Schätzen von Populationswerten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schätzen von Populationswerten"

Transkript

1 Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage des Iduktiosschlusses: Aahme über die Kewerteverteilug der Stichprobeziehug 7.Sitzug 35 Seite, SoSe 003

2 Iduktioschluss Risiko eies Fehlschlusses uvermeidbar Jedoch: Iferezstatistische Modelle ermögliche, die Fehlerwahrscheilichkeit abzuschätze ud zu miimiere 7.Sitzug 35 Seite, SoSe Stichprobeziehug ud Repräsetativität statistische Repräsetativität: Kleie Abweichuge zwische Populatio ud Stichprobe wahrscheilich, große Abweichuge uwahrscheilich Grudlage statistischer Repräsetativität: Jedes Elemet der Grudgesamtheit hat die gleiche Wahrscheilichkeit i die Stichprobe zu gelage (Gleichverteilug) 7.Sitzug 35 Seite, SoSe 003 4

3 Schätze ud Kewerteverteilug Zetraler Grezwertsatz liefert Aahme über die Art der (Wahrscheilichkeits-) Verteilug vo Stichprobekewerte Wahrscheilichkeitstheorie liefert Aahme über die Parameter der Kewerteverteilug: Ihr Erwartugswert ud ihre Variaz etspreche de jeweilige Populatioswerte Werde diese Parameter geschätzt, besteht die Möglichkeit, die Auftreteswahrscheilichkeit der Stichprobekewerte zu bestimme 7.Sitzug 35 Seite, SoSe Schätzer ud Schätzug Defiitio Schätzer, bzw. Schätzfuktio: Zufallsvariable, die für die Schätzug eies Populatiosparameters verwedet wird (i userem Fall die jeweilige Stichprobekewerteverteilug) Defiitio Schätzug: Realisatio des Schätzers (erhobeer Stichprobekewert) 7.Sitzug 35 Seite, SoSe

4 Schätzug ud Statistische Repräsetativität Aufgrud der Aahme der statistische Repräsetativität (kleie Abweichuge wahrscheilich, große Abweichuge uwahrscheilich) ka ma hoffe, dass die jeweilige Schätzug die Parameter des Schätzers (ud damit der Populatio) mehr oder weiger gut aähert d.h.: Wir bestimme Kewerteverteilugs- ud Populatiosparameter mit Hilfe der erhobee Kewerte 7.Sitzug 35 Seite, SoSe Güte der Schätzug Defiitio Aussage über die Güte der Schätzug lasse sich ahad vo Eigeschafte des Schätzers (Schätzfuktio) mache. Die Geltug dieser Verteilugsaussage für die jeweilige Realisatio ist wiederum durch die Aahme der statistische Repräsetativität bestimmt. 7.Sitzug 35 Seite, SoSe

5 Erwartugstreue des Schätzers Eie Schätzfuktio ist erwartugstreu, bzw. uverzerrt, we ihr Erwartugswert mit dem Populatioskewert übereistimmt. So sid z.b.: Kewerteverteiluge vo Ateile ud Mittelwerte erwartugstreu; Kewerteverteiluge vo Stichprobevariaze verzerrt (icht erwartugstreu). 7.Sitzug 35 Seite, SoSe Effiziez eies Schätzers We verschiedee Schätzer (z.b. Mittelwertskewerteverteilug ud Mediakewerteverteilug) vergliche werde, ist der Schätzer effizieter, der im Mittel äher am gesuchte Populatioswert liegt. Maß der Effiziez: Variaz, bzw. Stadardabweichug Je geriger die Variaz eies Schätzers, desto effizieter ist er. 7.Sitzug 35 Seite, SoSe

6 Kosistez eies Schätzers Ei Schätzer ist kosistet, we bei steigedem Stichprobeumfag die Wahrscheilichkeit gege eis geht, dass die Differez zwische eier Schätzug ud dem Populatioswert beliebig klei wird. D.h. Ist eie Schätzfuktio kosistet, werde die Schätzuge mit steigedem Populatiosumfag immer besser. 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Puktschätzug 7.Sitzug 35 Seite, SoSe 003 6

7 Puktschätzug Hier werde mit Hilfe vo Stichprobedate Populatiosparamter geschätzt. 7.Sitzug 35 Seite, SoSe Schätze vo Populatiosateile Bei eier Zufallsauswahl mit Zurücklege ist der geschätzte Stadardfehler eies Stichprobeateils (p ) p ( p ) 7.Sitzug 35 Seite, SoSe

