERE GLEICHUNGSSYSTEME Vektoren Definition: Parallelverschiebung, Pfeil(e) mit Länge und Richtung. Darstellung Eigenschaften Komponenten Graphisch Länge, Betrag Zwischenwinkel Vektorarten

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.

Mehr

Lineare Algebra und Geometrie für Ingenieure

Lineare Algebra und Geometrie für Ingenieure Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016

Stichwortliste zur Vorlesung. Lineare Algebra II. Gabriela Weitze-Schmithüsen. Saarbrücken, Sommersemester 2016 Stichwortliste zur Vorlesung Lineare Algebra II Gabriela Weitze-Schmithüsen Saarbrücken, Sommersemester 2016 Kapitel I Jordansche Normalform Ziel: Wir möchten Matrizen bis aus Ähnlichkeit klassifizieren.

Mehr

Lineare Algebra. Teil III. Inhaltsangabe

Lineare Algebra. Teil III. Inhaltsangabe Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

MECHANIK Eine Einführung in Experiment und Theorie

MECHANIK Eine Einführung in Experiment und Theorie S. Brandt H. D. Dahmen MECHANIK Eine Einführung in Experiment und Theorie Dritte, völlig neubearbeitete Auflage mit 270 Abbildungen, 10 Tabellen, 52 Experimenten und 145 Aufgaben mit Hinweisen und Lösungen

Mehr

Grundlagen der Strömungsmechanik

Grundlagen der Strömungsmechanik Franz Durst Grundlagen der Strömungsmechanik Eine Einführung in die Theorie der Strömungen von Fluiden Mit 349 Abbildungen, davon 8 farbig QA Springer Inhaltsverzeichnis Bedeutung und Entwicklung der Strömungsmechanik

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin

Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion

Mehr

Ingenieurmathematik kompakt Problemlösungen mit MATLAB

Ingenieurmathematik kompakt Problemlösungen mit MATLAB Ingenieurmathematik kompakt Problemlösungen mit MATLAB Einstieg und Nachschlagewerk für Ingenieure und Naturwissenschaftler Bearbeitet von Hans Benker 1. Auflage 2010. Taschenbuch. 273 S. Paperback ISBN

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr