Vorlesung Statistische Mechanik: N-Teilchensystem

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Statistische Mechanik: N-Teilchensystem"

Transkript

1 Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung nach der Dichte. Sie liefert Korrekturen zur Zustandsgleichung des idealen Gases. SS 2005 Heermann - Universität Heidelberg Seite 1

2 Für diese Virialentwicklung (engl. virial expansion) setzen wir eine Zustandsgleichung der folgenden Form an P kt = N ( N V + B 2(T ) V ) 2 + B 3 (T ) ( N V ) (1) Man bezeichnet die B i als Virialkoeffizienten (engl. virial coefficients). SS 2005 Heermann - Universität Heidelberg Seite 2

3 Betrachte die Fugazität (engl. fugacity) und entwickle das Potential z = exp (βµ) (2) nach z. P V = kt ln Z gk (3) SS 2005 Heermann - Universität Heidelberg Seite 3

4 Wir schreiben die großkanonische Zustandssumme mit Hilfe der kanonischen Zustandssumme Z gk = z i Z i (T, V ) (4) i=0 wobei Z i (T, V ) die Zustandssumme für ein System von i Teilchen bedeutet. SS 2005 Heermann - Universität Heidelberg Seite 4

5 Aus den Gleichungen (3) und (4) folgt P V kt = ln Z gk (5) ( ) = ln 1 + z i Z i (T, V ) (6) i=0 V λ 3 ( b1 (T )z + b 2 (T )z ) (7) SS 2005 Heermann - Universität Heidelberg Seite 5

6 Für b 1 (T ) erhalten wir durch die Entwicklung des Logarithmus b 1 (T ) := λ3 V Z 1(T, V ) (8) = λ3 d 3 r V λ = 1 (9) 3 V SS 2005 Heermann - Universität Heidelberg Seite 6

7 Wir definieren mit b 2 (T ) := λ3 V ( Z 2 (T, V ) 1 ) 2 Z2 1(T, V ) (10) Z 2 (T, V ) = 1 2!λ 6 bzw. allgemein V exp ( βw ( r 1 r 2 ))d 3 r 1 d 3 r 2 (11) Z N (T, V ) = 1 N! 1 λ 3N V exp( β i<j W ( r i r j ))d 3 r 1...d 3 r N (12) SS 2005 Heermann - Universität Heidelberg Seite 7

8 Setzen wir dies in den Ausdruck für b 2 (T ) ein dann, erhalten wir b 2 (T ) = = 1 2V λ 3 1 2V λ 3 ( Wir gehen über in Relativkoordinaten. V V exp ( βw ( r 1 r 2 ))d 3 r 1 d 3 r 2 V 2 ) (exp ( βw ( r 1 r 2 )) 1) d 3 r 1 d 3 r 2 Wir müssen nun berücksichtigen, dass die Schwerpunktskoordinate R nur im Volumen V zugelassen ist, während die Relativkoordinate r über den gesamten Raum zu führen ist. SS 2005 Heermann - Universität Heidelberg Seite 8

9 Nehmen wir nun an, dass das Potential schnell genug abfällt, dann folgt b 2 (T ) = 1 2V λ 3 V (exp ( βw ( r )) 1) d 3 Rd 3 r (13) Die Integration über R ergibt das Volumen V. Da der Integrand nur vom Abstand abhängt, können wir für das Integral als 4π schreiben und damit für b 2 (T ) 0 r 2 (exp( βw (r)) 1) dr (14) SS 2005 Heermann - Universität Heidelberg Seite 9

10 b 2 (T ) = 1 2λ 3 4π 0 r 2 (exp( βw (r)) 1) dr. (15) Für den zweiten Virialkoeffizienten folgt somit B 2 (T ) = λ 3 b 2 (T ). (16) SS 2005 Heermann - Universität Heidelberg Seite 10

11 Beispiele: van der Waals Für das Lennard-Jones Potential können wir B 2 (T ) ausrechnen. Eine Inspektion des Integranden (vgl. Abbildung (1)) zeigt, dass wir das Integral in zwei Teile aufspalten können: SS 2005 Heermann - Universität Heidelberg Seite 11

12 B 2 (T ) = 2π r 2 (1 exp( βw (r))) dr 0 [ σ ] 2π r 2 dr + r 2 (1 exp( βw (r))) dr 0 σ [ σ 3 ] 2π 3 + r 2 βw (r)dr σ = 1 4π 2 3 σ3 + 2π r 2 βw (r)dr σ SS 2005 Heermann - Universität Heidelberg Seite 12

13 Zur Berechnung des Virialkoeffienten eines Lennard-Jones-Potential Systems 1 u(r) 0,5 0 0 r 0,5 1 1,5 2 2,5 3-0,5-1 -1,5 Abbildung 1: Integrand für die Berechnung des Virials. SS 2005 Heermann - Universität Heidelberg Seite 13

14 Im Vergleich erhalten wir für die dort vorkommenden Parameter b 0 und b 1 b 0 N = 1 4π 2 3 σ3 (17) b 1 = 2π r 2 W (r)dr (18) N 2 Der Parameter b 1 beschreibt demnach den anziehenden Anteil des Potentials an der Zustandsgleichung. σ SS 2005 Heermann - Universität Heidelberg Seite 14

15 Der Gleichverteilungssatz Bisher haben wir nur translatorische Freiheitsgrade von Gasatomen oder Gasmolekülen berücksichtigt. Bei höheren Temperaturen können jedoch auch innere Freiheitsgrade, elektronische Anregungen und bei Molekülen Rotationen und Vibrationen angeregt werden. In verdünnten Gasen liefern diese additive Beiträge zu Energie und Entropie und können deshalb jeweils getrennt für sich behandelt werden. Wir beginnen mit der Diskussion von Rotationen in zweiatomigen Molekülen. SS 2005 Heermann - Universität Heidelberg Seite 15

16 Das Molekül bestehe aus einem Atom der Masse m 1 und einem der Masse m 2, die einen Abstand r 0 haben. Das Trägheitsmoment ist dann I = m 1m 2 m 1 + m 2 r 2 0. (19) Der Drehimpuls ist l, und die Energie ist ɛ l = I l(l + 1) = k BΘ r 1 2 l(l + 1) (20) wobei Θ r = 2 /k B I die charakteristische Temperatur für Rotationen sei. SS 2005 Heermann - Universität Heidelberg Seite 16

17 Da jeder Zustand mit gegebenem l, 2l + 1-fach entartet ist, ist die zugehörige Besetzungszahl ˆn l = e 1 2 l(l+1)θ r/t l (2l + 1)e 1 2 l (l +1)Θ r /T. (21) Die spezifische Wärme kann man aus berechnen. C = 1 k B T 2 { H 2 H 2} (22) SS 2005 Heermann - Universität Heidelberg Seite 17

18 Man erhält also C rot = 1 4 ( Θr T ) 2 { l (2l + 1)l2 (l + 1) 2 e 1 2 l(l+1)θ r/t l (2l + 1)e 1 2 l(l+1)θ r/t ( l (2l + 1)l(l + 1)e 1 2 l(l+1)θ r/t l (2l + 1)e 1 2 l(l+1)θ r/t ) 2.(23) Falls die Atome unterscheidbar sind, treten für l die Werte l = 0, 1, 2,... auf. Falls die Atome (Kerne) identisch sind, muß die Statistik (Bose-Fermi, vgl. später) berücksichtigt werden. SS 2005 Heermann - Universität Heidelberg Seite 18

19 Für Fermionen (beispielsweise H 2 ) im Spin-Singulet (s = 0) Zustand ist die Spinfunktion antisymmetrisch und damit die Ortsfunktion symmetrisch (Para-Zustand). Damit ist l = 0, 2, 4,... möglich. Im Spin-Triplet (s = 1)-Zustand muß die Ortsfunktion antisymmetrisch sein (Ortho-Zustand), und damit ist l = 1, 3, 5,... möglich. Für Bosonen, deren Spin s = 0 ist, muß die Wellenfunktion symmetrisch sein (Para-Zustand), also l = 0, 2, 4,.... SS 2005 Heermann - Universität Heidelberg Seite 19

20 Für Bosonen mit Spin s = 1 (beispielsweise D 2 ) erhält man Para-Zustände, l = 0, 2, 4,..., für den Spin-Singulet-Zustand (s = 0) und den Spin-Quintuplet (s = 2)-Zustand, Ortho-Zustände, l = 1, 3, 5,..., für den Spin-Triplet (s = 1)-Zustand. SS 2005 Heermann - Universität Heidelberg Seite 20

21 Für tiefe Temperaturen T Θ r erhält man aus (23) für unterscheidbare Atome für Para-Zustände C rot /k B N = 3 ( Θr T ) 2 e Θ r/t + (24) C rot /k B N = 45 und für Ortho-Zustände C rot /k B N = ( Θr T ( Θr T ) 2 e 3Θ r/t + (25) ) 2 e 5Θ r/t +. (26) SS 2005 Heermann - Universität Heidelberg Seite 21

22 Für hohe Temperaturen T Θ r können viele Rotationszustände angeregt sein, und die Summe über l kann durch ein Integral ersetzt werden l (2l+1) { } wobei x = 1 2 l(l + 1)Θ r/t. dl (2l+1) { } 2 T 1 Θ r dx (27) Die in der Klammer angegebenen Faktoren beziehen sich auf unterscheidbare (oben) und ununterscheidbare Atome. SS 2005 Heermann - Universität Heidelberg Seite 22

23 Der Beitrag der Rotation zur spezifischen Wärme wird damit bei hohen Temperaturen { ( ) dx x 2 e x dx x e x 2 } C rot = k B N = k dx e x dx e x B N. (28) SS 2005 Heermann - Universität Heidelberg Seite 23

24 Bei höheren Temperaturen müssen auch Vibrationen von Molekülen berücksichtigt werden. Wir untersuchen wieder zweiatomige Moleküle in harmonischer Näherung. Die Schwingungsenergie eines Moleküls ist dann ɛ ν = ( ν + 1 ) ω ν = 0, 1, 2,... (29) 2 wobei ω die Frequenz des als harmonischer Oszillator angesehenen Moleküls ist. SS 2005 Heermann - Universität Heidelberg Seite 24

25 Als charakteristische Temperatur definieren wir Θ ν = ω/k B. (30) Der Vibrationsanteil der freien Energie ist dann F vib = k B T N ln ν e (ν+ 1 2)Θ ν /T = k B T N ln e 1 2 Θ ν/t 1 e Θ ν/t. (31) SS 2005 Heermann - Universität Heidelberg Seite 25

26 Den zugehörigen Beitrag zur spezifischen Wärme erhält man ( ) 2 C vib = T 2 F vib Θν e Θ ν/t = T 2 T (e Θ ν/t 1) 2 k BN ( ) 2 Θν e Θν/T k B N für T Θ ν T k B N für T Θ ν.(32) SS 2005 Heermann - Universität Heidelberg Seite 26

27 Die Behandlung der Rotationen und Vibrationen von Molekülen mit mehr als zwei Atomen ist im allgemeinen komplizierter. Wir untersuchen deshalb nur den klassischen Grenzfall unter der Annahme, dass die Energie eine quadratische Funktion von f Freiheitsgraden x 1... x f ist. SS 2005 Heermann - Universität Heidelberg Seite 27

28 Da die Hamiltonfunktion als quadratische Funktion der f Freiheitsgrade angenommen wurde, kann sie auf Hauptachsen transformiert werden und für ein Molekül in der Form geschrieben werden. H = 1 2 f l=1 h l s 2 l (33) SS 2005 Heermann - Universität Heidelberg Seite 28

29 Die freie Energie ist dann in klassischer Näherung F = Nk B T ln dx 1... dx f e 1 2 { } f = Nk B T ln T + const 2 und wir erhalten die spezifische Wärme P l h ls 2 l /k BT (34) C V = f 2 Nk B (35) und die Energie E = f 2 Nk BT. (36) SS 2005 Heermann - Universität Heidelberg Seite 29

30 Dieses Resultat ist als Gleichverteilungssatz der klassischen statistischen Mechanik bekannt. SS 2005 Heermann - Universität Heidelberg Seite 30

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale Die Warum Fakultät für Physik, LMU München 14.06.2006 Die Warum 1 Die Der zweite Virialkoeffizient 2 Hard-Sphere-Potential Lennard-Jones-Potential 3 Warum 4 Bsp. Hard-Sphere-Potential Asakura-Oosawa-Potential

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Seminar für Fragen der Festkörpertheorie. P.N. Racec

Seminar für Fragen der Festkörpertheorie. P.N. Racec Seminar für Fragen der Festkörpertheorie P.N. Racec WS2003/2004 2 Contents Spezialthemen in Festkörperphysik 5. Fermi-Dirac Verteilungsfunktion........................ 6.2 Bose-Einstein Verteilungsfunktion.......................

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich) Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Theoretische Physik F: Zwischenklausur SS 12

Theoretische Physik F: Zwischenklausur SS 12 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Ising-Modell Vorlesung Statistische Mechanik: Ising-Modell Das Ising Modell besteht auser einer Anzahl von Spins, die wir mit s i bezeichnen wollen. Jeder der N Spins kann den Wert ±1 annehmen. Die Spins

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit

1) Brillouin-Streuung zur Ermittlung der Schallgeschwindigkeit Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Eric Parzinger / Jens Repp Kontakt: eric.parzinger@wsi.tum.de / jens.repp@wsi.tum.de Blatt 3, Besprechung: 7. und 14.5.214

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

5 Bose-Einstein-Kondensation. Suprafluidität

5 Bose-Einstein-Kondensation. Suprafluidität Prof. Dr. A. Muramatsu Fortgeschrittene Quantentheorie WS / 9 5 Bose-Einstein-Kondensation. Suprafluidität Wie im Fall der Fermionen betrachten wir in diesem Kapitel zunächst nicht wechselwirkende Bosonen.

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti Ulf Wiedwald 16. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 16. 07. 2007

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk)

Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk) Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk) 1. Observable und Zustände (a) Klassische Observable als Funktionen auf dem Phasenraum; Quantenobservable

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodynamik:

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme"

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme" Dietmar Paschek SS 016 Gittermodell für Mischungen Grenzen der Bragg-Williams Näherung Das Ising Modell Quasi-Chemische

Mehr

I. Physikalisches Institut der Justus-Liebig-Universität Giessen

I. Physikalisches Institut der Justus-Liebig-Universität Giessen I. Physikalisches Institut der Justus-Liebig-Universität Giessen Versuch 1.2 Bandenspektrum von Jod A. Aufgabenstellung Im Bereich von 500-600 nm soll die Absorption von Joddampf photoelektrisch registriert

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i Mikroskopische Simulation der Molekülbewegungen Moleküldynamik Statistische Mechanik Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen Makroskopische igenschaften des Systems (nergie, Temp, Druck,

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

1.3 Mehrelektronensysteme

1.3 Mehrelektronensysteme .3 Mehrelektronensysteme.3. Helium Dies ist ein Drei-Teilchen-System. Hamilton-Operator: Näherung: unendlich schwerer Kern nicht relativistisch Ĥ = ˆ p m + ˆ p m e e + e 4πɛ 0 r 4πɛ 0 r }{{ 4πɛ } 0 r }{{

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Statistische Mechanik Musterlösungen

Statistische Mechanik Musterlösungen 23. April 23 PD Dr. H. Kohler Statistische Mechanik Musterlösungen P. Differentialformen Sei ω = f x (x, ydx+f y (x, ydy eine Form in lokalen Koordinaten, dann lässt sich die Exaktheit leicht über die

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Versuch 08 Der Dampfdruck von Wasser

Versuch 08 Der Dampfdruck von Wasser Physikalisches A-Praktikum Versuch 08 Der Dampfdruck von Wasser Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 22.05.2012 Unterschrift: Inhaltsverzeichnis

Mehr

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =? Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels

Mehr

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

Modulprüfung Fortgeschrittene Theoretische Physik / Theoretische Physik II

Modulprüfung Fortgeschrittene Theoretische Physik / Theoretische Physik II Modulprüfung Fortgeschrittene Theoretische Physik / Theoretische Physik II Ablauf der Prüfung In der Regel dauert die Prüfung 45 Minuten. Ich beginne immer mit dem Thema Bewegung eines materiellen Teilchens

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Universität u Köln - Fachgruppe Physik Großes Physikalisches Kolloquium Dienstag, 0. Juni 008, 6:45 Uhr

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

Theoretische Physik F Statistische Physik

Theoretische Physik F Statistische Physik Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Vortrag: Dichtefunktionaltheorie und Ornstein-Zernike-Gleichung

Vortrag: Dichtefunktionaltheorie und Ornstein-Zernike-Gleichung Vortrag: Dichtefunktionaltheorie und Ornstein-Zernike-Gleichung Seminar: Weiche Materie Michael Lutz Universität Konstanz 21. Dezember 2007 1 / 47 Übersicht 1 Einleitung 2 Funktionale 3 Variationprinzip

Mehr

Modifikation der Eigenschaften von Antikaonen in dichter Materie

Modifikation der Eigenschaften von Antikaonen in dichter Materie Modifikation der Eigenschaften von Antikaonen in dichter Materie Thomas Roth 7. Juli 2004 Motivation Kaonen...... in dichter Materie Motivation Kaonen... sind die leichtesten Mesonen mit Strangeness ±1...

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Theoretische Biophysikalische Chemie

Theoretische Biophysikalische Chemie Theoretische Biophysikalische Chemie Thermochemie (und Schwingungsspektroskopie) Christoph Jacob DFG-CENTRUM FÜR FUNKTIONELLE NANOSTRUKTUREN 0 KIT 17.12.2012 Universität deschristoph Landes Baden-Württemberg

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum

Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum Versuch: RG Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: E. Beyer Aktualisiert: am 01. 10. 2010 Bearbeitet: J. Kelling F. Lemke S. Majewsky M. Justus Reale Gase Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet. Andreas Irmler

Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet. Andreas Irmler Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet Andreas Irmler 22. März 2010 Inhaltsverzeichnis 1 Freie Energie 2 1.1 Motivation............................................... 2 1.2

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

1 Lambert-Beersches Gesetz

1 Lambert-Beersches Gesetz Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme"

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme Vorlesung Physikalische Chemie IV Statistische hermodynamik realer chemischer Systeme" Dietmar Paschek SS 6 Flory-Huggins heorie (III) Polymer-Lösungen: Osmotischer Druck Statistische hermodynamik realer

Mehr

STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik

STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik STATISTISCHE PHYSIK Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik Zusammenfassung und Stichwort-Sammlung April 2003 Teil I Thermodynamik 1 Grundbegriffe

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip

Mehr

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE

Gruppentheorie ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Physikalische Chemie Prof. Dr. Walter Langel Gruppentheorie Molekülschwingungen

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

2. Quadratische Lagrangefunktionen und Fourierreihe.

2. Quadratische Lagrangefunktionen und Fourierreihe. 0. Einführung Wir haben gerade das klassische Wirkungsprinzip betrachtet, nachdem wir wissen, dass der dynamische Verlauf eines Teilchens in dem Diagramm die Kurve darstellen soll, die die minimale Wirkung

Mehr

Wärme. 1. Makroskopische Betrachtung KAPITEL C

Wärme. 1. Makroskopische Betrachtung KAPITEL C 25 KAPITEL C Wärme 1. Makroskopische Betrachtung a) Definition von Wärme Bringt man zwei Systeme mit unterschiedlichen Temperaturen in Kontakt, so wird nach einer Ausgleichszeit ein Gleichgewichtszustand

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Response-Funktionen Bisher haben wir vorwiegend Eigenschaften des thermodynamischen Gleichgewichts untersucht. Diese stellen aber nur einen beschränkten Ausschnitt der interessierenden Phänomene dar. Zur

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Übungen zur Theoretischen Physik F SS 12

Übungen zur Theoretischen Physik F SS 12 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS Prof. Dr. Jörg Schmalian Blatt 8: Lösungen Dr. Igor Gornyi Besprechung 5.6.. Landauscher

Mehr

3 Moleküle. X = (R 1,R 2,...R M ) und x = (r 1,s 1,r 2,s 2,...r N,s N ).

3 Moleküle. X = (R 1,R 2,...R M ) und x = (r 1,s 1,r 2,s 2,...r N,s N ). 3 Moleküle Bei M gebundenen Atomen werden die gleichen Näherungen wie bei den Atomen zugrunde gelegt, wobei aber die Koordinaten R J der Atomkerne, ihre Massen M J und Ladungen Z J e 0 mit J = 1,2,...M

Mehr

Allgemeine Chemie I Herbstsemester 2012

Allgemeine Chemie I Herbstsemester 2012 Lösung 4 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Im Vorlesungsskript sind für Xenon die Werte σ(xe) = 406 pm und ε = 236 kjmol 1 tabelliert. ( ) 12 ( ) 6 σ σ E i j = 4ε (1) r i j r i j r i j

Mehr

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie Bachelorstudiengang CBI / LSE - Teil Physikalische Chemie SS10 - Blatt 1 / 15 Klausur Bachelorstudiengang CBI / LSE Physikalische Chemie 27.09.2010 Name: Vorname: geb. am: in: Studienfach: Matrikelnummer:

Mehr