Theoretische Grundlagen der Informatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Theoretische Grundlagen der Informatik"

Transkript

1 Theoretische Grundlagen der Informatik Übung 8 Dirk Achenbach 7. Februar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Agenda für heute Besprechung ÜB 7 Ergänzungen zur Komplexitätstheorie Quantorenreihenfolge Worst-Case- versus Best-Case- versus Average-Case-Komplexität Besprechung der Evaluation Dirk Achenbach Übung 7. Februar /23

3 Aufgabe G := H := Wir wissen aus der Vorlesung Codiert wird durch G m = c Das Syndrom ist bei fehlerfreier Übertragung null: H c = o Dann decodiert man, indem man die Nachrichtenbits aus c extrahiert. Dirk Achenbach Übung 7. Februar /23

4 Aufgabe G := H := Wir wissen aus der Vorlesung Codiert wird durch G m = c Das Syndrom ist bei fehlerfreier Übertragung null: H c = o Dann decodiert man, indem man die Nachrichtenbits aus c extrahiert. Dirk Achenbach Übung 7. Februar /23

5 Aufgabe 1 Und wenn ein einzelner Bitfehler vorliegt? H (c + e) = H c + H e = H e Aha! Da der Fehlervektor ein Einheitsvektor ist (ein Bitfehler!), selektiert er die Spalte aus H, die an der Stelle des Fehlers steht. In der Vorlesung haben wir in H binär die Spaltennummer kodiert, auf dem Übungsblatt falsch herum. Dirk Achenbach Übung 7. Februar /23

6 Aufgabe 1 Und wenn ein einzelner Bitfehler vorliegt? H (c + e) = H c + H e = H e Aha! Da der Fehlervektor ein Einheitsvektor ist (ein Bitfehler!), selektiert er die Spalte aus H, die an der Stelle des Fehlers steht. In der Vorlesung haben wir in H binär die Spaltennummer kodiert, auf dem Übungsblatt falsch herum. Dirk Achenbach Übung 7. Februar /23

7 Aufgabe 1 Und wenn ein einzelner Bitfehler vorliegt? H (c + e) = H c + H e = H e Aha! Da der Fehlervektor ein Einheitsvektor ist (ein Bitfehler!), selektiert er die Spalte aus H, die an der Stelle des Fehlers steht. In der Vorlesung haben wir in H binär die Spaltennummer kodiert, auf dem Übungsblatt falsch herum. Dirk Achenbach Übung 7. Februar /23

8 Aufgabe 1 Und wenn ein einzelner Bitfehler vorliegt? H (c + e) = H c + H e = H e Aha! Da der Fehlervektor ein Einheitsvektor ist (ein Bitfehler!), selektiert er die Spalte aus H, die an der Stelle des Fehlers steht. In der Vorlesung haben wir in H binär die Spaltennummer kodiert, auf dem Übungsblatt falsch herum. Dirk Achenbach Übung 7. Februar /23

9 Aufgabe 1 Und wenn ein einzelner Bitfehler vorliegt? H (c + e) = H c + H e = H e Aha! Da der Fehlervektor ein Einheitsvektor ist (ein Bitfehler!), selektiert er die Spalte aus H, die an der Stelle des Fehlers steht. In der Vorlesung haben wir in H binär die Spaltennummer kodiert, auf dem Übungsblatt falsch herum. Dirk Achenbach Übung 7. Februar /23

10 Aufgabe G := H := H c 1 = H ( ) T = (1 0 0) T. Das ist die erste Spalte in H, also müssen wir das erste Bit in c korrigieren. H c 2 = H ( ) T = (1 1 0) T. Das ist die dritte Spalte in H, also müssen wir das dritte Bit in c (das erste Nachrichtenbit!) korrigieren. Dirk Achenbach Übung 7. Februar /23

11 Aufgabe G := H := H c 1 = H ( ) T = (1 0 0) T. Das ist die erste Spalte in H, also müssen wir das erste Bit in c korrigieren. H c 2 = H ( ) T = (1 1 0) T. Das ist die dritte Spalte in H, also müssen wir das dritte Bit in c (das erste Nachrichtenbit!) korrigieren. Dirk Achenbach Übung 7. Februar /23

12 Aufgabe G := H := H c 1 = H ( ) T = (1 0 0) T. Das ist die erste Spalte in H, also müssen wir das erste Bit in c korrigieren. H c 2 = H ( ) T = (1 1 0) T. Das ist die dritte Spalte in H, also müssen wir das dritte Bit in c (das erste Nachrichtenbit!) korrigieren. Dirk Achenbach Übung 7. Februar /23

13 Aufgabe G := H := Damit: c 1 = ( )T Decodiert zu ( ) T. c 2 = ( )T Decodiert zu ( ) T. Dirk Achenbach Übung 7. Februar /23

14 Aufgabe G := H := Damit: c 1 = ( )T Decodiert zu ( ) T. c 2 = ( )T Decodiert zu ( ) T. Dirk Achenbach Übung 7. Februar /23

15 Aufgabe G := H := Damit: c 1 = ( )T Decodiert zu ( ) T. c 2 = ( )T Decodiert zu ( ) T. Dirk Achenbach Übung 7. Februar /23

16 Aufabe 1, ii Der Code korrigiert 1-Bit-Fehler korrekt, 2-Bit-Fehler aber falsch. Wie ergänzt man den Code, damit er 2-Bit-Fehler zumindest als solche erkennt? Wir ergänzen um ein weiteres Paritätsbit. (Wir ergänzen die Spalten in G also auf gerade Parität.) Damit wächst die Minimaldistanz der Codewörter. Der Code ist jetzt ein Vektorraum, dessen Vektoren alle gerade Parität haben (die Spalten von G sind seine Basis). Im Speziellen ist die Minimaldistanz gerade. Gerade Minimaldistanz größer 3 die neue Minimaldistanz ist vier. Dirk Achenbach Übung 7. Februar /23

17 Aufabe 1, ii Der Code korrigiert 1-Bit-Fehler korrekt, 2-Bit-Fehler aber falsch. Wie ergänzt man den Code, damit er 2-Bit-Fehler zumindest als solche erkennt? Wir ergänzen um ein weiteres Paritätsbit. (Wir ergänzen die Spalten in G also auf gerade Parität.) Damit wächst die Minimaldistanz der Codewörter. Der Code ist jetzt ein Vektorraum, dessen Vektoren alle gerade Parität haben (die Spalten von G sind seine Basis). Im Speziellen ist die Minimaldistanz gerade. Gerade Minimaldistanz größer 3 die neue Minimaldistanz ist vier. Dirk Achenbach Übung 7. Februar /23

18 Aufgabe 1, ii x 3 d 1 2 d 1 2 d 1 2 d 1 2 x 1 x 1 Dirk Achenbach Übung 7. Februar /23

19 Aufgabe 1, iii Aus der Vorlesung wissen wir d(x, y) := Σ xi y i 1, i {1,..., n} Wir sollen zeigen, dass das eine Metrik ist. Dirk Achenbach Übung 7. Februar /23

20 Aufgabe 1, iii Aus der Vorlesung wissen wir Aus dem Kopf wissen wir d(x, y) := Σ xi y i 1, i {1,..., n} Eine Abbildung d : F n 2 Fn 2 N 0 ist eine Metrik, wenn die folgenden Bedingungen erfüllt sind: Definitheit: d(x, y) 0 und d(x, y) = 0 x = y. Symmetrie: d(x, y) = d(y, x). Dreiecksungleichung: d(x, y) d(x, z) + d(y, z) z F n 2. Dirk Achenbach Übung 7. Februar /23

21 Aufgabe 1, iii Aus der Vorlesung wissen wir d(x, y) := Σ xi y i 1, i {1,..., n} Definitheit: d(x, y) := Σ xi y i 1, i {1,..., n} 0, da Summand < 0. d(x, y) = 0 x = y, sonst E. x = y d(x, y) = 0 durch Nachrechnen. Symmetrie: d(x, y) = d(y, x) durch die Symmetrie von. Dreiecksungleichung: Für d(x, y) = 0 klar. Sonst gilt für alle i mit x i y i, dass auch x i z i oder y i z i. Für alle j mit x j = y j kann aber weiterhin x j z j oder y j z j. Damit ist die Ungleichung klar. Dirk Achenbach Übung 7. Februar /23

22 Aufgabe 1, iii Aus der Vorlesung wissen wir d(x, y) := Σ xi y i 1, i {1,..., n} Definitheit: d(x, y) := Σ xi y i 1, i {1,..., n} 0, da Summand < 0. d(x, y) = 0 x = y, sonst E. x = y d(x, y) = 0 durch Nachrechnen. Symmetrie: d(x, y) = d(y, x) durch die Symmetrie von. Dreiecksungleichung: Für d(x, y) = 0 klar. Sonst gilt für alle i mit x i y i, dass auch x i z i oder y i z i. Für alle j mit x j = y j kann aber weiterhin x j z j oder y j z j. Damit ist die Ungleichung klar. Dirk Achenbach Übung 7. Februar /23

23 Aufgabe 2, i x P(X = x) Huffman-Codierung Erstelle für jedes Wort einen eigenen Baum, merke Dir die Häufigkeit Solange noch mehr als ein Baum vorhanden Fasse die beiden Bäume der geringsten Häufigkeit zusammen, kumuliere ihre Häufigkeit Dirk Achenbach Übung 7. Februar /23

24 Aufgabe 2, i x P(X = x) Dirk Achenbach Übung 7. Februar /23

25 Aufgabe 2, i Damit: x Code Dirk Achenbach Übung 7. Februar /23

26 Aufgabe 2, ii Aus dem Kopf Der Erwartungswert ist bestimmt durch E(X) = Σ i P(X = x i ) x i. Von vorhin x P(X = x) x Code Damit: L = 0.4 1bit bit bit bit bit bit bit = 2.34bit Dirk Achenbach Übung 7. Februar /23

27 Aufgabe 2, ii Aus dem Kopf Der Erwartungswert ist bestimmt durch E(X) = Σ i P(X = x i ) x i. Von vorhin x P(X = x) x Code Damit: L = 0.4 1bit bit bit bit bit bit bit = 2.34bit Dirk Achenbach Übung 7. Februar /23

28 Aufgabe 2, iii w = Zeichen u h c n t s e w m i Code Wir wissen aus der Vorlesung Huffman-Codes sind präfixfrei. Damit decodieren wir sehr einfach zu: im westen nichts neues. Dirk Achenbach Übung 7. Februar /23

29 Aufgabe 2, iii w = Zeichen u h c n t s e w m i Code Wir wissen aus der Vorlesung Huffman-Codes sind präfixfrei. Damit decodieren wir sehr einfach zu: im westen nichts neues. Dirk Achenbach Übung 7. Februar /23

30 Aufgabe 2, iii w = Zeichen u h c n t s e w m i Code Wir wissen aus der Vorlesung Huffman-Codes sind präfixfrei. Damit decodieren wir sehr einfach zu: im westen nichts neues. Dirk Achenbach Übung 7. Februar /23

31 Aufgabe 2, iii im westen nichts neues Zähle relative Häufigkeiten der Zeichen: Zeichen u h c n t s e w Wahrscheinlichkeit 3 22 Daraus berechnen wir die Entropie der Quelle als den erwarteten Informationsgehalt eines Zeichens: H(X) = bit Die erwartete Codewortlänge ist L = bit Dirk Achenbach Übung 7. Februar /23

32 Aufgabe 2, iii im westen nichts neues Zähle relative Häufigkeiten der Zeichen: Zeichen u h c n t s e w Wahrscheinlichkeit 3 22 Daraus berechnen wir die Entropie der Quelle als den erwarteten Informationsgehalt eines Zeichens: H(X) = bit Die erwartete Codewortlänge ist L = bit Dirk Achenbach Übung 7. Februar /23

33 Erst das Problem, dann die Instanz Klar: k-color ist für Graphen mit k Knoten trivial. Aber so geht das nicht! Bei Komplexitätsbetrachtungen legen wir uns erst auf das Problem fest, dann ziehen wir eine Instanz! Einschränkungen gibt es auch im Vorfeld, dabei kommen ganz erstaunliche Ergebnisse heraus. Beispielsweise ist jeder planare Graph vierfärbbar. Dirk Achenbach Übung 7. Februar /23

34 Erst das Problem, dann die Instanz Klar: k-color ist für Graphen mit k Knoten trivial. Aber so geht das nicht! Bei Komplexitätsbetrachtungen legen wir uns erst auf das Problem fest, dann ziehen wir eine Instanz! Einschränkungen gibt es auch im Vorfeld, dabei kommen ganz erstaunliche Ergebnisse heraus. Beispielsweise ist jeder planare Graph vierfärbbar. Dirk Achenbach Übung 7. Februar /23

35 Erst das Problem, dann die Instanz Klar: k-color ist für Graphen mit k Knoten trivial. Aber so geht das nicht! Bei Komplexitätsbetrachtungen legen wir uns erst auf das Problem fest, dann ziehen wir eine Instanz! Einschränkungen gibt es auch im Vorfeld, dabei kommen ganz erstaunliche Ergebnisse heraus. Beispielsweise ist jeder planare Graph vierfärbbar. Dirk Achenbach Übung 7. Februar /23

36 Worst-Case- versus Best-Caseversus Average-Case-Complexity Wir betrachten üblicherweise immer die Worst-Case-Komplexität von Problemen. Das heißt also, uns interessiert, wie schwer ein Problem höchstens werden kann. Oft ist aber auch die Average-Case-Komplexität interessant, also wie schwer ein Problem im Mittel ist wie schwer also eine zufällig gezogene Instanz ist. Besonderheit in der Kryptographie: Wir suchen besonders (Average-) schwere Probleme. Dirk Achenbach Übung 7. Februar /23

37 Worst-Case- versus Best-Caseversus Average-Case-Complexity Beispiel: Diffie-Hellman-Schlüsselaustausch Wir arbeiten in einer zyklischen Gruppe (in der das Diffie-Hellman-Problem schwer ist... ). Sei das hier Z p, p prim. Ein Erzeuger g der Gruppe sei öffentlich bekannt. Alice zieht ein zufälliges a {1,..., p 1} und sendet g a an Bob. Bob zieht ein zufälliges b {1,..., p 1} und sendet g b an Alice. Alice und Bob errechnen nun ihren gemeinsamen Schlüssel aus k = (g b ) a = (g a ) b = g ab. Dirk Achenbach Übung 7. Februar /23

38 Worst-Case- versus Best-Caseversus Average-Case-Complexity Beispiel: Diffie-Hellman-Schlüsselaustausch Computational Diffie-Hellman Problem CDH: Die Spionin Eve möchte aus g, g a und g b den Schlüssel g ab ausrechnen. Klar ist: CDH T dlog Auch klar: Sei (g, g a, g b ) eine besonders schwere Instanz von CDH. Dann kann Eve zufällige r, s {1,, p 1} ziehen und sich die zufällige Instanz (g, g ar, g bs ) erzeugen. Wenn sie die zufällige Instanz lösen kann, löst sie auch (g, g a, g b ) (und andersrum). Das heißt: Bei CDH sind die Instanzen alle gleich schwer (umgangssprachlich). Das ist im Allgemeinen nicht so! Dirk Achenbach Übung 7. Februar /23

39 Zur Klausur Es gibt keine Anmeldung zum Schein. Hauptklausur findet am statt. Nachklausur: Uhrzeiten: Webseite. Hörsaal(Nachname): Webseite. Klausuranmeldung ab jetzt bis einschl Abholen von Übungsblättern bei uns (Raum 274, Geb ) ab Freitag möglich, wenn Blätter nicht zuvor im Tutorium abgeholt wurden. Dirk Achenbach Übung 7. Februar /23

40 Zur Klausur 60 Minuten, 60 Punkte 20 Punkte werden zum Bestehen der Klausur hinreichend sein Recherchieren Sie den Hörsaal im Vorfeld! Dirk Achenbach Übung 7. Februar /23

41 Fragen zum organisatorischen Ablauf? Dirk Achenbach Übung 7. Februar /23

42 Übungsevaluation Dirk Achenbach Übung 7. Februar /23

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Referat zum Thema Huffman-Codes

Referat zum Thema Huffman-Codes Referat zum Thema Huffman-Codes Darko Ostricki Yüksel Kahraman 05.02.2004 1 Huffman-Codes Huffman-Codes ( David A. Huffman, 1951) sind Präfix-Codes und das beste - optimale - Verfahren für die Codierung

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Digitaltechnik I WS 2006/2007. Klaus Kasper

Digitaltechnik I WS 2006/2007. Klaus Kasper Digitaltechnik I WS 2006/2007 Klaus Kasper Studium 6 Semester 5. Semester: Praxissemester im Anschluss: Bachelorarbeit 6. Semester: WPs Evaluation der Lehre Mentorensystem 2 Organisation des Studiums Selbständigkeit

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Die Hamming-Distanz definiert eine Metrik.

Die Hamming-Distanz definiert eine Metrik. Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 06.03.09 2-1 Heutige große Übung Allgemeines

Mehr

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b.

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b. Entropie Grundlegend für das Verständnis des Begriffes der Komprimierung ist der Begriff der Entropie. In der Physik ist die Entropie ein Maß für die Unordnung eines Systems. In der Informationstheorie

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Lösungsvorschläge zu Blatt Nr. 13

Lösungsvorschläge zu Blatt Nr. 13 Institut für Algorithmen und Kognitive Systeme Dr. Jörn Müller-Quade Carmen Kempka Christian Henrich Nico Döttling Vorlesung Informatik III Lösungsvorschläge zu Blatt Nr. Aufgabe (K ( Punkte Gegeben ist

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Grundbegriffe der Informatik Tutorium 11

Grundbegriffe der Informatik Tutorium 11 Grundbegriffe der Informatik Tutorium 11 Tutorium Nr. 32 Philipp Oppermann 29. Januar 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes 2016S Gerhard Dorfer 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführende Beispiele 4 2 Mathematische Grundlagen 6 3 Fehlererkennung und Fehlerkorrektur für Blockcodes 9 4

Mehr

Thema: Hamming-Codes. Titelblatt anonymisiert

Thema: Hamming-Codes. Titelblatt anonymisiert Thema: Hamming-Codes Titelblatt anonymisiert Hamming-Codes.Einführung in die Kodierungstheorie... 3. Grundlegendes über Codewörter... 3. Matrizen... 4.3 Die maßgebliche Stelle... 5.Grundlegende Ideen...5

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:... VORNAME:... MAT. NR.:... Prüfung 389.53 Musterlösung A Datenkommunikation Institute of Telecommunications Görtz, Goiser, Hlawatsch, Matz, Mecklenbräuker, Rupp, Zseby TU-Wien 8.6.4 Bitte beachten

Mehr

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes*

Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Grundlagen exakter Methoden zur Verschlüsselung von Codewörtern mittels linearer Codes* Andrea Kraft andreakraft@gmx.at Elisabeth Pilgerstorfer elisabeth_pilg@hotmail.com Johannes Kepler Universität Linz

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus? Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"

Mehr

Fachbereichsinformation

Fachbereichsinformation Fachbereichsinformation Mathematik Lehramt KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Inhalt Allgemeines Bestandteile des Lehramtsstudiums

Mehr

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Komprimierung 6. Komprimierung (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Platz brauchen Motivation: beschleunigt Plattenzugriffe oder Datenübertragungen Voraussetzung:

Mehr

Fehlerschutz durch Hamming-Codierung

Fehlerschutz durch Hamming-Codierung Versuch.. Grundlagen und Begriffe Wesentliche Eigenschaften der Hamming-Codes für die Anwendung sind: der gleichmäßige Fehlerschutz für alle Stellen des Codewortes und die einfache Bildung des Codewortes

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Grundbegriffe der Informatik Tutorium 12

Grundbegriffe der Informatik Tutorium 12 Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 4 (7.5.2014) Asymptotische Analyse, Sortieren IV Algorithmen und Komplexität Erfahrungen 1. Übung C++ / Java sind komplett ungewohnt Struktur

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

1. Tutorium Digitaltechnik und Entwurfsverfahren

1. Tutorium Digitaltechnik und Entwurfsverfahren 1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Single Parity check Codes (1)

Single Parity check Codes (1) Single Parity check Codes (1) Der Single Parity check Code (SPC) fügt zu dem Informationsblock u = (u 1, u 2,..., u k ) ein Prüfbit (englisch: Parity) p hinzu: Die Grafik zeigt drei Beispiele solcher Codes

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Information und Codierung

Information und Codierung Richard W. Hamming Information und Codierung Technische Universität Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invantar-Nr.: Sachgebiete:. Standort: VCH Inhalt Vorwort zur 1. Auflage der Originalausgabe

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Zusammenfassung zu Codierungstheorie

Zusammenfassung zu Codierungstheorie Zusammenfassung zu Codierungstheorie Proseminar Mathematische Modelle in den Naturwissenschaften WS 09/10 Thomas Holzer 0755600 Sandra Sampl 0755049 Kathrin Oberradter 0755123 1 Inhaltsverzeichnis 1. Einführung

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

Fehlererkennung und Fehlerkorrektur in Codes

Fehlererkennung und Fehlerkorrektur in Codes Fehlererkennung und Fehlerkorrektur in Codes Blockcodes und Hamming Abstand Untersuchungen zu Codierungen von Informationen, die über einen Nachrichtenkanal übertragen werden sollen, konzentrieren sich

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

Redundanz. Technische Informationsquelle Entropie und Redundanz Huffman Codierung. Martin Werner WS 09/10. Martin Werner, Dezember 09 1

Redundanz. Technische Informationsquelle Entropie und Redundanz Huffman Codierung. Martin Werner WS 09/10. Martin Werner, Dezember 09 1 Information, Entropie und Redundanz Technische Informationsquelle Entropie und Redundanz Huffman Codierung Martin Werner WS 9/ Martin Werner, Dezember 9 Information und Daten Informare/ Informatio (lat.)

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Der Huffman Algorithmus

Der Huffman Algorithmus Der Huffman Algorithmus Für das Folgende setzen wir voraus, dass die Quellensymbole q ν einem Alphabet {q μ } = {A, B, C,...} mit dem Symbolumfang M entstammen und statistisch voneinander unabhängig seien.

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Arithmetisches Codieren

Arithmetisches Codieren Arithmetisches Codieren 1. Motivation: Als Alternative zum arithmetischen Codieren bot sich damals als effizientester Algorithmus das Huffmann-Coding an. Dieses jedoch hatte einen entscheidenden Nachteil:

Mehr

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5

Klausur zur Vorlesung Technische Informatik 1 im WS 06/07 Donnerstag, den von Uhr Uhr, HS 5 Philipps-Universität Marburg Fachbereich Mathematik und Informatik AG Verteilte Systeme http://ds.informatik.uni-marburg.de Prof. Dr. Helmut Dohmann Prof. Dr. Bernd Freisleben Klausur zur Vorlesung Technische

Mehr

Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 3. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 3.1: Codierungen a) Vervollständigen Sie folge Tabelle,

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 31.01.08 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches Anmeldung Hauptklausur : allerspätestens

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Information & Kommunikation - Zusammenfassung

Information & Kommunikation - Zusammenfassung Information & Kommunikation - Zusammenfassung Patrick Pletscher 29 September 2004 Grundlagen der Informationstheorie Entropie als Mass für Unsicherheit Definition der Entropie Die Entropie einer diskreten

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen

Willkommen zur Vorlesung. Algorithmen und Datenstrukturen Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:

Mehr

Erzeugendensystem und Basis

Erzeugendensystem und Basis Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

P (x i ) log 2 = P (x. i ) i=1. I(x i ) 2 = log 1. bit H max (X) = log 2 MX = log 2 2 = 1. Symbol folgt für die Redundanz. 0.9 = 0.

P (x i ) log 2 = P (x. i ) i=1. I(x i ) 2 = log 1. bit H max (X) = log 2 MX = log 2 2 = 1. Symbol folgt für die Redundanz. 0.9 = 0. 7. Diskretes Kanalmodell I 7. a Aussagen über das digitale Übertragungsverfahren Bis auf die bereitzustellende Übertragungsrate [vgl. c)] sind keine Aussagen über das digitale Übertragungsverfahren möglich.

Mehr

Strings. Stringsuche, Boyer-Moore, Textkompression, Huffman Codes.

Strings. Stringsuche, Boyer-Moore, Textkompression, Huffman Codes. Strings Stringsuche, Boyer-Moore, Textkompression, Huffman Codes. Suche Substring Häufiges Problem Relevante Beispiele: Suche ein Schlagwort in einem Buch Alphabet: A-Za-z0-9 Suche Virussignatur auf der

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

2. Vorlesung: Boolesche Algebra

2. Vorlesung: Boolesche Algebra 2. Vorlesung: Boolesche Algebra Wiederholung Codierung, Decodierung Boolesche Algebra UND-, ODER-Verknüpfung, Negation Boolesche Postulate Boolesche Gesetze 1 Wiederholung 2 Bits und Bitfolgen Bit: Maßeinheit

Mehr

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit Übung 1 Achtung: ld(x) = Logarithmus dualis: ld(x) = log(x)/log(2) = ln(x)/ln(2)! Aufgabe 1 Frage: Wie gross ist der Informationsgehalt einer zufällig aus einem Stapel von 52 Bridgekarten gezogenen Spielkarte?

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/3, Folie 1 2010 Prof. Steffen Lange - HDa/FbI

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013

Mehr

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015

Vorkurs für. Studierende in Mathematik und Physik. Einführung in Kryptographie Kurzskript 2015 Vorkurs für Studierende in Mathematik und Physik Einführung in Kryptographie Kurzskript 2015 Felix Fontein Institut für Mathematik Universität Zürich Winterthurerstrasse 190 8057 Zürich 11. September 2015

Mehr

Übungen zur Vorlesung Diskrete Strukturen

Übungen zur Vorlesung Diskrete Strukturen Abt. Reine Mathematik SS 06 Blatt 1 Di., 02.05.2006 um 14:15 Uhr vor Beginn der Vorlesung 1. Beweisen Sie: Ist n N mit n > 4 keine Primzahl, so gilt (n 1)! 0 mod n. 2. Berechnen Sie den größten gemeinsamen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 10.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr