Formelsammlung. Wichtige Gleichungen der PC II. σ = spezifischer Widerstand. = κ = spezifische Leitfähigkeit. Λ = molare Leitfähigkeit

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung. Wichtige Gleichungen der PC II. σ = spezifischer Widerstand. = κ = spezifische Leitfähigkeit. Λ = molare Leitfähigkeit"

Transkript

1 ektocheme Fomesammung Wchtge Gechungen de PC R σ σ spezfsche Wdestand L κ κ spezfsche Letfähgket σ κ c moae Letfähgket υ υ υ z u F υ z u F. Kohausch sches Gesetz k c. Kohausch sches Gesetz υ υ Genzetfähgket z u F zuf u Bewegchket K Oswad sches edünnungsgesetz [ H ] [H] [H] α zefaen α Dssozatonsgad Q n z F Faaday Gesetz N z e v bzw. N z e v κ (N z u N z u ) e Ι Q t R U Ohm sches Gesetz W Q φ φ QU Ut eektsche bet e G zf H T S G zf G RTn K R T n { c } z F Π ν { c } { c } Nenst sche Gechung R T n zf Konzentatonszee

2 c a p c a p eatve Konzentaton/ktvtät/Pataduck RT [ ] φ n zf [ ] Membanpotenta QQ F 4πε Couomb sches Gesetz { c }, { a }, { p } d QQ πε Q Q W Fd 4πε 4 F(akuum) F(Matee) ε pot φ eektsches Potenta Q Debye Hücke a fx ktvtät f ktvtätskoeffzent ν f ν f f ν f ± mttee ktvtätskoeffzent ( m ν ) m ν ν ν ν ν ± m ν ± ν ν ν ν ν s ± ± ± s ± m ± mttee onenkonzentaton a a m f ν ν m f a ± mttee ktvtät z c onenstäke Quantenmechank Schwaze Stahe Q dρ dρ ρ, ρ ν, ρλ ρ Stahungsdchte dν dλ ρ υ spektae Stahungsdchte dz 8πν ρ( ν) ε kt c 3 Rayegh Jeans Gesetz 8πν hν ρ( ν) dν dν Panck Gesetz c 3 hν exp - kt π Z 8 3 λ 3 c υλ Φ dq nege dt Zet Φ Stahungsestung [ W ] dφ W M M spezfsche usstahung d m sehe Lambet Bee ntenstät be gebündeten Stahen 4 4 M cbt σ T Stefan Botzmann Gesetz 4

3 λmaxt const Wensches eschebungsgesetz nλ d sn θ Bagg-Gechung, n Beugungsodnung e n h λ ( cos θ ) Compton-ffekt m c Lchteektsche ffekt hν mv W W ustttsabet hν eu max W Massendefekt m Mdn mc Boh sches tommode m v n ħ Boh sche Bedngung, Dehmpusquanteung e F Zentpetakaft/Couomb-Kaft πε c 4 m v Fz Zentfugakaft nħ 4πε me Radus agemen a 4πεħ me 4 e m ges R 4πε n n ħ R( ) n n hc hυ λ Boh sche Radus (n) nege, R 3.6 e υ ɶ λ hc h λ De Boge Weenänge p Lambet Bee d α c dx, exp α c, ε c T Tansmsson g α ε c, ε,33 bsobanz, ε N h υn t ntenstät

4 hυ N hυ N fü Lase ε h ν, c νλ hν M M bsopton hν Wäme Fuoeszenz Photocheme negetansfe Quantenmechank agemen Ĥψ ψ Schödnge Gechung ħ Ĥ m ħ d d d ( ) m dx dy dz W ψ ψdτ Potentee nege Lapace Opeato Nomeungsbedngung dw ψ ψ 4π d adae ufenthatswahschenchketsdchte ψψdτ Othogonatätsbedngung ψ ˆ ψdτ watungswet agemen ψ Hˆ ψdτ ˆp x watungswet nege ħ d d ħ dx dx Techen m Kasten ndmensona: nπ ψ Dsn ( α x ) sn x Weenfunkton h n nege 8m Dedmensona: ψ ψ (x) ψ (y) ψ (z) 3 x y z mpusopeato (endmensona) Hamonsche Oszato F ρ fρ f Kaftkonstante de Fede µ m m m m ρ usenkung eduzete Masse f ω πν µ Kesfequenz

5 v hν v Schwngungsquantenzah v ± g ν Fequenz de Schwngung v Stae Rotato m m Schwepunktsatz Täghetsmoment m d m m m be -atomgem Moekü, und entspechen den bständen zum Schwepunkt kn ω knetsche nege (kasssch) ħ J ( J ) J Rotatonsquantenzah J ± uswahege g J ntatung J Wassestoffatom dτ dxdydz d sn ϑdϑdϕ oumeneement n Kugekoodnaten R n mt n,, 3,... (Hauptquantenzah),,, 3,... n Nebenquantenzah (Dehmpusquantenzah) ħ Betag des Bahndehmpuses m,,...,,... magnetsche Quantenzah z m ħ z-komponente des Bahndehmpuses s Spnquantenzah ħ Betag des gendehmpuses (Spn) s s( s ) ms ± magnetsche Spnquantenzah s z mħ s z-komponente des gendehmpuses j s Gesamtdehmpus j s, s,... s Gesamtdehmpusquantenzah j j j ħ Betag des Gesamtdehmpuses Meheektonensysteme L S s J L S J L S,L S,... L S Gesamtbahndehmpus Gesamtegendehmpus Gesamtdehmpus

6 S L J MS Temsymbo Mutpztät LCO-Methode N ψ cψ MO ψ H ˆ ψ dτ H ψ Hˆ ψ dτ H Lneakombnaton von N tomobtaen B B BB ˆ ˆ ψhψb dτ HB ψbhψ dτ HB ψψ d d S B τ ψbψ τ Übeappungsntega α β gebns fü homonukeaes Moekü ( H ) S α β S e C H 4πε S Unschäfeeaton p x ħ B e C H 4πε S B α H HBB, β HB HB C nege duch nzehung des Kens auf das an Ken okasete ekton Zusätzche Betag zu eektostatschen Wechsewkung, wenn das ekton zwschen den beden Funktonen ψ undψ B austauschen kann

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

9. Der starre Körper; Rotation I

9. Der starre Körper; Rotation I Mechank De stae Köpe; Rotaton I 9. De stae Köpe; Rotaton I 9.. Enletung bshe: (Systeme on) Punktmassen jetzt: Betachtung ausgedehnte Köpe, übe de de Masse glechmäßg etelt st (kene Atome). Köpe soll sch

Mehr

0 + #! % ( ) % )1, !,

0 + #! % ( ) % )1, !, ! #! % ( ) % +!,../ 0 + #! % ( ) % )1,233 3 4!, 5 2 6 7 2 6 ( (% 6 2 58.9../ : 2../ ! # % & # ( ) + +, % ( ( + +., / (! & 0 + 1 2 3 4! 5! 6! ( 7 ) + 8 9! + : +, 5 & ; + 9 0 < 5 3 & 9 ; + 9 0 < 5 3 %!

Mehr

Kern- und Teilchenphysik. Schalenmodell γ-zerfall

Kern- und Teilchenphysik. Schalenmodell γ-zerfall Ken- und Techenphysk Schaenmode γ-zefa Schaenmode Beschebung de Nukeonen m Ken : Schödngegechung mt Hamton - Opeato H V V H [ T V )] V ) V ) kann n este Näheung venachässgt wedenv H V m < snd Potentae

Mehr

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A

κ = spezifischer Leitwert Q I = bzw. t dq I dt 2. Widerstand Die Einheit des Widerstandes R ist das Ohm [ Ω ]=[V/A]. l A Fomelsammlung EM. Allgemenes De Enhet de Stomstäke st das Ampee [A]. De Enhet de adung Q st das oulomb [][As]. Q bzw. t dq dt De Enhet de Spannung st das Volt [V]. W st das Enegegefälle zwschen zwe Punkten

Mehr

Decoupling in der Sozialpolitik

Decoupling in der Sozialpolitik Research Programme SocialWorld World Society, Global Social Policy and New Welfare States University of Bielefeld, Germany Institute for World Society Studies Julia Hansmeyer Decoupling in der Sozialpolitik

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

dt transportiert. x Beim Entzug dieser Wärmemenge wird die Masse d m = neu gebildet. A dm = ρ dv =ρ A dx : T x bzw.

dt transportiert. x Beim Entzug dieser Wärmemenge wird die Masse d m = neu gebildet. A dm = ρ dv =ρ A dx : T x bzw. Feiwiige Aufgaben zu Voesung WS 00/00, Batt 4 40) Auf einem keinen Teich befindet sich eine 1 cm dicke Eisschicht. Die Luft daübe hat die Tempeatu - 10 C. Wie ange dauet es, bis die Eisschicht auf eine

Mehr

Baudynamik (Master) SS 2014

Baudynamik (Master) SS 2014 Baudynamk Master SS 4 4. Schwngungen kontnuercher Systeme 4. Dfferentagechungen 4. Free Schwngungen kontnuercher Systeme 4.. Free Stabschwngungen 4.. Free Bakenschwngungen 4..3 Free Pattenschwngungen 4.3

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #15 am 01.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Infoblatt für den Kometen. 103P/Hartley

Infoblatt für den Kometen. 103P/Hartley Infoblatt für den Kometen /Hartley Der mit einer Umlaufzeit von 6,46 Jahren kurzperiodische Komet /Hartley wurde am 15. März 1986 von Malcom Hartley am Siding-Spring-bservatorium in Australien entdeckt.

Mehr

Kernphysik I. Kernmodelle: Schalenmodell

Kernphysik I. Kernmodelle: Schalenmodell Kenphysk I Kenmodee: Schaenmode Schaenmode Töpfchenmode und Femgasmode snd phänemonoogsche Modee mt beschänktem Anwendungsbeech. Se weden an de Expemente angepasst z.b. de Konstanten fü de Teme n de Massenfome

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Formelsammlung Felder und Wellen WS11/12

Formelsammlung Felder und Wellen WS11/12 . Otsvektoen Fosalung Fde und Wlen WS/ Katesische Koodinaten Zlindekoodinaten Kugkoodinaten = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = + actan = actan = actan = =. Koponenten

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

% & ()) + % + + +,+ + % / 2(+(3+ ()) 0 )4+(5+ ())

% & ()) + % + + +,+ + % / 2(+(3+ ()) 0 )4+(5+ ()) ! # % & ())!.! + % + + +,+ + % + + + + / 0 1 2(+(3+ ()) 0 )4+(5+ ()) ! # # % #! # %& # () # +,,. /. 0, +, %& 1 +! 2 34, # 5 5 # + 6 # + +, 3 # + 3, 7, # 1! 3 6! # 8 5 9 : # 3, ;, 7, 7, 0

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen:

Zur Erinnerung. Stichworte aus der 9. Vorlesung: Einteilung von Stößen: Zu nneung tchwote aus de 9. Volesung: ntelung von tößen: kn, kn kn,, kn, Q Q = 0 elastsche töße de umme de nneen nege de Telchen (chwngung und Rotaton) blebt unveändet, Q > 0 unelastsche töße knetsche

Mehr

Infoblatt für den Kometen C/2011 L4 PANSTARRS

Infoblatt für den Kometen C/2011 L4 PANSTARRS Infoblatt für den Kometen C/2011 L4 PASTARRS Der Komet C/2011 L4 PASTARRS wurde in der acht vom 5. auf den 6. Juni 2011 mit Hilfe des 1,8 Meter großen Panoramic Survey Telescope And Rapid Response System

Mehr

Formelsammlung Felder und Wellen WS15/16

Formelsammlung Felder und Wellen WS15/16 . Otsvektoen = cos = sincos = sin = sinsin = = cos + = = sin actan = = = = cos + + = + = actan actan Fosalung Fde und Wlen WS5/6 Katesische Koodinaten Zlindekoodinaten Kugkoodinaten + = actan = = =. Koponenten

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 6 Übungen zur Vorlesung Physkalsche Chee B. Sc. ösungsvorschlag zu Blatt 6 Prof. Dr. Norbert Happ Jens Träger Wnterseester 7/8.. 7 Aufgabe De Wellenfunkton des haronschen Oszllators hat de For Ψ v N v H

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

=!'04 #>4 )-:!- / )) $!# & $ % # %)6 ) + # 6 0 %% )90 % 1% $ 9116 69)" %" :"6. 1-0 &6 -% ' 0' )%1 0(,"'% #6 0 )90 1-11 ) 9 #,0. 1 #% 0 9 & %) ) '' #' ) 0 # %6 ;+'' 0 6%((&0 6?9 ;+'' 0 9)&6? #' 1 0 +& $

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen Faraday-Rotation I. Rückmann, H. Bieker, P. Kruse Universität Bremen Bad Honnef 2014 I. Rückmann, H. Bieker, P. Kruse (Uni-Bremen) Faraday-Rotation Bad Honnef 2014 1 / 18 Faraday-Rotation magnetfeldinduzierte

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX

Einführung Mathematische Ausdrücke Symbole Array Formatierungen Hilfen. Fachschaft Elektro- und Informationstechnik. Formelsatz in L A TEX Fachschaft Elektro- und Informationstechnik Formelsatz in L A TEX L A TEX Christian Krämer 15. November 2011 Inhalt 1 Einführung Mathe-Umgebungen Einfache Terme 2 Mathematische Ausdrücke Mathematische

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik er Koninua 60 ee Körper 60 lüigkeien un Gae um wa geh e? Bechreibung von Bewegungen (phy. Verhalen e nich-arren Körper (elaich, plaich Koninuum Hyro- un Aeroynamik Komparimenale Moellierung

Mehr

Formelsammlung: Physik II für Naturwissenschaftler

Formelsammlung: Physik II für Naturwissenschaftler Formelsammlung: Physi II für Naturwissenschaftler 4 Eletrizität und Magnetismus 4.1 Ladung und Ladungserhaltung Ladung q = n(±e) mit Elementarladung 4.2 Coulomb-Gesetz e = 1, 6 10 19 C = 1, 6 10 19 As

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1 UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Wärmeübertragung Formelsammlung

Wärmeübertragung Formelsammlung ämeübegung omemmung Zummenfung on Dd Henze (dd.henze@myum.de) Veon. om 8..8 (-Veöffenchung..8) Gundgen.... Gundenheen.... Koeffzenen und Kennzhen.... Rndbedngungen.... ämeduchgng..... ämeduchgng..... Péce-Gechungen

Mehr

Atomvorstellung: Antike bis 19. Jh.

Atomvorstellung: Antike bis 19. Jh. GoBack Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell 1 / 24 Atomvorstellung der Griechen Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell Die

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 27 Aufgabe Im freien Raum wird das elektrische Feld E E x a ) 2 ey gemessen. Wie groß ist die elektrische Ladung in einem würfelförmigen

Mehr

Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus)

Start: 12. Oktober 2015 Kontakt: Dr Heinz Haberzettl ( ) Büro : C Schöfferstrasse 3 (Hochhaus) Informationen zur Vorlesung Vorlesungen Montag: 3.Block - 4. Block ab 1:45 Uhr 3 SWS Hörsaal C10 0.03 im Hochhaus der h-da Übungen ( alle 14 Tage ) Montag: 5.Block 1 SWS Hörsaal C10 08.01 und 08.0 (im

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen Richard Mohr Mathematische Formeln für das Studium an Fachhochschulen

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

! # % & & ( )! & & + &, % &. && & /, 0 % 0 + & 1, / 2 3 &40

! # % & & ( )! & & + &, % &. && & /, 0 % 0 + & 1, / 2 3 &40 ! # % & & ( )! & & + &, % &. && & / %, 0 % 0 + & 1, / 2 3 &40 ! # %! &! # % &! % ( ) & &! ( ) +, % +, +, +.. % / + 00 1 ), &! 2& ).& 2 +, + % 3 # +, + + # 4 0 5 ( % ). &2 4 6 7 ) ( % % 2 & 7 % 0,. ) %

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Lateinische Zeichen in Unicode und BALVI ip

Lateinische Zeichen in Unicode und BALVI ip Lateinische Zeichen in Unicode und BALVI ip Auslöser: Initiative der KoSit bzw. der IT-Planungsrats: Mehrere Bundesländer haben vor kurzem eine Anfrage der Ministerien an uns weitergeleitet, wie weit BALVI

Mehr

Formelsammlung für Bauteile ET I und II

Formelsammlung für Bauteile ET I und II D:\Eigene Dateien\tudium\tudium Eektotechnik\abo auteie\fomesammung f auteie.doc Estet von Oive od Fomesammung f auteie E und tomeitung in Festköpen (3: Ve be E ϑ χ e b e n e J J χ E b e : Eektonenbewegichkeit

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Formelsammlung Physik 4 HSR

Formelsammlung Physik 4 HSR Forelalung Phyik 4 HSR Einheiten Ladung Coulob [Q] C (père-sekunden) V E-Feld [ E] W Spannung [ U ] Volt (V) Widertand [ R] V Oh ( Ω ) C Kapazität [ C] F V V Farad dq El. Stro [ I] Q père dt rbeit [ P]

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(3) Grundlagen II. Vorlesung CV-Integration S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (3) Grundlagen II Vorlesung CV-Integration S. Müller KOBLENZ LANDAU Wiederholung I Strahlungsphysik (Radiometrie) Lichttechnik (Photometrie) V(λ)-Kurve.0 0.8 0.6 0.4 0. 0 400 500 600 700 800λ[nm] violett

Mehr

Der photoelektrische Effekt

Der photoelektrische Effekt Der photoelektrische Effekt h ν I ph Abnahme der negativen Ladung auf einer Platte bei Beleuchtung mit UV-Strahlung. Lichtinduzierte Elektronenemission (Lenard, 1902). Erklärung durch A. Einstein (1905)

Mehr

Statistik für Punktprozesse. Seminar Stochastische Geometrie und ihre Anwendungen WS 2009/2010

Statistik für Punktprozesse. Seminar Stochastische Geometrie und ihre Anwendungen WS 2009/2010 Statistik für Punktprozesse Seminar Stochastische Geometrie und ihre Anwendungen WS 009/00 Inhalt I. Fragestellung / Problematik II. Ansätze für a) die Schätzung der Intensität b) ein Testverfahren auf

Mehr

ESR vs. NMR NMR ESR. ESR - Messung. Kernmagneton. 2cm P. m p 1800 µ e = 1800 m p. m e. (Bohr Magneton)

ESR vs. NMR NMR ESR. ESR - Messung. Kernmagneton. 2cm P. m p 1800 µ e = 1800 m p. m e. (Bohr Magneton) M-Spektroskopie M ES vs. M M-Spektren von paramagnetischen Verbindungen? M µ e ist 0 3 mal grösser als das Kernmoment µ hν 0 = γ hb 0 µ = e h cm P Kernmagneton longitudinale elaxation wird zu stark (T

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

Formelsammlung - Stand: Größe SI-Einheit Abkürzung

Formelsammlung - Stand: Größe SI-Einheit Abkürzung Formelsammlung - Stand: 20.04.2010 1 1 Messung 1.1 physikalische Größen und Einheiten Basisgrößen mit SI-Einheiten Größe SI-Einheit Abkürzung Länge Meter m Masse Kilogramm kg Zeit Sekunden s elektrische

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Bezugssysteme v 0 = const x (t = 0) = x(t = 0) Bewegung. 10. November 2013 Carsten Deeg. Physik 1/5

Bezugssysteme v 0 = const x (t = 0) = x(t = 0) Bewegung. 10. November 2013 Carsten Deeg. Physik 1/5 Physik /5 Bezugssysteme v = const x (t = = x(t = Galilei-Transormation t = t x = x + v t v = v + v m = m ν = ν ( + v c ν = ν ( v c Lorentz-Transormation t = γ ( t + v x Bewegung x = γ (x + v t v = v+v

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Übungen zur Theoretischen Physik F SS 12

Übungen zur Theoretischen Physik F SS 12 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS Prof. Dr. Jörg Schmalian Blatt 8: Lösungen Dr. Igor Gornyi Besprechung 5.6.. Landauscher

Mehr

Einführung in die Quantenmechanik

Einführung in die Quantenmechanik Einführung in die Quantenmechanik Vorlesungsskriptum nach der Vorlesung von Prof. Dr. Christof Gattringer Wintersemester 8/9 erstellt von Stefan Scherz Inhaltsverzeichnis Inhaltsverzeichnis i Die grundlegenden

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell

Das ABC der Physik. a Beschleunigung Größe lat. accelerare = beschleunigen lat. celer = schnell Das ABC der Physik Buchstabe Bedeutung Art Herkunft A Ampere SI-Einheit André-Marie Ampère (F, 1775 1836). Die Einheit Ampere wird ohne Akzent geschrieben. A Flächeninhalt Größe lat. area = Grundfläche

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Ruhende Flüssigkeiten (Hydrostatik)

Ruhende Flüssigkeiten (Hydrostatik) Ruhende lüssigkeiten (Hydostatik) lüssigkeitsshihten sind fei gegeneinande veshiebba. Keine Rükstellkäfte bei Sheung, Tosion; Reibungskäfte möglih. Nu Volumenändeung liefet Rükstellkaft. Unte Duk p efolgt

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Optische Methoden in der Messtechnik. welcome back!

Optische Methoden in der Messtechnik. welcome back! Optische Methoden in der Messtechnik Gert Holler (OM_2 OM_7), Axel Pinz (OM_1) welcome back! 1 Übersicht Allgemeine Übersicht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische)

Mehr

Männleinlaufen Teil 8: Supraleitung & Josephson-Effekte. Physikalisches Institut III Universität Erlangen-Nürnberg

Männleinlaufen Teil 8: Supraleitung & Josephson-Effekte. Physikalisches Institut III Universität Erlangen-Nürnberg Männleinlaufen Teil 8: Supraleitung & Josephson-Effekte ACADEMIAE SIGILLVM FRIDERICO ALEXANDRINAE ACADEMIAE SIGILLVM FRIDERICO ALEXANDRINAE Hoch-T c - Supraleitung HTSL Nichtlineare Dynamik Qubits Bio-Sensoren

Mehr

Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen

Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen Fakultät für Physik Institut für Experimentelle Kernphysik Musterlösung zur 2. Klausur zur Vorlesung Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen Prof. Dr. U.

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0 Thermodynamik: 1. Hauptsatz Energieerhaltung: Arbeit plus Wärmeentwicklung gleich Änderung der inneren Energie E = w + q kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff)

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Insttut für Technologe Insttut für Theore der Kondenserten Matere Klasssche Theoretsche Physk II Theore B Sommersemester 016 Prof. Dr. Alexander Mrln Musterlösung: Blatt 7. PD Dr. Igor Gorny,

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

KAPITEL 3: MEHRELEKTRONENSYSTEME

KAPITEL 3: MEHRELEKTRONENSYSTEME 3. pn 3. Identche Techen Pau Prnp 3.3 Heu 3.4 ater-deternanten 3.5 Paardchten KAPITEL 3: MEHRELEKTRONENYTEME Lteratur:.B: Atkn Fredan Moecuar Quantu Mechanc Oxford 3. pn tern-gerach Experent: trah von

Mehr

Atmosphärenchemie WS 2005/06 Dr. R. Tuckermann. Chemische Reaktionen

Atmosphärenchemie WS 2005/06 Dr. R. Tuckermann. Chemische Reaktionen Chemische Reaktionen Chemische Reaktionen spielen eine wichtige Rolle in der Atmosphäre. So führt z.b. die Photolyse von Sauerstoff und der darauffolgende Reaktionszyklus (Chapman-Zyklus) zur Bildung einer

Mehr

Ljapunov Exponenten. Reiner Lauterbach

Ljapunov Exponenten. Reiner Lauterbach Ljapunov Exponenten Reiner Lauterbach 28. Februar 2003 2 Zusammenfassung n diesem Teil betrachten wir ein wichtiges Thema: sensitive Abhängigkeit. Zunächst hat man ja stetige Abhängigkeit, wie man sie

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes

Einschub: Der Fluss eines Vektorfeldes am Beispiel des Strömungsfeldes Enschub: De Fluss enes Vektofeldes am Bespel des Stömungsfeldes Vektofeld: Jedem Punkt m Raum ode n enem begenzten Gebet des Raumes wd en Vekto zugeodnet. Bespele: Gatatonsfeld t elektsches Feld Magnetfeld

Mehr

Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte

Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Vorlesung: Stellarphysik II Was wird behandelt? Schwarzkörperstrahlung Raumwinkel und Intensität Eektivtemperatur Photometrische

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Magnetismus EM 63. fh-pw

Magnetismus EM 63. fh-pw Magnetismus Elektische Fluß 64 Elektische Fluß, Gauss sches Gesetz 65 Magnetische Fluß 66 eispiel: magnetische Fluß 67 Veschiebungsstom 68 Magnetisches Moment bewegte Ladungen 69 Magnetisches Moment von

Mehr

ein. Bezogen auf das Raumwinkelelement zwischen zwei Kegeln mit den Scheitelwinkeln bezogen, d.h. unter Verwendung von d Ω = 2π

ein. Bezogen auf das Raumwinkelelement zwischen zwei Kegeln mit den Scheitelwinkeln bezogen, d.h. unter Verwendung von d Ω = 2π dn d σ : gb de nzahl de Telchen an, de o Zeenhe und o Flächenenhe n gemessen weden ([ dσ ] m, gebäuchlche Enhe: ban 00 (m) 0-8 m ). d σ : dn n πρdρ πρ( dρ ρ( dρ snχ W ühen den Raumwnel d Ω : π sn χ 3 {

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

6.3.1 Allgemeiner Bayes-Filter

6.3.1 Allgemeiner Bayes-Filter 6.3 Baes Fler 6.3. Allgemener Baes-Fler Sa von Baes ' ' ' η Sa über de oale Wahrschenlchke Besel oen oen oen Beobachung lecher u ermeln Besel oen.6 oen. 3 oen.5 oen. 5 oen oen oen oen oen oen oen.6.5 oen.6.5.3.5

Mehr

Carbenkomplexe. Vortrag von Marcel Lang und Malin Reller. Institut für Anorganische Chemie, Fakulät Chemie- und Biowissenschaften

Carbenkomplexe. Vortrag von Marcel Lang und Malin Reller.  Institut für Anorganische Chemie, Fakulät Chemie- und Biowissenschaften Carbenkomplexe Vortrag von Marcel Lang und Malin Reller Institut für Anorganische Chemie, Fakulät Chemie- und Biowissenschaften KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil

Musteraufgaben. für den GET 1+2 Multiple-Choice Teil Musteaufgaben fü den GET + Multiple-Choice Teil Hinweis: Diese Musteaufgaben dienen dazu, sich mit den Multiple-Choice-Fagen de GET+ Klausu vetaut zu machen. Es soll damit die At und Weise de Fagestellung

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr