Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Größe: px
Ab Seite anzeigen:

Download "Irrfahrten. Und ihre Bedeutung in der Finanzmathematik"

Transkript

1 Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn,

2 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der Aktienkurs als stochastischer Prozess

3 Ziele der Finanzmathematik Quantifizierung von Marktrisiken Ermittlung von Korrelationen Berechnung und Optimierung von Portfolio-Risiken Ermittlung von fairen Preisen für Derivate...

4 I. Die Finanzmärkte

5 Verschiedene Märkte Rohstoffe (Commodities) Aktien (Stocks, Shares) Devisen (FOREX) Anleihen (Bonds) Optionen (EUREX, CBOE) OTC-Märkte...

6 Was ist überhaupt ein Markt? Wie bilden sich Preise?

7 Definition: Markt Ein Markt ist ein Ort, an dem Angebot und Nachfrage aufeinander treffen. An den modernen Finanzmärkten findet dies an den jeweiligen Börsen oder im außerbörslichen Direktgeschäft (OTC, over the counter) statt.

8 Preise bilden sich im Markt durch das Gesetz von Angebot und Nachfrage. Überwiegt das Angebot (Verkäufer), sinkt der Preis. Überwiegt die Nachfrage (Käufer), steigt der Preis.

9 Finanzinstrumente: Die Aktie

10 Aktien Unternehmensanteile werden an Aktienbörsen gehandelt Manche Aktien schütten Dividenden (Gewinnbeteiligungen am Unternehmenserfolg) an die Aktionäre aus Aktienkurse unterliegen einer Vielzahl von Schwankungen ( Gutes Unternehmen = guter Aktienkurs ist zu kurz gegriffen)

11 Aufgabe Welche Faktoren beeinflussen Aktienkurse? Lassen sich diese jeweiligen Faktoren in thematische Gruppen einteilen? Zeitansatz: 8 Minuten

12 Beispiele für Einflussfaktoren Unternehmensnachrichten, Lage Politische Nachrichten Massenpsychologie Zyklik Institutionelle Anleger (z.b. Hedgefonds), Sektorrotation...

13 Finanzinstrumente: Was versteht man unter Optionen?

14 Optionen Call-Option Recht, zu einem vorher festgelegten Kurs und einem vorher festgelegten Zeitpunkt eine bestimmte Menge eines Basiswerts zu kaufen. Put-Option Recht, zu einem vorher festgelegten Kurs und einem vorher festgelegten Zeitpunkt eine bestimmte Menge eines Basiswerts zu verkaufen.

15 Handelsstrategien Optionen eröffnen zahlreiche, teils sehr komplexe Handelsstrategien Die Finanzmathematik beantwortet hier z.b. Fragen zum fairen Wert von Optionen, aber auch zum Risikoprofil einzelner Strategien Portfolio-Risiko? Hedging?

16 Ein Blick in die Praxis Wie gehen institutionelle Anleger bei der Auswahl von Titeln prinzipiell vor? Welche Probleme ergeben sich hierbei? Wo wird auf die Finanzmathematik zurückgegriffen?

17 Entscheidungskriterien Fundamentale Analyse Technische Analyse Zyklik Sentiment...

18 Die technische Analyse (TA) Grundliegende Frage der TA: Wann sollte eine Aktie gekauft werden? Es gibt viele verschiedene Methoden TA zu betreiben; die wenigsten sind seriös (eine Ausnahme ist z.b. Point & Figure, welches von institutionellen Anlegern gerne benutzt wird)

19 Die TA und Mathematik Die wenigsten Fondsmanager und institutionellen Anleger sind rundum solide Mathematiker Die Finanzmathematik findet daher indirekt Eingang in die TA in Form von computerisierten Systemen Diese bieten eine Vielzahl von Optionen (Marktbetrachtung, Portfolio- und Positionsrisikomanagement, Vergleichsanalysen,...)

20 Beispiel: Sektorenkurve USA

21 Beispiel: P&F Kurs-Chart

22 Mit welchen mathematischen Mitteln lassen sich die erforderlichen Modellierungen überhaupt erst durchführen?

23 Aufgabe Wie könnte man Aktienkurse mathematisch modellieren? Welche grundsätzlichen Annahmen erscheinen euch hierbei sinnvoll? Zeitansatz: 10 Minuten

24 Aktienkurse als stochastische Prozesse Ein stochastischer Prozess oder Zufallsprozess besteht aus zeitlich angeordneten Zufallsgrößen (Zufallsvariablen) { X ; t t 0} Der Einfachheit halber beginnt ein Prozess immer bei t=0

25 Stochastische Prozesse In diskreter Zeit (regelmäßige Abstände, in denen Beobachtungen erhoben werden, t=0,1,2,...) In stetiger Zeit ( t 0 ) Typische Beispiele für diskrete Prozesse: täglich, monatlich, jährlich erhobene Wirtschaftsdaten (Aktienkurse, Arbeitslosenziffern, Absatzzahlen, etc.)

26 Stochastische Prozesse in diskreter Zeit Binomial- und Trinomialprozesse Allgemeine Irrfahrt Geometrische Irrfahrt Binomialmodelle mit zustandsabhängigen Zuwachsen

27 Einfache Irrfahrt X = X + Z t k t 0 t = 1, 2,... k = 1 P( Z k = 1) = p und P( Z k = 1) = 1 p für alle k Zuwachs Z X X kann nur +1 oder 1 sein (pro Schritt) t = t t 1 Annahme: Zuwächse sind unabhängig identisch verteilt und unabhängig vom Anfangswert X 0

28 Binomial- und Trinomialprozesse Einfache Irrfahrten sind für Modellierungen von Aktienkursen natürlich nicht ausreichend Möglichkeiten der Verallgemeinerung von einfachen Irrfahrten: Zulassen von Änderungen außer +1 oder 1 Dadurch auch Null-Änderung möglich (Trinomialprozess)

29 Beispiele einfacher Irrfahrten

30

31

32 Verschiedene Eigenschaften Mögliche Werte, einfache Irrfahrt*: Mögliche Werte, Binomialprozess: Symmetrische einfache Irrfahrt (p=0.5): Ansonsten: E[ X t ] = t (2 p 1) Binomialprozess**: * = Start in 0 **=Start in beliebigem X 0 b t = a t, a t + 1,..., a + t b t = a + n u m d E[ ] = X t 0 denn E[ Z ] = 2 p 1 k für alle t E[ Z k ] = ( u + d) p d E[ X ] = E[ X ] + t {( u + d) p d} Modellierung reicht dennoch noch nicht für Aktienkurse, da u.a. Zuwachs jeweils fest und absolut! t o

33 Allgemeine Irrfahrten Binomial- und Trinomialprozesse sind einfache Fälle allgemeiner Irrfahrten Problem bei den bisherigen Modellen: Annahme, dass Zuwachs in den einzelnen Zeiteinheiten jeweils unabhängig voneinander und immer von der gleichen Größenordnung ist In Realität bei Wirtschaftsdaten (etwa in Zeiten erhöhten Absatzes) nur relativ, jedoch nicht absolut der Fall

34 Geometrische Irrfahrten Man spricht von einer geometrischen Irrfahrt relativen Zuwächse { ; t X t 0}, wenn die R t = X X t t 1 T=1,2,... unabhängig, identisch verteilt sind (Prinzip analog zu Irrfahrten und absoluten Zuwächsen) Ein geometrischer Binomialprozess hat z.b. die Form: X t = R t X t 1 = X 0 t k = 1 R und für u>1, d<1:, k wobei X R,,... 0, 1 R2 P( R k = u) = p P( R k = d) = 1 p unabhängig

35 Probleme Binomialprozesse und allgemeinere Irrfahrten beschreiben den Verlauf von Aktienkursen bestenfalls lokal Sie gehen davon aus, dass die Verteilung der Zuwächse stets dieselbe ist, egal wie sich der Kurs inzwischen entwickelt hat Geometrische Irrfahrten lassen den absoluten Zuwachs vom erreichten Kursniveau abhängen All diese Prozesse sind zu einfach, um den Einfluss des erreichten Kursniveaus auf die zukünftige Entwicklung zu beschreiben

36 Binomialprozesse mit zustandsabhängigen Zuwächsen Bieten Lösung für die genannten Probleme, indem Zuwächse zustandsabhängig (evtl. auch zeitabhängig) werden: X = X 1 + Z t = 1, 2,... t t t P ( Z = u ) = p ( X 1, t ) t t, P ( Z = d ) = 1 p ( X 1, t ) t t Die festen Funktionen p(x,t) ordnen jedem möglichen Wert des Prozesses zur Zeit t und jedem t eine Wahrscheinlichkeit zu. Analog lässt sich der Binomialprozess mit zustandsabhängigen relativen Zuwächsen definieren.

37 FAZIT Binomialprozesse mit zustandsabhängigen Zuwächsen bieten ein erstes, nicht sehr praktisches, theoretisches Modell zur Modellierung von Aktienkursen In der Praxis ist es sehr schwer, die p(x,t) aus Beobachtungen des tatsächlichen Aktienverlaufs zu schätzen Dennoch hat diese Modellierung von Aktienkursen durchaus ihre Berechtigung und tritt auch bei einigen anderen Berechnungsmethoden und verfahren immer wieder auf (z.b. als numerische Lösung bei der Black- Scholes-Gleichung für amerikanische Optionen) (Mehr hierzu in der Ausarbeitung zum Vortrag)

38 Fragen?

39 Vielen Dank für die Aufmerksamkeit! Quellen: siehe Ausarbeitung

Irrfahrten in der Finanzmathematik

Irrfahrten in der Finanzmathematik Irrfahrten in der Finanzmathematik Alexander Hahn Ausarbeitung zum Vortrag im Seminar "Mathematische Modellierung" (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Der Vortrag zum

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

Aufgabe 1: Bewertung von Optionen (48 Punkte)

Aufgabe 1: Bewertung von Optionen (48 Punkte) Aufgabe 1: Bewertung von Optionen (48 Punkte) Am arbitragefreien Kapitalmarkt werden europäische und amerikanische nicht dividendengeschützte Verkaufsoptionen auf eine Aktie mit einer Restlaufzeit von

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

LS Servicebibliothek 4: HANDEL MIT OPTIONSSCHEINEN & TURBOS

LS Servicebibliothek 4: HANDEL MIT OPTIONSSCHEINEN & TURBOS LS Servicebibliothek 4: HANDEL MIT OPTIONSSCHEINEN & TURBOS Optionsscheine dienen der Absicherung vorhandener Positionen oder der Spekulation. 2 argentinische Pesos: Präsident Bartolomé Mitre (1821-1906)

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Quantitative Ideen der technischen Intermarketanalyse

Quantitative Ideen der technischen Intermarketanalyse Quantitative Ideen der technischen Intermarketanalyse Vortrag Preisverleihung der VTAD März 2007, Bad Soden Technische Intermarket Analyse John Murphy (1991) ist der Ausgangspunkt Einteilung der Finanzmärkte

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler Susanne Kruse Formelsammlung Aktien-, Zins- und Währungsderivate Springer Gabler Inhaltsverzeichnis Notations- und Abkürzungsverzeichnis XI Teil I Finanzmathematische Grundlagen 1 Grundprinzipien der Finanzmathematik

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

AKTIEN UND OBLIGATIONEN Finanzanlagen, einfach erklärt

AKTIEN UND OBLIGATIONEN Finanzanlagen, einfach erklärt Aktien und Obligationen im Überblick Was ist eine Aktie? Eine Aktie ist ein Besitzanteil an einem Unternehmen. Wer eine Aktie erwirbt, wird Mitbesitzer (Aktionär) eines Unternehmens (konkret: einer Aktiengesellschaft).

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

Börsengehandelte Finanzderivate

Börsengehandelte Finanzderivate Börsengehandelte Finanzderivate Bestand und Handel*, in in absoluten Zahlen, Zahlen, 1990 weltweit bis 20081990 bis 2008 Bill. US-Dollar 2.200 2.288,0 2.212,8 Handel 2.000 1.800 1.808,1 1.600 1.400 1.408,4

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

Zeit- und Dividendeneinfluss. auf einen amerikanischen Aktien-Call-Optionsschein.

Zeit- und Dividendeneinfluss. auf einen amerikanischen Aktien-Call-Optionsschein. HSBC Zertifikate-Akademie Zeit- und Dividendeneinfluss auf einen amerikanischen Aktien-Call-Optionsschein Liebe Leserinnen und Leser der HSBC Zertifikate-Akademie In den vergangenen Ausgaben wurden verschiedene

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca BIAGINI, München, Daniel ROST, München Money out of nothing? - Prinziien und Grundlagen der Finanzmathematik Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren

Mehr

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading Professionell handeln mit CFDs Instrumente und Strategien für das Trading Grundlagen und Allgemeines zu CFDs Der CFD-Handel im Überblick CFDs (Contracts for Difference) sind mittlerweile aus der Börsenwelt

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 16 Crash Course Optionen: Pricing & Hedging in diskreter Zeit Literatur Kapitel 16 * Uszczapowski: Kapitel 2, 3, 6 * Pliska: Kapitel 1.4 * Lamberton & Lapeyre:

Mehr

Was sind Bezugsrechte und was underpricing sowie ipo? Florian Hinse 23.April 2007

Was sind Bezugsrechte und was underpricing sowie ipo? Florian Hinse 23.April 2007 Was sind Bezugsrechte und was underpricing sowie ipo? 23.April 2007 1 Gliederung 1. Was sind Bezugsrechte? 1.1 Definition 1.2 Begriffe im Zusammenhang mit Bezugsrechten 1.3 Rechnerischer Wert der Bezugsrechte

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Futures und Optionen. Einführung

Futures und Optionen. Einführung Futures und Optionen Einführung Plan Märkte Kassamarkt Terminmarkt Unterscheidung Funktionsweise Die statische Sichtweise Futures und Forwards Verpflichtungen Optionen Rechte und Verpflichtungen Grundpositionen

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

76 10. WEITERE ASPEKTE

76 10. WEITERE ASPEKTE 76 10. WEITERE ASPEKTE 10. Weitere Aspekte 10.1. Aktien mit Dividendenzahlungen Betrachten wir das Black Scholes-Modell. Falls die Aktie nun Dividenden bezahlt, wird der Wert der Aktie um den Wert der

Mehr

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Teilnehmer: Lukas Thum Yu Wang Luciana Plocki Johanna Ridder Felix Tschierschke Thu Hien Nguyen Janin Rekittke Johanna Lindberg Gruppenleiter:

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

DirektAnlageBrief Der Themendienst für Journalisten. Ausgabe 24: Oktober 2012. Inhaltsverzeichnis

DirektAnlageBrief Der Themendienst für Journalisten. Ausgabe 24: Oktober 2012. Inhaltsverzeichnis DirektAnlageBrief Der Themendienst für Journalisten Ausgabe 24: Oktober 2012 Inhaltsverzeichnis 1. In aller Kürze: Summary der Inhalte 2. Zahlen und Fakten: Fremdwährungskonten immer beliebter 3. Aktuell/Tipps:

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

Trader-Ausbildung. Teil 1 Einleitender Teil

Trader-Ausbildung. Teil 1 Einleitender Teil Trader-Ausbildung Teil 1 Einleitender Teil Teil 1 - Einleitender Teil - Was ist "die Börse" (und wozu brauche ich das)? - Was kann ich an der Börse handeln? (Aktien, Zertifikate, Optionsscheine, CFDs)

Mehr

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten Anlagestrategien mit Hebelprodukten Hebelprodukte sind Derivate, die wie der Name schon beinhaltet gehebelt, also überproportional auf Veränderungen des zugrunde liegenden Wertes reagieren. Mit Hebelprodukten

Mehr

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds)

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds) Abteilung für Finanzmathematik - Bewertung verschiedenster Typen von Derivativen - Analyse Alternativer Investmentstrategien (Hedge Fonds) - Kredit-Risiko-Management und Kredit-Derivate - Monte Carlo-

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Bevor Sie sich zu einer Anlage in Investmentfonds entscheiden, sollten Sie sich unbedingt vollständig der damit verbundenen Risiken bewusst sein.

Bevor Sie sich zu einer Anlage in Investmentfonds entscheiden, sollten Sie sich unbedingt vollständig der damit verbundenen Risiken bewusst sein. Risikohinweise Bevor Sie sich zu einer Anlage in Investmentfonds entscheiden, sollten Sie sich unbedingt vollständig der damit verbundenen Risiken bewusst sein. Die zukünftigen Werte und Erträge von Investmentfondsanteile

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Ausführungsgrundsätze der LBBW Asset Management Investmentgesellschaft mbh Stuttgart

Ausführungsgrundsätze der LBBW Asset Management Investmentgesellschaft mbh Stuttgart der LBBW Asset Management Investmentgesellschaft mbh Stuttgart Inhaltsverzeichnis 2 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1 Allgemein... 3 2 Geltungsbereich und Einschränkungen... 4 3 Grundsätze zur

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Die beste Investment-Erfahrung Ihres Lebens: Optionen

Die beste Investment-Erfahrung Ihres Lebens: Optionen Die beste Investment-Erfahrung Ihres Lebens: Optionen Rainer Heißmann, Frankfurt, 27.03.2015 Experten. Sicherheit. Kompetenz. Die beste Investment-Erfahrung Ihres Lebens Optionen (nicht Optionsscheine)

Mehr

Aufgabensammlung. Bank II

Aufgabensammlung. Bank II BankII Seite 1 Aufgabensammlung Bank II Inhaltsverzeichnis Optionspreistheorie...2 Unternehmensbewertung...45 Verständnisfragen...62 BankII Seite 2 Klausur WS 1992/93 Aufgabe 1 Optionspreistheorie Teil

Mehr

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Michaela Baumann Universität Bayreuth Dornbirn, 12. März 2015 Motivation Ein Kunde möchte bei einer Bank

Mehr

3. Suchen Sie von 5 bekannten Unternehmen die Wertpapier-Kennnummer der Aktie am Börsenplatz Frankfurt/Main heraus

3. Suchen Sie von 5 bekannten Unternehmen die Wertpapier-Kennnummer der Aktie am Börsenplatz Frankfurt/Main heraus AB2 Grundlegende Fachbegriffe - Themengebiet: Grundlegende Fachbegriffe (Text vorlesen oder aktuelles Chart mit dem DAX auflegen.) In den Medien werden tagtäglich neueste Infos zum DAX und zur Börse verbreitet.

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Option Slide 1 Klaus Pötzelberger Optionspreis

Mehr

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading. FinanzBuch Verlag

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading. FinanzBuch Verlag Professionell handeln mit CFDs Instrumente und Strategien für das Trading FinanzBuch Verlag Inhaltsverzeichnis Vorwort... 9 Grundlagen und Allgemeines zu CFDs... 13 Der CFD-Handel im Überblick... 13 Historie

Mehr

Facebook-Analyse von. Facebook: Eine Aktie für jedermann? Die Potential-Analyse. www.aktien-strategie24.de. tom - Fotolia.com

Facebook-Analyse von. Facebook: Eine Aktie für jedermann? Die Potential-Analyse. www.aktien-strategie24.de. tom - Fotolia.com Facebook-Analyse von Facebook: Eine Aktie für jedermann? Die Potential-Analyse tom - Fotolia.com www.aktien-strategie24.de 1 Inhaltsverzeichnis 1. Allgemein... 3 2. Kursentwicklung... 5 3. Fundamental...

Mehr

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 Einfache Derivate von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 14 Jänner 2009 1 Inhaltsverzeichnis 1 Einleitung 2 2 Begriffsbestimmung

Mehr

Zur Bewertung von Derivaten Eine Einführung

Zur Bewertung von Derivaten Eine Einführung Zur Bewertung von Derivaten Eine Einführung Dr. Volkert Paulsen 17. September 2009 Im wesentlichen unternimmt man auf Finanzmärkten eine Zweiteilung in Basis- und derivative Finanzgüter. Ein Anteil an

Mehr

Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? Prinziien Grlagen der Finanzmathematik Francesca Biagini Daniel Rost Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren einen gewaltigen Aufschwung

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Walter Sanddorf-Köhle Foliensatz Nr. 8 1 / 40 Erweiterungen des Binomialmodells Dividendenzahlungen Sei S der Wert einer Aktie

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...)

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...) Seydel: Skript Numerische Finanzmathematik, Prolog (Version 2011) 1 ¼º ÈÖÓÐÓ µ Ö Ú Ø A. Übersicht Wesentliche Anlagemärkte sind Aktien Anleihen Rohstoffe equities, stocks bonds commodities (Waren/handelbare

Mehr

Admiral Academy WEBINAR TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile.

Admiral Academy WEBINAR TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile. Admiral Academy TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile. Aktienhandel: Aktien sind die Basis für (fast) alle Wertpapiere:

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

1. Auflage Juni 2015

1. Auflage Juni 2015 1. Auflage Juni 2015 Copyright 2015 by Ebozon Verlag ein Unternehmen der CONDURIS UG (haftungsbeschränkt) www.ebozon-verlag.com Alle Rechte vorbehalten. Covergestaltung: Ebozon Verlag Coverfoto: Pixabay.com

Mehr

Analytische und numerische Lösung der Black-Scholes-Gleichung für europäische und amerikanische Basket-Optionen

Analytische und numerische Lösung der Black-Scholes-Gleichung für europäische und amerikanische Basket-Optionen Technische Universität Berlin Fakultät für Mathematik und Naturwissenschaften Analytische und numerische Lösung der Black-Scholes-Gleichung für europäische und amerikanische Basket-Optionen Diplomarbeit

Mehr

Die von uns verfolgte Handelsstrategie beinhaltet im Wesentlichen drei Punkte.

Die von uns verfolgte Handelsstrategie beinhaltet im Wesentlichen drei Punkte. An den heutigen Finanzmärkten langfristige Trends zu erkennen wird zunehmend schwieriger. Der Zeithorizont von Analysen über die kommenden Entwicklungen wird immer kürzer und meist werden lediglich grosse

Mehr

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele

Martingale. Kapitel 6. 6.1 Martingale in diskreter Zeit. 6.1.1 Definition und Beispiele Kapitel 6 Martingale In der Statistik modellieren Martingale z.b. Glücksspiele oder Handelsstrategien in Finanzmärkten und sind ein grundlegendes Hilfsmittel für die statistische Inferenz stochastischer

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Die zufällige Irrfahrt einer Aktie

Die zufällige Irrfahrt einer Aktie Die zufällige Irrfahrt einer Aktie Teilnehmer: Daniela Garske (Herder-Oberschule) Joseph Jung (Pamina-Schulzentrum Herxheim) Martin Laudien (Herder-Oberschule) Kaina Schäfer (Herder-Oberschule) Anja Seegert

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Mitteilung der Offenlegungsstelle vom 3. Dezember 2013 II/13. Offenlegung von Finanzinstrumenten. Zusammenfassung: Finanzinstrumente mit Realerfüllung

Mitteilung der Offenlegungsstelle vom 3. Dezember 2013 II/13. Offenlegung von Finanzinstrumenten. Zusammenfassung: Finanzinstrumente mit Realerfüllung Mitteilung der Offenlegungsstelle vom 3. Dezember 2013 II/13 Offenlegung von Finanzinstrumenten Zusammenfassung: Finanzinstrumente mit Realerfüllung Meldepflichtig sind gemäss Art. 15 Abs. 1 Bst. a und

Mehr

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Orderarten im Wertpapierhandel

Orderarten im Wertpapierhandel Orderarten im Wertpapierhandel Varianten bei einer Wertpapierkauforder 1. Billigst Sie möchten Ihre Order so schnell wie möglich durchführen. Damit kaufen Sie das Wertpapier zum nächstmöglichen Kurs. Kurs

Mehr

Margin Trading bei der DAB bank. Kleiner Einsatz. Großer Hebel. Bis zu 200-facher Hebel! Das Beste für meine Geldanlage. www.dab-bank.

Margin Trading bei der DAB bank. Kleiner Einsatz. Großer Hebel. Bis zu 200-facher Hebel! Das Beste für meine Geldanlage. www.dab-bank. Werbemitteilung Bis zu 200-facher Hebel! Margin Trading bei der DAB bank. Kleiner Einsatz. Großer Hebel. Das Beste für meine Geldanlage. www.dab-bank.de Den Hebel in vielen Märkten ansetzen. Von einer

Mehr

Aktien, Optionen (und Credit Default Swaps)

Aktien, Optionen (und Credit Default Swaps) Aktien, Optionen (und s) Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. Februar 2009 1 / 7 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

ZERTIFIKATE spielend beherrschen

ZERTIFIKATE spielend beherrschen UDI ZAGST / MICHAEL HUBER RUDI ZAGST / MICHAEL HUBER ZERTIFIKATE ZERTIFIKATE spielend beherrschen spielend beherrschen Der Performance-Kick Der Performance-Kick für Ihr für Portfolio Ihr Portfolio inanzbuch

Mehr

Inhalt. Die Börse was ist das eigentlich? 5. Die Akteure der Börse 29. Politik und Konjunktur: Was die Börse beeinflusst 45

Inhalt. Die Börse was ist das eigentlich? 5. Die Akteure der Börse 29. Politik und Konjunktur: Was die Börse beeinflusst 45 2 Inhalt Die Börse was ist das eigentlich? 5 J Welche Aufgabe hat die Börse? 6 J Ein wenig Geschichte 9 J Die wichtigstenbörsenplätze 15 J Die bedeutendsten Aktienindizes 19 Die Akteure der Börse 29 J

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Lernender.ch - Das Infoportal für Lernende

Lernender.ch - Das Infoportal für Lernende Wertpapiere Börse spezieller Marktplatz für Geldforderungen Wertpapier (auch Effekten genannt) Urkunden gesetzlich vorgeschriebenen Anforderungen Emission Die Ausgabe von Wertpapieren Ablauf einer Wertschriftausgabe

Mehr

[AEGIS COMPONENT SYSTEM]

[AEGIS COMPONENT SYSTEM] [AEGIS COMPONENT SYSTEM] Das AECOS-Programm ist ein schneller und einfacher Weg für Investoren, ein Portfolio zu entwickeln, das genau auf sie zugeschnitten ist. Hier sind einige allgemeine Hinweise, wie

Mehr

SoSe 2004 Mareen Hofmann, Sonja Lange

SoSe 2004 Mareen Hofmann, Sonja Lange Einführung in die Finanzmathematik Grundlagen SoSe 2004 Mareen Hofmann, Sonja Lange Inhaltsverzeichnis 1 Einleitung 2 2 Finanzmärkte und Instrumente 2 2.1 Finanzmärkte............................. 2 2.2

Mehr

Einführung in das Wertpapiergeschäft. Sparkasse Musterstadt

Einführung in das Wertpapiergeschäft. Sparkasse Musterstadt Einführung in das Wertpapiergeschäft Was ist die Börse? Die Börse ist ein Marktplatz, auf dem Unternehmen ihre Waren in Form von Wertpapieren, Devisen usw. an Investoren (Aktionäre) verkaufen. Unternehmen,

Mehr

ROHSTOFFE für Ihr Portfolio

ROHSTOFFE für Ihr Portfolio ROHSTOFFE für Ihr Portfolio September 2009 Rohstoffe für Ihr Portfolio Rohstoffe ideale Beimischung für ein diversifiziertes Portfolio Bedeutung von Rohstoffen für Investoren Die Portfoliotheorie ist die

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Alle Texte sind zum Abdruck freigegeben, Belegexemplar erbeten

Alle Texte sind zum Abdruck freigegeben, Belegexemplar erbeten DirektAnlageBrief Der Themendienst für Journalisten Ausgabe 26: Februar 2013 Inhaltsverzeichnis 1. In aller Kürze: Summary der Inhalte 2. Zahlen und Fakten: Außerbörslicher Handel immer beliebter 3. Aktuell/Tipps:

Mehr

Erläutern Sie das Grundprinzip eines Aktieninvestmentfonds (mindestens 3 Merkmale)!

Erläutern Sie das Grundprinzip eines Aktieninvestmentfonds (mindestens 3 Merkmale)! Erläutern Sie das Grundprinzip eines Aktieninvestmentfonds (mindestens 3 Merkmale)! Der Anleger zahlt Geld in einen Topf (= Sondervermögen) einer Kapitalanlagegesellschaft ein. Ein Kapitalmarktexperte

Mehr

Trading Chancen mit intelligenten Ordertypen optimal ausnutzen. 29. April 2015 Christopher Pawlik

Trading Chancen mit intelligenten Ordertypen optimal ausnutzen. 29. April 2015 Christopher Pawlik 1 Trading Chancen mit intelligenten Ordertypen optimal ausnutzen 29. April 2015 Christopher Pawlik Ordertypen an der Börse Frankfurt 2 Unlimited-Turbo Turbo Long-Turbo Smart-Mini-Short Mini Long Call-Sprinter

Mehr

1 Einleitung. 2 Geltungsbereich. 3 Grundlegende Auswahlkriterien. Ausführungsgrundsätze der Helaba Invest

1 Einleitung. 2 Geltungsbereich. 3 Grundlegende Auswahlkriterien. Ausführungsgrundsätze der Helaba Invest 1 Einleitung Diese Ausführungsgrundsätze (Best Execution Policy) regeln gemäß den gesetzlichen Vorgaben Grundsätze und Verfahren, die darauf abzielen, im Rahmen von Transaktionen für das Portfolio / den

Mehr

Zusammenfassung Finanzmarkttheorie 2

Zusammenfassung Finanzmarkttheorie 2 UNI BERN BWL Zusammenfassung Finanzmarkttheorie 2 FS 2014 bei Prof. Dr. Heinz Zimmermann Zusammenfassung zusammengestellt aus den Folien zur Vorlesung. Zusammenfassung enthält wahrscheinlich noch Typos.

Mehr

Minimale Preisbewegung: 1 Punkt, entsprechend einem Wert von 10 Franken März, Juni, September, Dezember

Minimale Preisbewegung: 1 Punkt, entsprechend einem Wert von 10 Franken März, Juni, September, Dezember Exkurs 5 Derivate Logistik Exkurs Anlage in Derivaten Derivate (lat. derivare = ableiten) sind entwickelt worden, um Risiken an den Waren- und Finanzmärkten kalkulierbar und übertragbar zu machen. Es sind

Mehr