Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Größe: px
Ab Seite anzeigen:

Download "Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( )."

Transkript

1 - rudlage der Elektrotechk Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle vom gleche Strom durchflosse, sehe auch Abschtt 3..3 ud Formel (3..4.4). V 2 2 Für jede Wderstad glt,.... (4...) De esamtspaug st glech der Summe der Ezelspauge. v v. (4...2) De sgesamt vo der Sereschaltug aufgeommee Lestug st auch glech der Summe aller auftretede Ezellestuge P ges P 2 v.

2 - rudlage der Elektrotechk Be der Addto der Spauge st jewels auf de chtug der Zählpfele zu achte. 2 ges 3 Es glt + ges 2 3. Werde mehrere eblde ehe geschaltet, so st de esamtspaug ges a der eheschaltug glech der Summe der Ezelspauge, wobe de Zählpfele zu beachte sd. Be de Ezelspauge sprcht ma auch vo Spaugsabfälle. ückgrff auf Abschtt 3.3.3: A De elektrsche Feldstärke st glech dem Spaugsabfall a eem Leter, desse Läge glech der Lägeehet st, E.

3 - rudlage der Elektrotechk Aus (4...) ud (4...2) folgt ges, (4...3) ges. (4...4) Der esamtwderstad eer eheschaltug mehrerer Wderstäde st glech der Summe der Ezelwderstäde. Mt (4...5) folgt aus (4...4) für de esamtletwert ges. (4...6) ges 4..2 Parallelschaltug vo Wderstäde We ma mehrere Verbraucher parallel schaltet, legt a alle de gleche Spaug. A 2 2

4 - rudlage der Elektrotechk Für jede Wderstad glt,.... (4..2.) Der esamtstrom st glech der Summe der Ezelströme :. (4..2.2) Aus (4..2.) ud (4..2.2) folgt, (4..2.3) ges ges (4..2.4) Der esamtwderstad eer Parallelschaltug mehrerer Wderstäde st glech der rezproke Summe der ezprokwerte der Ezelwderstäde. Mt (4...3) folgt aus (4..2.4) für de esamtletwert ges. (4..2.5) Der esamtwderstad komplzerterer Schaltuge ka uter Verwedug vo (4...4) ud (4..2.5) berechet werde. 2 2 Ausahme blde Probleme, dere Lösug de Ster-Dreeck-mwadlug erfordert.

5 - rudlage der Elektrotechk Bespel: egebe se folgede Schaltug: Es soll der wrksame Wderstad ges zwsche de bede Egagsklemme ermttelt werde.. Schrtt: Zusammefasse aller Wderstäde eem Zweg Schrtt: Zusammefasse der Parallelzwege 6 P

6 - rudlage der Elektrotechk Schrtt: Nochmalges Zusammefasse aller Wderstäde eem Zweg ges

7 - rudlage der Elektrotechk eale Spaugsquelle mt ewderstad 5/ Physkalsche Notwedgket des ewderstads Be eer deale Spaugsquelle glt für de Spaug cost uabhägg vo der äußere Beschaltug. Abhägg vo st de vo der Spaugsquelle abgegebee Lestug ach (3.5.) 2 P. (4.2..) Be eer solche Spaugsquelle würde sch lm P 0 (4.2..2) ergebe, d.h. ma köte hr belebg große Lestug etehme, we ma ur de Wderstad des Verbrauchers geüged kle macht. Für de erzeugte Strom würde ebefalls ach (3.3..) 0 lm (4.2..3) 0 gelte, was physkalsch umöglch st. Zum Beschrebe des physkalsche Verhaltes vo reale Spaugsquelle muß ma m Ersatzschaltbld ee ewderstad aehme.

8 - rudlage der Elektrotechk Ersatzschaltbld eer reale Spaugsquelle: 5/99 vele Fälle lasse sch reale Spaugsquelle bzgl. hres Klemmeverhaltes zumdest äherugswese durch de Sereschaltug eer deale Spaugsquelle mt der Quellspaug q ud ees ewderstads modellere. q Für de Klemmespaug der deale Spaugsquelle glt dabe q q cost. (4.2..4) Herbe hadelt es sch um e Ersatzschaltbld. der reale Spaugsquelle sd der egel ee deale Spaugsquelle ud e ewderstad cht räumlch voeader zu tree. Das Ersatzschaltbld st ee gedaklche Hlfe. q ud köe auch vo der Belastug abhäge. Bespel Strombegrezug: () q Für de Strom glt q. (4.2..5) () +

9 - rudlage der Elektrotechk de bede folgede Dagramme st das typsche Verhalte eer Spaugsquelle ohe Strombegrezug ud eer Spaugsquelle mt Strombegrezug aufgezechet. 5/99 q 0 dealer Fall 0 cost 0 realer Fall stegt mt Kurzschlußstrom ud Leerlaufspaug Wrd ee reale Spaugsquelle, d.h., ee Spaugsquelle mt dem Abschtt 4.2. egeführte Ersatzbld, kurzgeschlosse, da sd etommee Lestug ud etommeer Strom cht mehr uedlch. q k Für de Kurzschlußstrom erhält ma k q. (4.2.2.)

10 - rudlage der Elektrotechk Sd de Klemme eer reale Spaugsquelle, d.h., eer Spaugsquelle mt dem Abschtt 4.2. egeführte Ersatzbld offe (Leerlauf), so fleßt ke Strom. q Für de Leerlaufspaug erhält ma q. ( ) Ee reale Spaugsquelle st charaktersert durch zwe der dre röße ewderstad, Kurzschlußstrom k ud Leerlaufspaug q. Be obge Betrachtuge wurde cost ageomme. Be vele reale Spaugsquelle häge ud/oder q vo der Belastug der Spaugsquelle ab. Dadurch ergebe sch zusätzlche Schwergkete be der rechersche Behadlug. m folgede wrd stets cost ageomme Strom ud Klemmespaug be Belastug De Belastugsfall eer reale Spaugsquelle ka ma modellere als ee Sereschaltug vo dealer Spaugsquelle, dere ewderstad ud ees Verbrauchers. q

11 - rudlage der Elektrotechk Bereche des Stromes: q. (4.2.3.) + Bereche der Klemmespaug:. ( ) Mt (4.2.3.) ud ( ) ergbt sch schleßlch q. ( ) + Es hadelt sch um ee Spaugstelug. De Quellspaug u q telt sch m Verhälts der Wderstäde auf. erer Spaugsabfall: Mt dem Ergebs aus ( ) läßt sch der ere Spaugsabfall u bestmme : q q( ) q. ( ) + +

12 - rudlage der Elektrotechk Bespel: Es soll der ewderstad eer Spaugsquelle gemesse werde, ohe dese m Kurzschluß zu betrebe. q ubekate Spaugsquelle Dazu wrd eem Leerlaufversuch zuerst de Leerlaufspaug u q ermttelt. eem wetere Versuch wrd der Strom be vorgegebeem Belastugswderstad bestmmt. Ma erhält q 0 V, A, 2 Ω (vorgegebe). Es glt q +, q 0 2 Ω 8 Ω. Hätte ma für q 0V ud 2Ω 0A gemesse, so ergäbe sch!. 0 2 Ω Ω < 0Ω 0 Des wäre e dz dafür, daß sch de ubekate Spaugsquelle cht mt dem obge Ersatzschaltbld modellere läßt.

13 - rudlage der Elektrotechk Lestug 5/99 Für Lestug m Verbraucher glt ach (3.2..) P. Heraus erhält ma mt (4.2.3.) ud ( ) P q q q ( + ) 2. (4.2.4.) Be vorgegebeem q cost ud cost hägt P och vo ab. Ma erhält folgede Verlauf: P P max Maxmale Lestug : Zum Bestmme der maxmale Lestug wrd der Extremwert der Fukto ach (4.2.4.) ermttelt: dp d! 2 2 ( + ) 2 ( + ) 2 0 q 4 q ( + ) ( + ) 3,.

14 - rudlage der Elektrotechk /99 We der Verbraucherwderstad glech dem ewderstad der Spaugsquelle st, etmmt der Verbraucher der Spaugsquelle maxmale Lestug. Deser Zustad heßt Lestugsapassug. (Lestugsapassug). ( ) Für de maxmale Lestug erhält ma mt ( ) aus (4.2.4.) P P max 2 q. ( ) 4 Eergeversorgugssysteme, dee ma uabhägg vom Wderstad der gespeste Verbraucher kostate Spaug a de Verbraucherklemme astrebt, müsse de Wderstäde der Verbraucher vel größer als der ewderstad der spesede Quelle se, so daß ma cht mt Lestugsapassug arbete ka.

15 - rudlage der Elektrotechk Äquvalez vo Stromquelle- ud Spaugsquelleersatzbld 0/99 Das Abschtt 4.2. egeführte Ersatzschaltbld eer reale Spaugsquelle st tatsächlch ur e "Bld", das das Verhalte der reale Spaugsquelle vo de Klemme her gesehe rchtg beschrebt, ohe daß de reale Spaugsquelle hrem ere tatsächlch so aufgebaut se muß. Ee adere Beschrebugsmöglchket für das Klemmeverhalte eer reale Spaugsquelle besteht der Parallelschaltug eer deale Stromquelle, de lastuabhägg stets de gleche Strom k abgbt, ud des Wderstades : k k: Egeprägter Strom Das Ersatzbld mt dealer Spaugsquelle ud das Ersatzbld mt dealer Stromquelle verhalte sch vo hre Klemme her gesehe glech, we de Bezehug k q (4.2.2.) erfüllt st. Bespel: q k q 0 V 333mA 3000 Ω, k 3 k Ω 3 kω q 0 V k ma

16 - rudlage der Elektrotechk De Awedug des ee oder adere Ersatzschaltbldes st wllkürlch. st der ewderstad wesetlch kleer als der Belastugswderstad, da st de Klemmespaug lastuabhägg aäherd kostat. Ma verwedet her deshalb gere das Ersatzbld mt dealer Spaugsquelle. st der ewderstad wesetlch größer als der Belastugswderstad, da st der Klemmestrom lastuabhägg aäherd kostat. Ma verwedet her deshalb gere das Ersatzbld mt dealer Stromquelle. m folgede wrd.a. das Ersatzbld mt dealer Spaugsquelle verwedet.

17 - rudlage der Elektrotechk Aktve ud passve Zwepole 5/ Begrff des Zwepols Der Begrff des Zwepols läßt sch folgedermaße defere: E elektrscher Zwepol st e abgeschlossees System, das ur über zwe Klemme elektrsch zugäglch st. Aktve Zwepole gebe be geegeter Beschaltug Lestug ab. Se ethalte wegstes ee Quelle. Passve Zwepole köe ur Lestug aufehme. Bespel: 2 3 q 4 5 aktver Zwepol passver Zwepol E aktver Zwepol aus mehrere Quelle ud Wderstäde ka durch ee ezge Spaugsquelle mt ewderstad ersetzt werde: 2 í q ^ q

18 - rudlage der Elektrotechk Es glt 5/99 q q +, E passver Zwepol aus mehrere Wderstäde ka durch ee ezge Wderstad ersetzt werde: ^ Verbraucher- ud Erzeugerzählpfelsystem Techsche chtug vo Strom ud Spaug: A de Klemme ees passve Zwepols ergebe sch de folgede Möglchkete für de techsche chtuge vo Strom ud Spaug: passver Zwepol passver Zwepol

19 - rudlage der Elektrotechk A de Klemme ees Lestug abgebede aktve Zwepols ergebe sch folgede Möglchkete für de techsche chtuge vo Strom ud Spaug: aktver Zwepol aktver Zwepol Zählpfele für Strom ud Spaug: De Zählpfele für Klemmestrom ud Klemmespaug ees Zwepols köe wllkürlch egeführt werde. Es gbt ver uterschedlche Möglchkete: Zwepol Zwepol Zwepol Zwepol Verbraucherzählpfelsystem ( VZS ) Erzeugerzählpfelsystem ( EZS ) We de Zählpfele a de Klemme ees Zwepols so gerchtet sd, daß se glechzetg de techsche chtuge vo Strom ud Spaug für de Fall se köte, daß der Zwepol e passver (lestugsabgebeder aktver) Zwepol st, da st für de Zwepol das Verbraucherzählpfelsystem (Erzeugerzählpfelsystem) egeführt. Zählpfelsystem passver Zwepol aktver Zwepol be Lestugsabgabe VZS P st aufgeommee Lestug EZS P st abgegebee Lestug 0 ud 0 oder 0 ud 0 P 0 0 ud 0 oder 0 ud P ud oder ud P ud 0 oder ud P 0 0

20 - rudlage der Elektrotechk Bespel: aktver Zwepol passver Zwepol q 2 ( VZS ) ( EZS ) eg.: 0V; 0 Ω; 20 Ω; 20 Ω q 2 es.:,, P, d.h. de vom passve Zwepol abgegebee Lestug ud vom aktve Zwepol aufgeommee Lestug Ersetze des aktve Zwepols durch Spaugsquelle mt ewderstad: q 0 Ω 20 Ω Ω q q q K V 20 Ω 20 Ω+ 0 Ω 20 3 V 20 3 Ω q V 3 025, A 20 Ω+ 20Ω 3 q V 20 Ω 3 20 Ω+ 20Ω 3 20 V 3 5 V + 3 P 5 V ( 0, 25A), 25 W

21 - rudlage der Elektrotechk Be Lestugsapassug müßte 20 2 Ω se. Da wäre V q P W W,66W Ω 3 Ma erket, daß ee beträchtlche Abwechug des Belastugswderstades ( her 2 20 Ω ) vom ewderstad ( her 20/3 Ω ) ur zu eer relatv gerge edukto der Lestug gegeüber dem maxmal möglche Wert führt.

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

E01. Gleichstromkreis

E01. Gleichstromkreis E Physkalsches Praktkum Glechstromkres Es solle expermetelle tersuchuge zu de Krchhoffsche Gesetze ud zum ewderstad vo Spaugsquelle durchgeführt werde.. Theoretsche Grudlage. ehe ud Parallelschaltug (Sereschaltug)

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Fernstudium. Technische Thermodynamik Teil: Energielehre

Fernstudium. Technische Thermodynamik Teil: Energielehre Fakultät Maschewese Isttut für Eergetechk, Professur für Techsche Therodyak Ferstudu Techsche Therodyak Tel: Eergelehre Prof. Dr. C. Bretkopf Wterseester 2012/13 Adstratves Techsche Therodyak Eergelehre

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre D. Plappert De Strukturglechhet verschedeer physkalscher Gebete gezegt am Bespel Hydraulk-Elektrztätslehre Erschee Kozepte ees zetgemäße Physkuterrchts, Heft 3, Schroedel Verlag 979. Eletug De megeartge

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Physikalische Chemie T Fos

Physikalische Chemie T Fos Physkalsche Cheme T Fos ISCHPHSEN.... ZUSENSETZUNG VO ISCHPHSEN.... EXTENSIVE - UND INTENSIVE GRÖßEN... 4.. Partelles olvolume V m... 7.3 DS ROULTSCHE GESETZ... 0.4 KOLLIGTIVE EIGENSCHFTEN....4. De Sedeuktserhöhug...

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar.

Hochschule Furtwangen University Sommersemester Prof. Dr. Thomas Schneider Medien und Informatik 2. Übungsblatt 5. dar. Hochschle Frtwage Uversty Sommersemester 0 Fakltät Dgtale Mede Mathematk Prof. Dr. Thomas Scheder Mede d Iformatk Übgsblatt. Elemetares Reche mt komplexe Zahle Es se w= +. a) Blde Se de komplex Kojgerte

Mehr

Ermittlung der Höhe der Förderung für Einnahmen schaffende Projekte, deren Gesamtkosten 1 Million EUR übersteigen, die Nettoeinnahmen erzeugen

Ermittlung der Höhe der Förderung für Einnahmen schaffende Projekte, deren Gesamtkosten 1 Million EUR übersteigen, die Nettoeinnahmen erzeugen Ermttlug der Höhe der Förderug für Eahme schaffede Projekte, dere Gesamtkoste 1 Mllo EUR überstege, de Nettoeahme erzeuge 1. Erklärug des Verfahres Auf Grudlage der Ermttlug des sog. Fazerugsdefzt ud der

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern AMMO Berchte aus Forschug ud Techologetrasfer Etwcklug eer Dsatcherfukto zur Überrüfug vo Nomerugsmege der Betrebsführug vo Erdgassecher Prof. Dr. sc. tech. Dr. rer. at. R. Ueckerdt Dr.Ig. H.W. Schmdt

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Uverstät Lepzg Isttut für Iforatk Dr. Moka Meler Ihalt Zahle ud hre Darstellug... -. Addtossystee... -. Postossystee... -.3 Dezal- ud Dualsyste... -3.3. Dezalsyste... -3.3. Dualsyste... -4.4 Wetere Bespele

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

8. Mehrdimensionale Funktionen

8. Mehrdimensionale Funktionen Prof. Dr. Wolfgag Koe Mathematk, SS05.05.05 8. Mehrdmesoale Fuktoe Wer Greze überschretet, versucht, ee eue Dmeso vorzustoße. [Dael Mühlema, (*959), Übersetzer ud Aphorstker] Ege Leute sollte cht dü werde,

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Software-Partner-Itzehoe-GmbH

Software-Partner-Itzehoe-GmbH oftware-parter-itehoe-gmbh ehr geehrter Kude, sehr geehrter Iteresset, das achfolged dargestellte Dokumet st ledglch e espel für de Darstellug der erechug ach der Rchtle DI 077. Her hadelt es sch um e

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

1. Erklärung des Verfahrens

1. Erklärung des Verfahrens Ermttlug der Höhe der Förderug für Eahme schaffede Projekte, dere Gesamtkoste 1 Mllo EUR überstege ud dere Nettoeahme vorab festgelegt werde köe 1. Erklärug des Verfahres Auf Grudlage der Ermttlug der

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Berechnungen der einzelnen Metrics der Detaillierten Makrozoobenthos-Methode

Berechnungen der einzelnen Metrics der Detaillierten Makrozoobenthos-Methode Berechuge der ezele Metrcs der Detallerte Makrozoobethos-Methode Auszug aus dem LEITFADEN ZUR ERHEBUNG DER BIOLOGISCHEN QUALITÄTSELEMENTE TEIL A2 MAKROZOOBENTHOS Nachfolgeder Text st dem Letfade zur Erhebug

Mehr

Inhaltsverzeichnis. 1 Allgemeine Messtechnik

Inhaltsverzeichnis. 1 Allgemeine Messtechnik Ihaltsverzechs I Allgemee Messtechk. Grudsätzlches. Grudbegrffe des Messes.. Iteratoales Ehetesystem (SI), Begrffe des Normes, Eche, Justere, Kalbrere.. Das Meßgerät als System, der Begrff der Übertragug.3

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4:

Lösung: Zur Erinnerung noch mal die Werte (Klasseneinteilung), aus Serie1, Aufgabe 4: Derptve Sttt Löug zu. Übugufgbe Aufgbe. Betmme Se zu Aufgbe 4 der. Sere jewel uter Verwedug der 0 Stchprobedte ud uter Verwedug der Kleetelug de Atel der Glühlmpe, dere Lebeduer zwche 400 ud 600 Stude

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche ozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 8.9 Harry Zgel 99-4, EMal: HZgel@aol.com, Iteret:

Mehr

Eine einfache Formel für den Flächeninhalt von Polygonen

Eine einfache Formel für den Flächeninhalt von Polygonen Ee efache Formel für de Flächehalt vo Polygoe Peter Beder Set ege Jahre hat der Mathematkddaktk de sogeate emprsche Uterrchtsforschug mt quattatve ud qualtatve Methode Kojuktur, währed stoffddaktsche Arbete

Mehr

Wirkungsweise und Eigenschaften hochdynamischer Gleichstrom- Kleinstmotoren

Wirkungsweise und Eigenschaften hochdynamischer Gleichstrom- Kleinstmotoren Wrkugswese ud Egeschafte hchdyamscher Glechstrm- Klestmtre Dr. Ott Stemme Peter Wlf max mtr ag CH-607 Sachsel / Schwez Ausgabe Nvember 994 Vrwrt Set der Eführug der max DC mtre m Jahre 970 dauerte es ur

Mehr