8 Schätze vo Populatiosateile Bei eier Zufallsauswahl ohe Zurücklege ist der geschätzte Stadardfehler eies Stichprobeateils (p ) p ( p ) N N 7.Sitzug 35 Seite, SoSe Schätze vo Populatiosateile Der Stadardfehler ist maximal, we der Populatiosateil 0,5 beträgt Die Obergreze für de Stadardfehler π ergibt sich daher bei: ( p) 0,5 ( p) 0,5 N (N ) Mit Zurücklege Ohe Zurücklege 7.Sitzug 35 Seite, SoSe

9 9 7.Sitzug 35 Seite, SoSe Schätzug vo Populatiosmittelwerte Geschätzter Stadardfehler eies Stichprobemittelwerts (mit Zurücklege): s ) ( SS ) ( x ) ( x _ i _ i 7.Sitzug 35 Seite, SoSe Schätzug vo Populatiosmittelwerte Geschätzter Stadardfehler eies Stichprobemittelwerts (ohe Zurücklege): N N s N N ) ( SS N N ) ( ) x x ( _ i _ i

10 Schätzug vo Populatiosmittelwerte Geschätzte Populatiosvariaz: s ( x i i SS x ) 7.Sitzug 35 Seite, SoSe Schätzug vo Populatiosmittelwerte Stadardfehler der Kewerteverteilug der geschätzte Populatiosvariaz bei Zufallsauswahle aus ormalverteilte Populatioe: ( ) 7.Sitzug 35 Seite, SoSe

11 Schätze vo Populatioswerte Itervallschätzug 7.Sitzug 35 Seite, SoSe 003 Itervallschätzug Hier wird ei Itervall berechet, i dem der gesuchte Populatioswert mit eier vorgegebee Wahrscheilichkeit liegt. Itervallschätzuge sid aufwediger als Puktschätzuge aber auch sicherer. Itervallschätzuge sid da falsch, we das geschätzte Itervall de gesuchte Populatioswert icht ethält. 7.Sitzug 35 Seite, SoSe 003

12 Schritt : Festlegug der Kewerteverteilug Zur Bestimmug der Itervallgreze ist die Ketis der Kewerteverteilug otwedig. Ei möglicher Fall: We das betrachtete Merkmal i der Populatio ormalverteilt ist, da sid die Stichprobemittelwerte ormalverteilt mit dem Erwartugswert µ ud der Variaz /. 7.Sitzug 35 Seite, SoSe Schritt : Festlegug der Kewerteverteilug Τ x i ( x i µ ( x ) ) x µ SS ( ) x µ s ( ) x µ 7.Sitzug 35 Seite, SoSe 003 4

13 Schritt : Festlegug des Fehlerrisikos ud der Quatilwerte I dem zweite Schritt ist die Etscheidug über das och akzeptierte Fehlerrisiko eier Itervallschätzug ötig. Dieses Fehlerrisiko wird als Irrtumswahrscheilichkeit ( α ) bezeichet. Wird α 0% festgelegt, da überdeckt das Itervall um de gesuchte Populatioswert 90% der Kewerteverteilug. 7.Sitzug 35 Seite, SoSe SCHRITT ergäze Seite 39 ud 40 fehle. 7.Sitzug 35 Seite, SoSe

14 Schritt 3: Bestimmug der Itervallgreze Zur Bestimmug der Itervallgreze wird die Gleichug der vorige Folie so umgeformt, dass der gesuchte Populatioswert allei i der Mitte der Ugleichug steht. Die Breite eies Kofidezitervalls hägt vo der Irrtumswahrscheilichkeit α ab die der Forscher festlegt. 7.Sitzug 35 Seite, SoSe Iterpretatio vo Kofidezitervalle 7.Sitzug 35 Seite, SoSe

15 5 / - / 3 6$ :; A BDC E FHG I J K E L MON L MHP Q QRSL M T E U V M W E M K V N J I I V MOT Y U V M ZL [G I J K E L M\ FHE K K V I ]$V K ++4 ) / 0 /. ) - +, '() )! "$# % & 7.Sitzug 35 Seite, SoSe Abbildug aus Kühel/Krebs, 00: 43 Berechug vo Kofidezitervalle Kofidezitervalle für Mittelwerte: Ist ei Merkmal i der Populatio ormalverteilt ud ist die Variaz bekat, da ist der Stichprobemittelwert mit der Variaz um de Erwartugswert ormalverteilt. / µ 7.Sitzug 35 Seite, SoSe

16 Berechug vo Kofidezitervalle Kofidezitervall für de Populatiosmittelwert vo. c.i.( µ z ) x± z α / α Populatiosmittelwert vo α / Wert des - / Quatils für de 7.Sitzug 35 Seite, SoSe Awedugsbeispiel zu Berechug eies Kofidezitervalls für eie Populatiosmittelwert. Wie hoch ist das durchschittliche Alter der Bevölkerug i der BRD? 350 ; 46.7; 8. s Das 95%-Kofidezitervall mit Irrtumswahrscheilichkeit 5% wird wie folgt berechet: 7.Sitzug 35 Seite, SoSe

17 Awedugsbeispiel zu s c.i.( µ ) x ± zα / 46.7 ± 46.7 ± Sitzug 35 Seite, SoSe Kofidezitervalle für Ateile Kofidezitervall für de Populatiosateil der Ausprägug eies biäre Merkmals: c.i.( π ) p ± (p ) z α / 7.Sitzug 35 Seite, SoSe

18 Awedugsbeispiel 48 Kostruktio eies Kofidezitervalls (für de Stimmeateil der FDP) für eie Populatiosateil (mit α 5%): 93 ; 9% wolle FDP wähle p ( p) c.i.( π ) p ± zα / ± ± Sitzug 35 Seite, SoSe

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

7. Stichproben und Punktschätzung

7. Stichproben und Punktschätzung 7. Stichprobe ud Puktschätzug 7. Grudgesamtheit ud Stichprobe Ausgagspukt der iduktive Statistik (beurteilede Statistik) sid Stichprobedate. Speziell stamme die Date aus Zufallsstichprobe. Die Stichprobeergebisse

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig? Statistik für SoziologIe 1 Iferezschluss Kofidezitervall

Mehr

8. Intervallschätzung

8. Intervallschätzung 8. Itervallschätzug 8.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe lasse sich verschiedee Puktschätzer θ für de Parameter der Grudgesamtheit erziele. We m Stichprobe aus der Grudgesamtheit

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grudproblem der Iferezstatistik Grudgesamtheit Stichprobeziehug Zufalls- Stichprobe π... "wahre", ubekate Ateil icht zufällig p... beobachtete Ateil zufällig? Statistik für SoziologIe 1 Iferezschluss Kofidezitervall

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Kapitel 2. Induktive Statistik. 2.1 Grundprinzipien der induktiven Statistik

Kapitel 2. Induktive Statistik. 2.1 Grundprinzipien der induktiven Statistik Kapitel Iduktive Statistik.1 Grudprizipie der iduktive Statistik Ziel: Iferezschluss, Repräsetatiosschluss: Schluss vo eier Stichprobe auf Eigeschafte der Grudgesamtheit, aus der sie stammt. Vo Iteresse

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Grudlage Oft hat ma Vermutuge zu Sachverhalte ud möchte diese gere durch Experimete bestätige. Dabei ka es sich i der Praxis zum Beispiel um Verteiluge vo gewisse Zufallsgröße

Mehr

II. Grundzüge der Stichprobentheorie

II. Grundzüge der Stichprobentheorie II. Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

Intervallschätzung II 2

Intervallschätzung II 2 Itervallschätzug Kofidezitervall für die Variaz Kofidezitervall für de Ateilswerte Kofidezitervall für die Differez zweier Ateile Bestimmug des Stichrobeumfags Itervallschätzug II Bibliografie Bleymüller

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Kapitel 12. Schätzung von Parametern

Kapitel 12. Schätzung von Parametern Kapitel 12 Schätzug vo Parameter Die Verteilug eier Zufallsvariable hägt i der Regel vo eiem oder mehrere Parameter ab. Bei der Poissoverteilug ist dies der Parameter λ, währed es bei der Normalverteilug

Mehr

Ökonometrie Formeln und Tabellen

Ökonometrie Formeln und Tabellen Ökoometrie Formel ud Tabelle Formelsammlug 1 Lieares Modell ud KQ-Schätzug 11 Eifachregressio Lieares Modell: Y i = β 0 + β 1 x i + U i, i = 1,2,, Aahme des lieare Modells: A1: E[U i ] = 0 für alle i =

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Angewandte Stochastik II

Angewandte Stochastik II Vorlesugsskript Agewadte Stochastik II Dr. Katharia Best Witersemester 2010/2011 Ihaltsverzeichis 1 Grudidee der statistische Dateaalyse 5 1.1 Stichprobe..............................................

Mehr

Statistische Schätzungen

Statistische Schätzungen Statitiche Schätzuge Statitiche Schätzuge, Ei Wiechaftler mu geau mee, icht chätze! Da it aber eie wiechaftliche Schätzug! Lázló Smeller? (8,5±1,5) cm Aalytiche Statitik (iduktive o. chließede Statitik)

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Logarithmusfunktion, Rechenregeln für Logarithmen, Ableiten von Logarithmen (die Ableitung nach p wird hier stets als p geschrieben)

Logarithmusfunktion, Rechenregeln für Logarithmen, Ableiten von Logarithmen (die Ableitung nach p wird hier stets als p geschrieben) Wirtschaftswisseschaftliches Zetrum Uiversität Basel Statistik Dr. Thomas Zehrt (Pukt)Schätze Motivatio Eie vollstädige Iformatio über die Verteilug eies Merkmals X i eier Grudgesamtheit ka ur durch eie

Mehr

Grundzüge der Stichprobentheorie. Statistisches Bundesamt

Grundzüge der Stichprobentheorie. Statistisches Bundesamt Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

4. Übung Konfidenzintervalle für Anteile und Mittelwerte

4. Übung Konfidenzintervalle für Anteile und Mittelwerte Querschittsbereich 1: Epidemiologie, Mediziische Biometrie ud Mediziische Iformatik - Übugsmaterial - Erstellt vo Mitarbeiter des IMISE ud des ZKS Leipzig 4. Übug Kofidezitervalle für Ateile ud Mittelwerte

Mehr

Stichprobenverteilungen, Schätz und Testtheorie

Stichprobenverteilungen, Schätz und Testtheorie Stichprobeverteiluge, Schätz ud Testtheorie Begleitede Uterlage zur Übug Iduktive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 1 Grudzüge der Stichprobetheorie.....................................

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Maximum-Likelihood-Methode (ML-Methode)

Maximum-Likelihood-Methode (ML-Methode) 3 Parameterpuktschätzer Maximum-Likelihood-Methode 3.2 Maximum-Likelihood-Methode (ML-Methode Weitere geläufige Schätzmethode: Maximum-Likelihood-Methode Vor Erläuterug der Methode: eileitedes Beispiel

Mehr

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen Statistik. Vorlesug, September, 00 f() 0.0 0. 0. 0.3 0.4 Stadard Normalverteilug Dichtefuktio vo Stadard Normal Verteilug -4-0 4 Der Erwartugswert: mittlere Wert E ( = f( ) d=0 für die Stadard Normal Verteilug

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert.

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert. Übersicht: eidimesioal mehrdimesioal Häufigkeitsverteilug uklassiert klassiert tabellarische Darstellug Modul 07, graphische Darstellug Modul 07,2 Parametrisierug Lageparameter Modul 08 Streuugsparameter

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

Beurteilende Statistik - Testen von Hypothesen Alternativtest

Beurteilende Statistik - Testen von Hypothesen Alternativtest Moika Kobel 26.03.2005 Hypothesetest_i.mcd Beurteilede Statistik - Teste vo Hypothese Alterativtest Bsp.: Eie Fabrik liefert Schachtel mit Schraube hoher Qualität ( 10% der Schraube sid fehlerhaft ) ud

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Güteeigenschaften von Schätzern

Güteeigenschaften von Schätzern KAPITEL 6 Güteeigeschafte vo Schätzer Wir erier a ie Defiitio es parametrische Moells Sei {h θ : θ Θ}, wobei Θ R m, eie Familie vo Dichte oer Zählichte Seie X 1,, X uabhägige u ietisch verteilte Zufallsvariable

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Zufallsstreubereiche und Vertrauensbereiche

Zufallsstreubereiche und Vertrauensbereiche HTL Saalfelde Zufallsstreu- ud Vertrauesbereiche Seite 1 vo 1 Wilfried Rohm, HTL Saalfelde wilfried.rohm@schule.at Zufallsstreubereiche ud Vertrauesbereiche Mathematische / Fachliche Ihalte i Stichworte:

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV

Weitere Lagemaße: Quantile/Perzentile II. Weitere Lagemaße: Quantile/Perzentile I. Weitere Lagemaße: Quantile/Perzentile IV 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile I 3 Auswertug vo eidimesioale Date Lagemaße 3.3 Weitere Lagemaße: Quatile/Perzetile II Für jede Media x med gilt: Midestes

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Die Mutter aller Zufallsstichprobenverfahren Die uneingeschränkte Zufallsauswahl

Die Mutter aller Zufallsstichprobenverfahren Die uneingeschränkte Zufallsauswahl Die Mutter aller Zufallsstichprobeverfahre Die ueigeschräkte Zufallsauswahl 2 2.1 Das Ziehugsmodell Als erstem Stichprobeverfahre wede wir us der ueigeschräkte Zufallsauswahl vo Erhebugseiheite aus der

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y 7 5 7 5 5 7 Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x

Mehr

}) = ϑ Einsen (1 ϑ) Nullen,

}) = ϑ Einsen (1 ϑ) Nullen, 6. Schätzprobleme 6.1. Beispiele a) I eiem Teich befidet sich eie ubekate Azahl vo Fische. Ma schätze z. B. durch Agel, markiere, wieder aussetze ud ochmal agel; vgl. Übug) b) Weiteres Beispiel: Wie groß

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Übungsaufgaben - Organisatorisches

Übungsaufgaben - Organisatorisches Übugsaufgabe - Orgaisatorisches Der Abgabetermi der eue Übugsblätter ist: Motag, 4:00 Uhr Fehlerrechugsbriefkaste Der Abgabetermi der verbesserte Übugsblätter ist: Freitag, 6:00 Uhr T. Kießlig: Auswertug

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Stochastik I (Statistik)

Stochastik I (Statistik) Stochastik I (Statistik) Skript Ju.-Prof. Dr. Zakhar Kabluchko Uiversität Ulm Istitut für Stochastik L A TEX-Versio vo Judith Schmidt Ihaltsverzeichis Vorwort Literatur Kapitel. Stichprobe ud Stichprobefuktio..

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Methoden zur Konstruktion von Schätzern

Methoden zur Konstruktion von Schätzern KAPITEL 5 Methode zur Kostruktio vo Schätzer 5.1. Parametrisches Modell Sei (x 1,..., x ) eie Stichprobe. I der parametrische Statistik immt ma a, dass die Stichprobe (x 1,..., x ) eie Realisierug vo uabhägige

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω Statistik Theorie Defiitioe Ω = Grudmege = Ergebismege = Mege aller mögliche Ergebisse A = Ereigisraum = σ-algebra (Sigma-Algebra) = Mege aller messbare Ergebisse über eie defiierte Grudmege Ω P(Ω) = Potezmege

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung Kapitel Eiige Begriffe aus der Asymptotik. Wiederholug Eiwesetlicher Teil der Ökoometrie befasst sichmit der Ermittlug voschätzer ud dere Eigeschafte. Diese werde beötigt, um aus de beobachtbare Date eier

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE

K. Felten: Internet Network infrastucture Fachhochschule Kiel, Fachbereich IuE Defiitio ach DIN4004 Als Zuverlässigkeit ( reliability ) gilt die Fähigkeit eier Betrachtugseiheit ierhalb vorgegebeer Greze dejeige durch de Awedugszweck bedigte Aforderuge zu geüge, die a das Verhalte

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung 7. Grezwertsätze Bei de Grezwertsätze geht es um Aussage, die ma sogar da treffe ka, we keierlei Iformatioe über de Verteilugs-Typ der betrachtete Zufallsvariable vorliege. Zetraler Grezwertsatz Aussage

Mehr

Mathematik IV für Maschinenbau und Informatik

Mathematik IV für Maschinenbau und Informatik UNIVERSITÄT ROSTOCK Mathematik IV für Maschiebau ud Iformatik Stochastik Prof. Dr. Friedrich Liese Sommersemester 2007 2 Mathematik IV für Maschiebau ud Iformatik INHALT Ihalt... 2 Vorlesugsverzeichis...

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr