12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete."

Transkript

1 Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen Annahmen, erwartete Suchzeit O(1). Hashing Verallgemeinerung von direkter Adressierung durch Arrays. 1

2 Direkte Adressierung mit Arrays Schlüssel für Objekte der dynamischen Menge aus U:={0,,m-1}. Menge U wird Universum genannt. Nehmen an, dass alle Objekte unterschiedliche Schlüssel haben. Legen Array T[0,,m-1] an. Position k in T reserviert für Objekt mit Schlüssel k. T[k] verweist auf Objekt mit Schlüssel k. Falls kein Objekt mit Schlüssel k in Struktur, so gilt T[k]=NIL. 2

3 Operationen bei direkter Adressierung (1) Direct - Address - 1. returnt [ k] Search ( T,k ) Direct - 1. T Direct - 1. T Address - Insert x [ key[ x ] Address - Delete [ key[ x ] NIL ( T,x) ( T,x) 3

4 Operationen bei direkter Adressierung (2) Laufzeit jeweils O(1). Direkte Adressierung nicht möglich, wenn Universum U sehr groß ist. Speicherineffizient, wenn Menge der aktuell zu speichernden Schlüssel deutlich kleiner als U ist. 4

5 Direkte Adressierung - Illustration Schlüssel / Universum U 0 6 Benutzte Schlüssel K / / / / / Satellitendaten 5

6 Hashing Idee (1) Nehmen an, dass die Menge K der zu speichernden Schlüssel immer kleiner als das Universum U ist. Hashing hat dann Speicherbedarf Θ ( K ) Insert wie bei direkter Adressierung ( ) Zeit für Search und Delete ebenfalls O ( 1) Durchschnitt bei geeigneten Annahmen. Legen Array [ 0,,m 1]. Zeit für O 1., aber nur im T K an, wobei m < U. Nennen T Hashtabelle. Benutzen Hashfunktion h:u { 0, K,m-1}. Verweis auf Objekt mit Schlüssel k in [ h( k) ] T. 6

7 Hashing - Illustration Universum U k 1 k 4 k 5 k Benutzte 2 k Schlüssel K 3 0 m 1 / / / / / / h h ( k 1 ) ( ) k 4 ( k ) h( ) h = h( k 3 ) 2 k 5 7

8 Hashing Idee (2) Da m < U, gibt es Objekte, deren Schlüssel auf denselben Wert gehasht werden, d.h., es gibt Schlüssel k 1,k2 mit k1 k2 und h( k1) = h( k2 ). Dieses wird Kollision genannt. Verwaltung von Kollision erfolgt durch Verkettung. Speichern Objekte, deren Schlüssel auf den Hashwert h abgebildet werden, in einer doppelt verketteten Liste L h. Dann verweist T [ h] auf den Beginn der Liste, head. speichert also [ ] L h Insert, Delete, Search jetzt mit Listenoperationen. 8

9 Operationen bei Kollisionsverwaltung Chained - Hash - Search 1. Suche nach Element ( T,k ) mit Schlüssel k in Liste T [ h( k )]. Chained 1. Füge - x Hash - Insert am Kopf der ( T,x ) Liste T [ h( key [ x] )] ein. ( T,x ) h( key [ x] ) Chained - Hash - Delete 1. Entferne x aus Liste T [ ]. Laufzeit für Insert O(1). Laufzeit für Delete, Search proportional zur Länge von T[h(k)]. 9

10 Hashing mit Listen - Illustration Universum U k 1 k 4 k 5 Benutzte k 2 k Schlüssel K 3 / / / / / / k 1 k 4 k k 2 5 k 3 10

11 Analyse von Hashing mit Listen (1) m Größe der Hashtabelle T, n Anzahl der gespeicherten Objekte. Dann heisst α:=n/m der Lastfaktor von T. α ist die durchschnittliche Anzahl von Elementen in einer verketteten Liste. Werden alle Objekte auf denselben Wert gehasht, so benötigt Suche bei n Elementen Zeit Θ(n). Dasselbe Verhalten wie verkettete Listen. Im Durchschnitt aber ist Suche deutlich besser, falls eine gute Hashfunktion h benutzt wird. Gute Hashfunktion streut Werte wie zufällige Funktion. 11

12 Einfaches uniformes Hashing Definition 12.1: Wenn wir annehmen, dass bei jedem neuen Objekt mit Schlüssel k, die Hashfunktion h den Schlüssel k gleichverteilt und unabhängig von anderen bereits festgelegten Hashwerten auf die möglichen Hashwerte abbildet, so sprechen wir von einfachem uniformen Hashing. 12

13 Analyse von einfachem uniformen Hashing (1) Für j = 0, 1, K,m 1sei n j Größe der Liste T [ j]. Dann gilt: n = n0 + n1 + L + nm 1. Erwartungswert E [ n ] j von n j ist α = n / m. Nehmen zusätzlich an, dass die Hashfunktion h in Zeit O(1) ausgewertet werden kann. 13

14 Analyse von einfachem uniformen Hashing (2) Satz 12.2: Bei einfachem uniformen Hashing benötigt eine nicht erfolgreiche Suche im Erwartungswert Zeit Θ(1+α). Satz 12.3: Bei einfachem uniformen Hashing benötigt eine erfolgreiche Suche im Erwartungswert und bei zufälligem Suchobjekt Zeit Θ(1+α). In beiden Fällen: Ist n=o(m), so ist erwartete Laufzeit O(1). 14

15 Einfaches uniformes Hashing - Realisierung Einfaches uniformes Hashing kann realisiert werden, indem 1. Jedem einzufügenden Objekt beim Einfügen ein Schlüssel zufällig gleichverteilt zugewiesen wird. 2. Für die Hashfunktion h und für jeden Hashwert w 0, 1, K, m 1 gilt: { } Die Anzahl der Schlüssel k, die auf w gehasht werden, ist genau U /m. Hashfunktion mit 2.Eigenschaft ist z.b. h(k)=k mod m, falls U Vielfaches von m ist. 15

16 Einfaches uniformes Hashing Realisierung 1.Eigenschaft ist sehr unrealistisch. Stattdessen Hashfunktionen, die Schlüssel regelmäßig streuen und Regelmäßigkeiten in den Daten umgehen. Beispiel: Schlüssel sind Eigennamen. Alphabetisch nahe Eigennamen sollten weit auseinander liegende Hashwerte erhalten. 16

17 Beispiele für Hashfunktionen 1. h(k)=k mod m (Divisionsmethode) 2. h(k)= m(ka mod 1), mit ka mod 1 = ka- ka (Multiplikationsmethode) Hashing mit Divisionsmethode schnell, pro Hashwert eine Division. m sollte keine Zweierpotenz sein. Andernfalls besteht Hashwert nur aus unteren Bits des Schlüssels. Gute Wahl ist Primzahl m, die nicht sehr nah an Zweierpotenzen liegt. 17

18 Multiplikationsmethode (1) Methode: h( k ) m( k A mod 1 ) =. Parameterwahl: p 1. Wahl von m irrrelevant, häufig m = Wahl von A wichtig, häufig gewählt als gute Approximation zum goldenen Schnitt ( 5 1) / 2. 18

19 Multiplikationsmethode (2) Berechnung h(k): p w (bei m = 2, A = s / 2, p w, k 2 w für alle Schlüssel k ) 1. Berechne r 2 w = k A. w w 2. Schreibe r als r12 + r0, 0 r Binärdarstellung von ( k ) h gegeben durch die oberen p Bits von r 0. 19

20 Multiplikationsmethode - Illustration w Bits k s = A 2 w r 1 r 0 h(k ) extrahiere p Bits 20

21 Offene Adressierung (1) Hashing mit Kollisionsvermeidung weist Objekt mit gegebenen Schlüssel feste Position in Hashtabelle zu. Bei Hashing durch offene Adressierung wird Objekt mit Schlüssel keine feste Position zugewiesen. Position abhängig von Schlüssel und bereits belegten Positionen in Hashtabelle. Für neues Objekt wird erste freie Position gesucht. Dazu wird Hashtabelle nach freier Position durchsucht. Reihenfolge der Suche hängt vom Schlüssel des einzufügenden Objekts ab. 21

22 Offene Adressierung (2) Keine Listen zur Kollisionsvermeidung. Wenn Anzahl eingefügter Objekte ist m, dann sind keine weiteren Einfügungen mehr möglich. Listen zur Kollisionsvermeidung möglich, aber Ziel von offener Adressierung ist es, Verfolgen von Verweisen zu vermeiden. Da keine Listen benötigt werden, kann die Hashtabelle vergrößert werden. Suchen von Objekten in der Regel schneller, da keine Listen linear durchsucht werden müssen. 22

23 Offene Adressierung (3) Laufzeit für Einfügen nur noch im Durchschnitt Θ(1). Entfernen von Objekten schwierig, deshalb Anwendung von offener Adressierung oft nur, wenn Entfernen nicht benötigt wird. 23

24 Hashfunktionen bei offener Adressierung Hashfunktion legt für jeden Schlüssel fest, in welcher Reihenfolge für Objekte mit diesem Schlüssel nach freier Position in Hashtabelle gesucht wird. Hashfunktion h von der Form { 0, 1,,m 1} { 0, 1, K, 1} h : U K m. m:=größe der Hashtabelle. Verlangen, dass für alle Schlüssel k die Folge ( h( k, 0),h( k, 1), K,h( k,m 1) ) eine Permutation der 0, 1, K,m 1 ist. Folge ( ) ( ( k, 0),h( k, 1),,h( k,m 1) ) h K heisst Testfolge bei Schlüssel k. 24

25 Einfügen bei offener Adressierung ( T,k ) Hash - Insert 1 i 0 2 repeat j h( k,i ) 3 if T [ j] = NIL 4 thent [ j] k 5 else i i until i = m 7 error "Hashtabelle vollständig gefüllt" Dabei zur Vereinfachung angenommen, dass keine Satellitendaten vorhanden, d.h., Objekt ist Schlüssel. 25

26 Offene Adressierung - Illustration

27 Suchen bei offener Adressierung ( T,k ) Hash - Search 1 i 0 2 repeat j h( k,i ) 3 if T [ j] = k 4 then return j 5 else i i until T [ j] = NIL i = m 7 return NIL 27

28 Probleme bei Entfernen Können Felder i mit gelöschten Schlüsseln nicht wieder mit NIL belegen, denn dann wird Suche nach Schlüsseln, bei deren Einfügung Position i getestet wird, fehlerhaft sein. Mögliche Lösung ist, Felder gelöschter Schlüssel mit DELETED zu markieren. Aber dann werden Laufzeiten für Hash-Insert und Hash-Delete nicht mehr nur vom Lastfaktor α=n/m abhängen. Daher Anwendung von offener Adressierung nur, wenn keine Objekte entfernt werden müssen. 28

29 Mögliche Hashfunktionen 1. h' : U { 0, 1, K, m 1} Funktion. Lineares Hashen: h k,i ( ) ( h' ( k ) + i ) mod m =. 2. h' : U {, 1, K,m 1} Funktion, c,c Quadratisches Hashen: h k,i = h' k + 2 c i c i mod. ( ) ( ) ( ) m

30 Vergleich Hashfunktionen Im linearen und quadratischen Hashen bestimmt erste gestestete Position gesamte Testfolge. Damit jeweils nur m mögliche Testfolgen. Bei linearem Testfolgen zusätzlich lange zusammenhängende Folgen von besetzten Positionen 30

31 Analyse von offener Adressierung (1) Definition 12.4: Nehmen wir an, dass für jeden Schlüssel jede der m! Permutationen der Folge (0,1,...,m-1) mit gleicher Wahrscheinlichkeit die Testfolge ist, so nennen wir dieses uniformes offenes Hashen. Satz 12.5 : Ist der Lastfaktor einer Hashtabelle bei uniformen offenem Hashing α, so ist die erwartete Anzahl von Tests bei einer nicht erfolgreichen Suche 1/(1- α). Korollar 12.6: Ist der Lastfaktor einer Hashtabelle bei uniformen offenem Hashing α, so ist die erwartete Anzahl von Tests bei einer Einfügung 1/(1- α). 31

32 Analyse von offener Adressierung (2) Satz 12.7: Ist der Lastfaktor einer Hashtabelle bei uniformen offenem Hashing α, so ist bei einem zufälligen Suchobjekt die erwartete Anzahl von Tests bei einer erfolgreichen Suche höchstens 1 1 ln α 1 α. 32

33 Hashing Zusammenfassung (1) Hashing ist eine einfache Methode Wörterbücher zu implementieren. Hashing unterstützt also Einfügen, Entfernen und Suchen von Objekten. Einfügen und Entfernen benötigen im worst-case konstante Laufzeit. Suchen benötigt bei geeigneten Annahmen im Erwartungswert ebenfalls konstante Zeit. In der Praxis ist Hashing sehr erfolgreich. 33

34 Hashing Zusammenfassung (2) Haben zwei Varianten kennen gelernt: 1. Hashing mit Kollisionsverwaltung durch Listen. 2. Offene Adressierung zur Kollisionsvermeidung. 34

35 Universelles Hashen - Idee Bei jeder Hashfunktion gibt es schlechte Eingaben, d.h., eine Folge von Einfügeoperationen, so dass Suche Zeit linear in der Anzahl der gespeicherten Objekte benötigt. Es müssen Objekte und Schlüssel so gewählt werden, dass alle Hashwerte identisch sind. Lösung besteht darin, nicht eine Hashfunktion zu wählen, sondern eine ganze Menge von Hashfunktionen. Unabhängig von Schlüsseln wird dann eine der Hashfunktionen ausgewählt. Führt zu universellem Hashing. 35

36 Universelles Hashen - Definition Definition 12.8: Sei H eine endliche Menge von Funktionen von U nach { 0, 1, K,m 1}. Die Menge H heisst universell, wenn für je zwei Schlüssel k,l mit k l gilt: Die Anzahl der Funktionen h H mit h ( k ) = h( l ) ist höchstens m H. 36

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

Die mittlere Zeit zum Auffinden eines Elements in einer Hash-Tabelle beträgt, unter realistischen Annahmen, O(1).

Die mittlere Zeit zum Auffinden eines Elements in einer Hash-Tabelle beträgt, unter realistischen Annahmen, O(1). Algorithmen und Datenstrukturen 213 9 Hash-Tabellen Viele Anwendungen erfordern dynamische Mengen, für welche die sog. Wörterbuch-Operationen INSERT, SEARCH und DELETE verfügbar sind. Beispiel: Symboltabelle

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Übersicht. Einführung Universelles Hashing Perfektes Hashing

Übersicht. Einführung Universelles Hashing Perfektes Hashing Hasing Übersict Einfürung Universelles Hasing Perfektes Hasing 2 Das Wörterbuc-Problem Gegeben: Universum U = [0 N-1], wobei N eine natürlice Zal ist. Ziel: Verwalte Menge S U mit folgenden Operationen.

Mehr

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 06 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005 Fibonacci-Suche Informatik I Einführung Rainer Schrader Zentrum für Angewandte Informatik Köln 4. Mai 005 Grundidee wie bei der Binärsuche, aber andere Aufteilung Fibonacci-Zahlen: F 0 = 0 F 1 = 1 F m

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

Algorithmen und Datenstrukturen Hashverfahren

Algorithmen und Datenstrukturen Hashverfahren Algorithmen und Datenstrukturen Hashverfahren Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Prinzip Details Anwendungen Motivation Hashverfahren

Mehr

Hashing. Algorithmen und Datenstrukturen II 1

Hashing. Algorithmen und Datenstrukturen II 1 Hashing Algorithmen und Datenstrukturen II 1 Einführendes Beispiel Ein Pizza-Lieferservice in Bielefeld speichert die Daten seiner Kunden: Name, Vorname, Adresse und Telefonnummer Wenn ein Kunde seine

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1} 105 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Algorithmen und Datenstrukturen II

Algorithmen und Datenstrukturen II Syntax und Semantik Java: Der Einstieg Imperative Programmierung in Java Algorithmen zur exakten Suche in Texten Objektori Algorithmen und Datenstrukturen II AG Praktische Informatik Technische Fakultät

Mehr

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Departement Informatik 24. November 2016 Markus

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 26. März

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)?

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? 5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? Ladefaktor: α, n aktuelle Anzahl gespeicherter Werte m Tabellengröße. Einfacher Ansatz: rehash() a z c h s r b s h a z Wenn

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Wörterbucher. Das Wörterbuch 1 / 71

Wörterbucher. Das Wörterbuch 1 / 71 Wörterbucher Das Wörterbuch 1 / 71 Der abstrakte Datentyp Wörterbuch Ein Wörterbuch für eine gegebene Menge S besteht aus den folgenden Operationen: insert(x): Füge x zu S hinzu, d.h. setze S = S {x}.

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

8.1 Einführendes Beispiel

8.1 Einführendes Beispiel Kapitel 8 Hashing Dieses Kapitel beschäftigt sich mit einem wichtigen Speicherungs- und Suchverfahren, bei dem die Adressen von Daten aus zugehörigen Schlüsseln errechnet werden, dem Hashing Dabei stehen

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 12. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 12. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 12 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 98 Hashing TU Ilmenau Seite 2 / 98 Wörterbücher Sei U ein Universum

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays)

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays) Der folgende Mitschrieb wurde von Prof. Alexa am 16.07.2008 als Probeklausur in der MPGI2 Vorlesung gezeigt und wurde auf http://www.basicinside.de/2008/node/94 veröffentlicht. Die Abschrift ist unter

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Wie beim letzten Mal - bitte besucht: http://pingo.upb.de/549170 Ihr seid gleich wieder gefragt... Übung Algorithmen I 4.5.16 Lukas Barth lukas.barth@kit.edu (Mit Folien von Julian Arz, Timo Bingmann,

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

Algorithmische Intelligenz. Amortisierung. Stefan Edelkamp

Algorithmische Intelligenz. Amortisierung. Stefan Edelkamp Algorithmische Intelligenz Amortisierung Stefan Edelkamp Analyse von Algorithmen Best Case Worst Case Average Case Amortisierte Worst Case Was sind die durchschnittlichen Kosten einer schlechtest möglichen

Mehr

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut.

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. Binäre Suchbäume Tries (Folie 182, Seite 58 im Skript) In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. In Tries entspricht die ite Verzweigung dem iten Zeichen des Schlüssels.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 202/3 24. Vorlesung Amortisierte Analyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Hash-Tabellen Frage: Ziel: Problem: Lösung: Wie groß macht man

Mehr

Einleitung Implementierung Effizienz Zeit-Buffer Zusammenfassung Quellenverzeichnis. Hashing. Paulus Böhme

Einleitung Implementierung Effizienz Zeit-Buffer Zusammenfassung Quellenverzeichnis. Hashing. Paulus Böhme Hashing Paulus Böhme Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg February 13, 2014 1 / 31 Gliederung

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11

Kapitel 1. Exakte Suche nach einem Wort. R. Stiebe: Textalgorithmen, WS 2003/04 11 Kapitel 1 Exakte Suche nach einem Wort R. Stiebe: Textalgorithmen, WS 2003/04 11 Überblick Aufgabenstellung Gegeben: Text T Σ, Suchwort Σ mit T = n, = m, Σ = σ Gesucht: alle Vorkommen von in T Es gibt

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen

Mehr

Dynamische Mengen. Realisierungen durch Bäume

Dynamische Mengen. Realisierungen durch Bäume Dynamische Mengen Eine dynamische Menge ist eine Datenstruktur, die eine Menge von Objekten verwaltet. Jedes Objekt x trägt einen eindeutigen Schlüssel key[x]. Die Datenstruktur soll mindestens die folgenden

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Rolf Wanka Sommersemester Vorlesung

Rolf Wanka Sommersemester Vorlesung Peer-to to-peer-netzwerke Rolf Wanka Sommersemester 2007 12. Vorlesung 12.07.2007 rwanka@cs.fau.de basiert auf einer Vorlesung von Christian Schindelhauer an der Uni Freiburg Aufbau Viceroy Knoten in Viceroy

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

Programmieren in Haskell Felder (Arrays)

Programmieren in Haskell Felder (Arrays) Programmieren in Haskell Felder (Arrays) Peter Steffen Universität Bielefeld Technische Fakultät 05.12.2008 1 Programmieren in Haskell Quadratzahlen 0 1 2 3 n 0 1 4 9 n 2 squareslist :: Integral a => [a]

Mehr

Einführung in die Informatik Hashtables

Einführung in die Informatik Hashtables Einührung in die Inormatik Hashtables Hashtabellen Wolram Burgard Cyrill Stachniss 12.1 Einleitung Wir haben bisher einige der typischen Datenstrukturen zum Speichern von Inormationen kennen gelernt Arrays

Mehr

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt:

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 2.2 Rot-Schwarz-Bäume Definition 15 Rot-Schwarz-Bäume sind externe Binäräume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 1 alle Blätter hängen an schwarzen Kanten (durchgezogene

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre 1990.

Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre 1990. Ein polynomieller Algorithmus für das N-Damen Problem 1 Einführung Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (16 Dynamische Tabellen) Prof. Dr. Susanne Albers Dynamische Tabellen Problem: Verwaltung einer Tabelle unter den Operationen Einfügen und Entfernen,

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

INDEXDATEIEN ( INDEXED FILES )

INDEXDATEIEN ( INDEXED FILES ) Indexdateien 1 INDEXDATEIEN ( INDEXED FILES ) ISAM (Indexed Sequential Access Method) Sätze werden nach ihren Schlüsselwerten sortiert. Schlüsselwerte sind immer vergleichbar und daher auch sortierbar.

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 10, Donnerstag 8. Januar 2015 (Verkettete Listen, Binäre Suchbäume) Junior-Prof. Dr.

Mehr

Grundlagen Algorithmen und Datenstrukturen Kapitel 13

Grundlagen Algorithmen und Datenstrukturen Kapitel 13 Grundlagen Algorithmen und Datenstrukturen Kapitel 13 Christian Scheideler + Helmut Seidl SS 2009 18.07.09 Kapitel 6 1 Speicherverwaltung Drei Ansätze: Allokiere neue Objekte auf einem Keller. Gib nie

Mehr

Asymptotische Laufzeitanalyse: Beispiel

Asymptotische Laufzeitanalyse: Beispiel Asyptotische Laufzeitanalyse: n = length( A ) A[j] = x GZ Algorithen u. Datenstrukturen 1 31.10.2013 Asyptotische Laufzeitanalyse: n = length( A ) A[j] = x GZ Algorithen u. Datenstrukturen 2 31.10.2013

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

Wintersemester 2007/2008 Helmut Seidl Institut für Informatik TU München

Wintersemester 2007/2008 Helmut Seidl Institut für Informatik TU München Informatik 1 Wintersemester 2007/2008 Helmut Seidl Institut für Informatik TU München 1 Anwendung: Schreibtisch Operation: insert(task) 2 Anwendung: Schreibtisch An uns wird Arbeit delegiert... Operation:

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Programmieren in C. Rekursive Strukturen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Strukturen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Strukturen Prof. Dr. Nikolaus Wulff Rekursive Strukturen Häufig müssen effizient Mengen von Daten oder Objekten im Speicher verwaltet werden. Meist werden für diese Mengen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind.

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind. Unterschiede von DBMS und files Speichern von Daten! DBMS unterstützt viele Benutzer, die gleichzeitig auf dieselben Daten zugreifen concurrency control.! DBMS speichert mehr Daten als in den Hauptspeicher

Mehr

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht:

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: Typprüfung (Compiler / Laufzeit) In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: 1) Der Compiler prüft

Mehr

Einfach verkettete Liste

Einfach verkettete Liste 5. Listen Verkettete Listen Einfach verkettete Liste Für jedes einzelne Element der Liste wird ein Hilfsobjekt erzeugt. Jedes Hilfsobjekt enthält zwei Instanzvariablen: den zu speichernden Wert bzw. einen

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Abschnitt 18: Effizientes Suchen in Mengen

Abschnitt 18: Effizientes Suchen in Mengen Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Seminar Datenbanken Martin Gerstmann

Seminar Datenbanken Martin Gerstmann Seminar Datenbanken Martin Gerstmann Gliederung 1. Ziele 2. Arten 2.1. erweiterbares Hashing 2.2. lineares Hashing 2.3. virtuelles Hashing 3. Bewertung 1. Ziele wachsende/schrumpfende Datenmengen verwalten

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

Praxis der Programmierung

Praxis der Programmierung Dynamische Datentypen Institut für Informatik und Computational Science Universität Potsdam Henning Bordihn Einige Folien gehen auf A. Terzibaschian zurück. 1 Dynamische Datentypen 2 Dynamische Datentypen

Mehr

Kapitel 9. Hashverfahren. 9.1 Einführung

Kapitel 9. Hashverfahren. 9.1 Einführung Kapitel 9 Hashverfahren 9.1 Einführung Uns sind bereits Verfahren bekannt, mit denen Datensätze mit einem eindeutigen Schlüssel gespeichert werden (z.b. B*-Bäume). Statt bei der Suche nach einem Schlüssel

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten)

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (25 Sortieren vorsortierter Daten) 1 Untere Schranke für allgemeine Sortierverfahren Satz Zum Sortieren einer Folge von n Schlüsseln mit einem allgemeinen

Mehr