Vorlesung: Statistik II für Wirtschaftswissenschaft

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung: Statistik II für Wirtschaftswissenschaft"

Transkript

1 Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017

2 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung 3 Zufallsgrößen 4 Spezielle Zufallsgrößen 7 Statistische Inferenz: Punktschätzer 8 Statistische Inferenz: Konfidenzintervalle 9 Statistische Inferenz: Statistische Tests 10 Spezielle statistische Tests 11 Lineare Regression 5 Mehrdimensionale Zufallsvariablen

3 Lineare Regressionsmodelle Deskriptive Statistik: Gegeben Datenpunkte (Y i, X i ) schätze die beste Gerade Y i = β 0 + β 1 X i, i = 1,..., n. (mit der Methode der kleinsten Quadrate) Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 367 / 394

4 Statistisches Modell Linearer Zusammenhang Im Folgenden: Probabilistische Modelle in Analogie zu den deskriptiven Modellen aus Statistik I Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 368 / 394

5 Lineare Einfachregression Zunächst Modelle mit nur einer unabhängigen Variable. Statistische Sichtweise: Modell y i = β 0 + β 1 x i + ε i β 1 Wirkung der Änderung von X i um eine Einheit auf Y gestört durch zufällige Fehler ε i Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 369 / 394

6 Modellannahmen Beobachtung von Datenpaaren (X i, Y i ), i = 1,..., n mit Y i = β 0 + β 1 X i + ε i, wobei sich die Annahmen auf den zufälligen Störterm beziehen: E(ε i ) = 0 Var(ε i ) = σ 2 für alle i gleich ε i1, ε i2 stochastisch unabhängig für i 1 i 2 ε i N(0, σ 2 ) (zusätzlich, bei großen Stichproben nicht erforderlich) Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 370 / 394

7 Lineare Einfachregression β 0 + β 1 x 2 β 0 + β 1 x 1 x 1 x 2 Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 371 / 394

8 Schätzung der Parameter Die Schätzwerte werden üblicherweise mit ˆβ 0, ˆβ 1 und ˆσ 2 bezeichnet. In der eben beschriebenen Situation gilt: Die (Maximum Likelihood) Schätzer entsprechen den KQ-Schätzer aus Statistik 1 ˆβ 1 = (Xi X )(Y i Ȳ ) n i=1 (X i X ) 2, ˆβ 0 = Ȳ ˆβ 1 X, ˆσ 2 = 1 n n 2 i=1 ˆε 2 i mit den Residuen ˆε i = Y i ˆβ 0 ˆβ 1 X i. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 372 / 394

9 Konstruktion von Testgrößen Mit gilt und analog mit gilt ˆσ ˆβ0 := n ˆσ i=1 X i 2 n n i=1 (X i X ) 2 ˆβ 0 β 0 t (n 2) ˆσ ˆβ0 ˆσ ˆσ ˆβ1 := n i=1 (X i X ) 2 ˆβ 1 β 1 ˆσ ˆβ1 t (n 2). Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 373 / 394

10 Konfidenzintervalle ˆβ 0 und ˆβ 1 sind die KQ-Schätzer aus Statistik I. Unter Normalverteilung fällt hier das ML- mit dem KQ-Prinzip zusammen. Man kann unmittelbar Tests und Konfidenzintervalle ermitteln (völlig analog zum Vorgehen, das bei den t- Tests verwendet wurde Konfidenzintervalle zum Sicherheitsgrad γ: für β 0 : für β 1 : [ ˆβ 0 ± ˆσ ˆβ0 t (n 2) 1+γ ] 2 [ ˆβ 1 ± ˆσ ˆβ1 t (n 2) 1+γ ] 2 Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 374 / 394

11 Tests für die Parameter des Modells Mit der Teststatistik ergibt sich T β 1 = ˆβ 1 β 1 ˆσ ˆβ1 Hypothesen kritische Region I. H 0 : β 1 β1 gegen β 1 > β1 T t (n 2) 1 α II. H 0 : β 1 β1 gegen β 1 < β1 T t (n 2) 1 α III. H 0 : β 1 = β1 gegen β 1 β1 T t (n 2) 1 α 2 (analog für ˆβ 0 ). Von besonderem Interesse ist der Fall β1 = 0 (Steigung gleich 0): Hiermit kann man überprüfen, ob die X 1,..., X n einen signifikanten Einfluss hat oder nicht. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 375 / 394

12 Beispiel : Mietspiegel Call: lm(formula = nmqm wfl, data = mietsp2015) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e 16 wfl < Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 376 / 394

13 Multiples Regressionsmodell Beispiel: Mietspiegel y i = β 0 + β 1 x 1i + β 2 x 2i + ε i mit X 1 = { 1 Gute Lage 0 schlechte Lage X 2 = Wohnfläche Y = Miete Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 377 / 394

14 Multiples Regressionsmodell: Interpretation Geschätzte Regressionsgerade für gute Lage ŷ i = ˆβ 0 + ˆβ ˆβ 2 x 2i Geschätzte Regressionsgerade für die schlechte Lage : ŷ i = ˆβ 0 + ˆβ ˆβ 2 x 2i = ˆβ 0 + ˆβ 2 x 2i Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 378 / 394

15 Grundidee (ANCOVA) y } ˆβ 2 ˆβ 1 { ˆβ 0 { x 2 Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 379 / 394

16 Mehr als 2 Gruppen Lösungsansatz Hier ist eine direkte Lösung nicht sinnvoll. Grundidee: aus einem nominalen Regressor mit k Merkmalsausprägungen k 1 neue Regressoren (Dummys) gebildet werden. Eine Merkmalsausprägung des ursprünglichen Regressors wird zur Referenzkategorie. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 380 / 394

17 Nominale Regressoren Dummykodierung Nach Wahl der Referenzkategorie j {1,..., k} ergeben sich die Dummys X i, i = 1,..., k und i j mit folgenden Werten: { 1 falls Kategorie i vorliegt, x i = 0 sonst. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 381 / 394

18 Nominale Regressoren Beispiel Gegeben seien folgende Daten: lfd Nr. Alter Studienfach 1 19 BWL 2 22 Sonstige 3 20 VWL... Mit der Kodierung BWL = 1, VWL = 2, Sonstige = 3 erhalten wir bei Wahl der Referenzkategorie = 3 (Sonstige) zwei Dummys X 1 (für BWL) und X 2 (für VWL) gemäß folgendem Schema: Ausprägung Wert von von X X 1 X 2 1 BWL VWL Sonstige 0 0 Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 382 / 394

19 Multiples Regressionsmodell Y i abhängige Variable X i1 X i2. X ip unabhängige Variablen metrisch/quasistetig metrische/quasistetige oder dichotome (0/1) Variablen (kategoriale Variablen mit mehr Kategorien Dummy-Kodierung) Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 383 / 394

20 Multiple lineare Regression Analoger Modellierungsansatz, aber mit mehreren erklärenden Variablen: Y i = β 0 + β 1 X i1 + β 2 X i β p X ip + ε i Schätzung von β 0, β 1,..., β p und σ 2 sinnvollerweise über Matrixrechnung bzw. Software. Aus dem R-Output sind ˆβ 0, ˆβ 1,..., ˆβ p sowie ˆσ ˆβ 0, ˆσ ˆβ 1,..., ˆσ ˆβ p ablesbar. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 384 / 394

21 Schätzung im multiplen Modell Darstellung in Matrix-Form KQ- Methode und Maximum-Likelihood - Methode stimmen überein Berechnung effizient mit Matrix-Kalkül Zu den Parametern können jeweils die Standardfehler geschätzt werden. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 385 / 394

22 Multiple lineare Regression Es gilt für jedes j = 0,..., p ˆβ j β j ˆσ ˆβ j t (n p 1) und man erhält wieder Konfidenzintervalle für β j : sowie entsprechende Tests. [ ˆβ j ± ˆσ ˆβ j t (n p 1) 1+γ ] 2 Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 386 / 394

23 Multiple lineare Regression: Tests Von besonderem Interesse ist wieder der Test H 0 : β j = 0, H 1 : β j 0. Der zugehörige p-wert findet sich im Ausdruck (Vorsicht mit Problematik des multiplen Testens!). Man kann auch simultan testen, z.b. β 1 = β 2 =... = β p = 0. Dies führt zu einem sogenannten F-Test ( Software). Sind alle X ij 0/1-wertig, so erhält man eine sogenannte Varianzanalyse, was dem Vergleich von mehreren Mittelwerten entspricht. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 387 / 394

24 Varianzanalyse (Analysis of Variance, ANOVA) Vor allem in der angewandten Literatur, etwa in der Psychologie, wird die Varianzanalyse unabhängig vom Regressionsmodell entwickelt. Ziel: Mittelwertvergleiche in mehreren Gruppen, häufig in (quasi-) experimentellen Situationen. Verallgemeinerung des t-tests. Dort nur zwei Gruppen. Hier nur einfaktorielle Varianzanalyse (Eine Gruppierungsvariable). Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 388 / 394

25 Varianzanalyse: Beispiel Einstellung zu Atomkraft anhand eines Scores, nachdem ein Film gezeigt wurde. 3 Gruppen ( Faktorstufen ): Pro-Atomkraft-Film Contra-Atomkraft-Film ausgewogener Film Varianzanalyse: Vergleich der Variabilität in und zwischen den Gruppen Beobachtungen: Y ij j = 1,..., J i = 1,..., n j Faktorstufen Personenindex in der j-ten Faktorstufe Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 389 / 394

26 Modellformulierung Modell (Referenzcodierung): Y ij = µ J + β j + ε ij j = 1,..., J, i = 1,..., n j, mit µ J Mittelwert der Referenz β j Effekt der Kategorie j im Vergleich zur Referenz J ε ij zufällige Störgröße ε ij N(0, σ 2 ), ε 11, ε 12,..., ε JnJ unabhängig. Testproblem: H 0 : β 1 = β 2 =... β j 1 = 0 gegen H 1 : β j 0 für mindestens ein j Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 390 / 394

27 Streuungszerlegung Mittelwerte: Ȳ Ȳ j Gesamtmittelwert in der Stichprobe Mittelwert in der j-ten Faktorstufe Es gilt (vgl. Statistik I) die Streuungszerlegung: n J j n J J (Y ij Ȳ ) 2 = n j (Ȳ j Ȳ ) 2 }{{} + j (Y ij Ȳ j) 2 j=1 j=1 i=1 }{{} = SQE Variabilität der Gruppen = SQR Variabilität in den Gruppen j=1 j=1 Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 391 / 394

28 F-Test Die Testgröße F = SQE/(J 1) SQR/(n J) ist geeignet zum Testen der Hypothesen gegen H 0 : β 1 = β 2 =... β j 1 = 0 H 1 : β j 0 für mindestens ein j Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 392 / 394

29 Testprozedur Kritische Region: große Werten von F Also H 0 ablehnen, falls T > F 1 α (J 1, n J), mit dem entsprechenden (1 α)-quantil der F -Verteilung mit (J 1) und (n J) Freiheitsgraden. (Je größer die Variabilität zwischen den Gruppen im Vergleich zu der Variabilität in den Gruppen, desto unplausibler ist die Nullhypothese, dass alle Gruppenmittelwerte gleich sind.) Bei Ablehnung des globalen Tests ist dann oft von Interesse, welche Gruppen sich unterscheiden. Testen spezifischer Hypothesen über die Effekte β j. Dabei tritt allerdings die Problematik des multiplen Testens auf. Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 393 / 394

30 Zusammenfassung Testen von Regressionsmodellen wesentliches Werkzeug Gleichzeitige Berücksichtigung vieler Einflüsse möglich Viel Möglichkeiten zum Testen (F-Tests) Regressionsmodell Ausgangspunkt für viele neue Verfahren (Big Data, Algorithmen, KI) Statistik 2 Sommersemester 2017 Helmut Küchenhoff (Institut für Statistik, LMU) 394 / 394

Eine Einführung in R: Varianzanalyse

Eine Einführung in R: Varianzanalyse Eine Einführung in R: Varianzanalyse Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2011 Bernd Klaus, Verena Zuber Das

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression

Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik. Regression. Einfache lineare Regression Vorlesung: Statistik I für Studierende der Statistik, Mathematik & Informatik Regression Dozent: Fabian Scheipl Material: H. Küchenhoff LMU München 39 Einfache lineare Regression Bestimmung der Regressionsgerade

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Ausgangsdaten Bundesliga 2008/2009 Gegeben: Daten zu den 18 Vereinen der ersten Bundesliga

Mehr

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette

30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00

Mehr

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 3.1 3.1 Punktschätzer für Mittelwert µ und Varianz σ 2 Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden

Mehr

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6)

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6) 8 SMALL SAMPLE INFERENZ DER OLS-SCHÄTZUNG Damit wir die Verteilung von t (und anderen Teststatistiken) exakt angeben können, benötigen wir Verteilungsannahmen über die Störterme; Kapitel 3 Inferenz bei

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS)

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Es soll untersucht werden, ob und wie sich Rauchen während der Schwangerschaft auf den Gesundheitszustand des Neugeborenen auswirkt. Hierzu werden

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Epidemiologie / Biometrie

Epidemiologie / Biometrie Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert hochstrat@web.de

Mehr

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN

Ökonometrie. Hans Schneeweiß. 3., durchgesehene Auflage. Physica-Verlag Würzburg-Wien 1978 ISBN 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Hans Schneeweiß Ökonometrie 3., durchgesehene Auflage Physica-Verlag

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Beipiele zum Üben und Wiederholen Wirtschaftsstatistik 2 (Kurs 3) Lösungen

Beipiele zum Üben und Wiederholen Wirtschaftsstatistik 2 (Kurs 3) Lösungen Beipiele zum Üben und Wiederholen Wirtschaftsstatistik 2 (Kurs 3) Lösungen 1.1 (Das Beispiel 1.1 entspricht dem Beispiel 7.1 aus dem Buch Brannath/Futschik/Krall) a) Streudiagramm mit Regressionsgerade.

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

ANalysis Of VAriance (ANOVA) 2/2

ANalysis Of VAriance (ANOVA) 2/2 ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung

Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008

Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik. 7. Februar 2008 L. Fahrmeir, G. Walter Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 7. Februar 8 Hinweise:. Überprüfen

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Moderne Methodik bei der Analyse von Mietspiegeln

Moderne Methodik bei der Analyse von Mietspiegeln Moderne Methodik bei der Analyse von Mietspiegeln Dr. Susanne Meßler, omnistat gmbh 13. Oktober 2010 Inhalt Definition und Bedeutung eines Mietspiegels Datengrundlage Deskriptiver Überblick Einfachregression

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13

Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression. Robin Ristl. Wintersemester 2012/13 Unterlagen zu Fisher s Exact Test, Vergleich von Anteilswerten und logistischer Regression Robin Ristl Wintersemester 2012/13 1 Exakter Test nach Fisher Alternative zum Chi-Quadrat Unabhängigkeitstest

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

STATISTIK 2 Teil 1 Regressionsanalyse Von: Anne Schmidt. Anordnung von Zahlen in Zeilen und Spalten (Tabelle)

STATISTIK 2 Teil 1 Regressionsanalyse Von: Anne Schmidt. Anordnung von Zahlen in Zeilen und Spalten (Tabelle) Kapitel 2 Deskriptive lineare Regression 2.1. Einführung Definition Regressionsanalyse Unterschied zu Varianzanalyse Matrix/ Matrizen Indices Vektor Decken Zusammenhänge zwischen Beobachtungsreihen auf,

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 19. Oktober 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Einführung in die Methoden der Empirischen Wirtschaftsforschung

Einführung in die Methoden der Empirischen Wirtschaftsforschung Einführung in die Methoden der Empirischen Wirtschaftsforschung Prof. Dr. Dieter Nautz Einführung in die Methoden der Emp. WF 1 / 37 Übersicht 1 Einführung in die Ökonometrie 1.1 Was ist Ökonometrie? 1.2

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung

Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Statistik Vorlesung 7 (Lineare Regression)

Statistik Vorlesung 7 (Lineare Regression) Statistik Vorlesung 7 (Lineare Regression) K.Gerald van den Boogaart http://www.stat.boogaart.de/ Statistik p.1/77 Gerade als Vereinfachung Wachstum bei Kindern height 76 78 80 82 18 20 22 24 26 28 age

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Bachelorprüfung SS MUSTERLÖSUNG

Bachelorprüfung SS MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 2015

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m)

3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m) 3.1. MODELL UND STATISTIK 32 3 Multiple lineare Regression a 3.1 Modell und Statistik Zusammenhang zwischen einer Zielgrösse Y und mehreren Eingangsgrössen X (1), X (2),..., X (m) Y i = β 0 + β 1 x (1)

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Statistiken deuten und erstellen

Statistiken deuten und erstellen Statistiken deuten und erstellen Dipl. Ök. Jens K. Perret, M.Sc. Evgenija Yushkova, M.A. Schumpeter School of Business and Economics Bergische Universität Wuppertal Gaußstraße 20 42097 Wuppertal Inhalt

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr