Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Größe: px
Ab Seite anzeigen:

Download "Irrfahrten. Und ihre Bedeutung in der Finanzmathematik"

Transkript

1 Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn,

2 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der Aktienkurs als stochastischer Prozess

3 Ziele der Finanzmathematik Quantifizierung von Marktrisiken Ermittlung von Korrelationen Berechnung und Optimierung von Portfolio-Risiken Ermittlung von fairen Preisen für Derivate...

4 I. Die Finanzmärkte

5 Verschiedene Märkte Rohstoffe (Commodities) Aktien (Stocks, Shares) Devisen (FOREX) Anleihen (Bonds) Optionen (EUREX, CBOE) OTC-Märkte...

6 Was ist überhaupt ein Markt? Wie bilden sich Preise?

7 Definition: Markt Ein Markt ist ein Ort, an dem Angebot und Nachfrage aufeinander treffen. An den modernen Finanzmärkten findet dies an den jeweiligen Börsen oder im außerbörslichen Direktgeschäft (OTC, over the counter) statt.

8 Preise bilden sich im Markt durch das Gesetz von Angebot und Nachfrage. Überwiegt das Angebot (Verkäufer), sinkt der Preis. Überwiegt die Nachfrage (Käufer), steigt der Preis.

9 Finanzinstrumente: Die Aktie

10 Aktien Unternehmensanteile werden an Aktienbörsen gehandelt Manche Aktien schütten Dividenden (Gewinnbeteiligungen am Unternehmenserfolg) an die Aktionäre aus Aktienkurse unterliegen einer Vielzahl von Schwankungen ( Gutes Unternehmen = guter Aktienkurs ist zu kurz gegriffen)

11 Aufgabe Welche Faktoren beeinflussen Aktienkurse? Lassen sich diese jeweiligen Faktoren in thematische Gruppen einteilen? Zeitansatz: 8 Minuten

12 Beispiele für Einflussfaktoren Unternehmensnachrichten, Lage Politische Nachrichten Massenpsychologie Zyklik Institutionelle Anleger (z.b. Hedgefonds), Sektorrotation...

13 Finanzinstrumente: Was versteht man unter Optionen?

14 Optionen Call-Option Recht, zu einem vorher festgelegten Kurs und einem vorher festgelegten Zeitpunkt eine bestimmte Menge eines Basiswerts zu kaufen. Put-Option Recht, zu einem vorher festgelegten Kurs und einem vorher festgelegten Zeitpunkt eine bestimmte Menge eines Basiswerts zu verkaufen.

15 Handelsstrategien Optionen eröffnen zahlreiche, teils sehr komplexe Handelsstrategien Die Finanzmathematik beantwortet hier z.b. Fragen zum fairen Wert von Optionen, aber auch zum Risikoprofil einzelner Strategien Portfolio-Risiko? Hedging?

16 Ein Blick in die Praxis Wie gehen institutionelle Anleger bei der Auswahl von Titeln prinzipiell vor? Welche Probleme ergeben sich hierbei? Wo wird auf die Finanzmathematik zurückgegriffen?

17 Entscheidungskriterien Fundamentale Analyse Technische Analyse Zyklik Sentiment...

18 Die technische Analyse (TA) Grundliegende Frage der TA: Wann sollte eine Aktie gekauft werden? Es gibt viele verschiedene Methoden TA zu betreiben; die wenigsten sind seriös (eine Ausnahme ist z.b. Point & Figure, welches von institutionellen Anlegern gerne benutzt wird)

19 Die TA und Mathematik Die wenigsten Fondsmanager und institutionellen Anleger sind rundum solide Mathematiker Die Finanzmathematik findet daher indirekt Eingang in die TA in Form von computerisierten Systemen Diese bieten eine Vielzahl von Optionen (Marktbetrachtung, Portfolio- und Positionsrisikomanagement, Vergleichsanalysen,...)

20 Beispiel: Sektorenkurve USA

21 Beispiel: P&F Kurs-Chart

22 Mit welchen mathematischen Mitteln lassen sich die erforderlichen Modellierungen überhaupt erst durchführen?

23 Aufgabe Wie könnte man Aktienkurse mathematisch modellieren? Welche grundsätzlichen Annahmen erscheinen euch hierbei sinnvoll? Zeitansatz: 10 Minuten

24 Aktienkurse als stochastische Prozesse Ein stochastischer Prozess oder Zufallsprozess besteht aus zeitlich angeordneten Zufallsgrößen (Zufallsvariablen) { X ; t t 0} Der Einfachheit halber beginnt ein Prozess immer bei t=0

25 Stochastische Prozesse In diskreter Zeit (regelmäßige Abstände, in denen Beobachtungen erhoben werden, t=0,1,2,...) In stetiger Zeit ( t 0 ) Typische Beispiele für diskrete Prozesse: täglich, monatlich, jährlich erhobene Wirtschaftsdaten (Aktienkurse, Arbeitslosenziffern, Absatzzahlen, etc.)

26 Stochastische Prozesse in diskreter Zeit Binomial- und Trinomialprozesse Allgemeine Irrfahrt Geometrische Irrfahrt Binomialmodelle mit zustandsabhängigen Zuwachsen

27 Einfache Irrfahrt X = X + Z t k t 0 t = 1, 2,... k = 1 P( Z k = 1) = p und P( Z k = 1) = 1 p für alle k Zuwachs Z X X kann nur +1 oder 1 sein (pro Schritt) t = t t 1 Annahme: Zuwächse sind unabhängig identisch verteilt und unabhängig vom Anfangswert X 0

28 Binomial- und Trinomialprozesse Einfache Irrfahrten sind für Modellierungen von Aktienkursen natürlich nicht ausreichend Möglichkeiten der Verallgemeinerung von einfachen Irrfahrten: Zulassen von Änderungen außer +1 oder 1 Dadurch auch Null-Änderung möglich (Trinomialprozess)

29 Beispiele einfacher Irrfahrten

30

31

32 Verschiedene Eigenschaften Mögliche Werte, einfache Irrfahrt*: Mögliche Werte, Binomialprozess: Symmetrische einfache Irrfahrt (p=0.5): Ansonsten: E[ X t ] = t (2 p 1) Binomialprozess**: * = Start in 0 **=Start in beliebigem X 0 b t = a t, a t + 1,..., a + t b t = a + n u m d E[ ] = X t 0 denn E[ Z ] = 2 p 1 k für alle t E[ Z k ] = ( u + d) p d E[ X ] = E[ X ] + t {( u + d) p d} Modellierung reicht dennoch noch nicht für Aktienkurse, da u.a. Zuwachs jeweils fest und absolut! t o

33 Allgemeine Irrfahrten Binomial- und Trinomialprozesse sind einfache Fälle allgemeiner Irrfahrten Problem bei den bisherigen Modellen: Annahme, dass Zuwachs in den einzelnen Zeiteinheiten jeweils unabhängig voneinander und immer von der gleichen Größenordnung ist In Realität bei Wirtschaftsdaten (etwa in Zeiten erhöhten Absatzes) nur relativ, jedoch nicht absolut der Fall

34 Geometrische Irrfahrten Man spricht von einer geometrischen Irrfahrt relativen Zuwächse { ; t X t 0}, wenn die R t = X X t t 1 T=1,2,... unabhängig, identisch verteilt sind (Prinzip analog zu Irrfahrten und absoluten Zuwächsen) Ein geometrischer Binomialprozess hat z.b. die Form: X t = R t X t 1 = X 0 t k = 1 R und für u>1, d<1:, k wobei X R,,... 0, 1 R2 P( R k = u) = p P( R k = d) = 1 p unabhängig

35 Probleme Binomialprozesse und allgemeinere Irrfahrten beschreiben den Verlauf von Aktienkursen bestenfalls lokal Sie gehen davon aus, dass die Verteilung der Zuwächse stets dieselbe ist, egal wie sich der Kurs inzwischen entwickelt hat Geometrische Irrfahrten lassen den absoluten Zuwachs vom erreichten Kursniveau abhängen All diese Prozesse sind zu einfach, um den Einfluss des erreichten Kursniveaus auf die zukünftige Entwicklung zu beschreiben

36 Binomialprozesse mit zustandsabhängigen Zuwächsen Bieten Lösung für die genannten Probleme, indem Zuwächse zustandsabhängig (evtl. auch zeitabhängig) werden: X = X 1 + Z t = 1, 2,... t t t P ( Z = u ) = p ( X 1, t ) t t, P ( Z = d ) = 1 p ( X 1, t ) t t Die festen Funktionen p(x,t) ordnen jedem möglichen Wert des Prozesses zur Zeit t und jedem t eine Wahrscheinlichkeit zu. Analog lässt sich der Binomialprozess mit zustandsabhängigen relativen Zuwächsen definieren.

37 FAZIT Binomialprozesse mit zustandsabhängigen Zuwächsen bieten ein erstes, nicht sehr praktisches, theoretisches Modell zur Modellierung von Aktienkursen In der Praxis ist es sehr schwer, die p(x,t) aus Beobachtungen des tatsächlichen Aktienverlaufs zu schätzen Dennoch hat diese Modellierung von Aktienkursen durchaus ihre Berechtigung und tritt auch bei einigen anderen Berechnungsmethoden und verfahren immer wieder auf (z.b. als numerische Lösung bei der Black- Scholes-Gleichung für amerikanische Optionen) (Mehr hierzu in der Ausarbeitung zum Vortrag)

38 Fragen?

39 Vielen Dank für die Aufmerksamkeit! Quellen: siehe Ausarbeitung

Irrfahrten in der Finanzmathematik

Irrfahrten in der Finanzmathematik Irrfahrten in der Finanzmathematik Alexander Hahn Ausarbeitung zum Vortrag im Seminar "Mathematische Modellierung" (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Der Vortrag zum

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

LS Servicebibliothek 4: HANDEL MIT OPTIONSSCHEINEN & TURBOS

LS Servicebibliothek 4: HANDEL MIT OPTIONSSCHEINEN & TURBOS LS Servicebibliothek 4: HANDEL MIT OPTIONSSCHEINEN & TURBOS Optionsscheine dienen der Absicherung vorhandener Positionen oder der Spekulation. 2 argentinische Pesos: Präsident Bartolomé Mitre (1821-1906)

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading Professionell handeln mit CFDs Instrumente und Strategien für das Trading Grundlagen und Allgemeines zu CFDs Der CFD-Handel im Überblick CFDs (Contracts for Difference) sind mittlerweile aus der Börsenwelt

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Quantitative Ideen der technischen Intermarketanalyse

Quantitative Ideen der technischen Intermarketanalyse Quantitative Ideen der technischen Intermarketanalyse Vortrag Preisverleihung der VTAD März 2007, Bad Soden Technische Intermarket Analyse John Murphy (1991) ist der Ausgangspunkt Einteilung der Finanzmärkte

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

Veranlagen Wertpapiere und Kapitalmarkt

Veranlagen Wertpapiere und Kapitalmarkt Ansparen Veranlagen Wertpapiere und und veranlagen Kapitalmarkt 2 2 In jeder Lebensphase, ob in der Jugend oder im Alter, haben Menschen Wünsche, die Geld kosten. Wenn Sie Schritt für Schritt ein kleines

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler Susanne Kruse Formelsammlung Aktien-, Zins- und Währungsderivate Springer Gabler Inhaltsverzeichnis Notations- und Abkürzungsverzeichnis XI Teil I Finanzmathematische Grundlagen 1 Grundprinzipien der Finanzmathematik

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Aufgabe 1: Bewertung von Optionen (48 Punkte)

Aufgabe 1: Bewertung von Optionen (48 Punkte) Aufgabe 1: Bewertung von Optionen (48 Punkte) Am arbitragefreien Kapitalmarkt werden europäische und amerikanische nicht dividendengeschützte Verkaufsoptionen auf eine Aktie mit einer Restlaufzeit von

Mehr

Börsengehandelte Finanzderivate

Börsengehandelte Finanzderivate Börsengehandelte Finanzderivate Bestand und Handel*, in in absoluten Zahlen, Zahlen, 1990 weltweit bis 20081990 bis 2008 Bill. US-Dollar 2.200 2.288,0 2.212,8 Handel 2.000 1.800 1.808,1 1.600 1.400 1.408,4

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds)

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds) Abteilung für Finanzmathematik - Bewertung verschiedenster Typen von Derivativen - Analyse Alternativer Investmentstrategien (Hedge Fonds) - Kredit-Risiko-Management und Kredit-Derivate - Monte Carlo-

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

VDAX-NEW. Der neue Volatilitätsindex der Deutschen Börse

VDAX-NEW. Der neue Volatilitätsindex der Deutschen Börse VDAX-NEW Der neue Volatilitätsindex der Deutschen Börse Volatilität handeln Die Wertentwicklung eines Investments wird neben der Rendite auch vom Risiko bestimmt, mit dem die erwartete Rendite verknüpft

Mehr

Was sind Bezugsrechte und was underpricing sowie ipo? Florian Hinse 23.April 2007

Was sind Bezugsrechte und was underpricing sowie ipo? Florian Hinse 23.April 2007 Was sind Bezugsrechte und was underpricing sowie ipo? 23.April 2007 1 Gliederung 1. Was sind Bezugsrechte? 1.1 Definition 1.2 Begriffe im Zusammenhang mit Bezugsrechten 1.3 Rechnerischer Wert der Bezugsrechte

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/46 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 7 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger

Interdisziplinäres Vertiefungsfach Geld und Finanzierung. Vertiefungskurs I: Optionspreise und Derivate. Klaus Pötzelberger Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Option Slide 1 Klaus Pötzelberger Optionspreis

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

AKTIEN UND OBLIGATIONEN Finanzanlagen, einfach erklärt

AKTIEN UND OBLIGATIONEN Finanzanlagen, einfach erklärt Aktien und Obligationen im Überblick Was ist eine Aktie? Eine Aktie ist ein Besitzanteil an einem Unternehmen. Wer eine Aktie erwirbt, wird Mitbesitzer (Aktionär) eines Unternehmens (konkret: einer Aktiengesellschaft).

Mehr

76 10. WEITERE ASPEKTE

76 10. WEITERE ASPEKTE 76 10. WEITERE ASPEKTE 10. Weitere Aspekte 10.1. Aktien mit Dividendenzahlungen Betrachten wir das Black Scholes-Modell. Falls die Aktie nun Dividenden bezahlt, wird der Wert der Aktie um den Wert der

Mehr

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und

Mehr

Inhalt. Die Börse was ist das eigentlich? 5. Die Akteure der Börse 29. Politik und Konjunktur: Was die Börse beeinflusst 45

Inhalt. Die Börse was ist das eigentlich? 5. Die Akteure der Börse 29. Politik und Konjunktur: Was die Börse beeinflusst 45 2 Inhalt Die Börse was ist das eigentlich? 5 J Welche Aufgabe hat die Börse? 6 J Ein wenig Geschichte 9 J Die wichtigstenbörsenplätze 15 J Die bedeutendsten Aktienindizes 19 Die Akteure der Börse 29 J

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Admiral Academy WEBINAR TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile.

Admiral Academy WEBINAR TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile. Admiral Academy TRADING VON ANFANG AN! TAG 2: Aktienhandel, Fonds, Optionsscheine, Devisen und CFDs. Wann trade ich was, Vorund Nachteile. Aktienhandel: Aktien sind die Basis für (fast) alle Wertpapiere:

Mehr

DISSERTATION. zur Erlangung des akademischen Grades Dr. rer. nato im Fach Didaktik der Mathematik

DISSERTATION. zur Erlangung des akademischen Grades Dr. rer. nato im Fach Didaktik der Mathematik Aktien und Optionen: Zur Integration von Inhalten der stochastischen Finanzmathematik in einen allgemeinbildenden und anwendungsorientierten Stochastikunterricht DISSERTATION zur Erlangung des akademischen

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 16 Crash Course Optionen: Pricing & Hedging in diskreter Zeit Literatur Kapitel 16 * Uszczapowski: Kapitel 2, 3, 6 * Pliska: Kapitel 1.4 * Lamberton & Lapeyre:

Mehr

Aufgabe 1: Bewertung von Derivaten

Aufgabe 1: Bewertung von Derivaten Aufgabe 1: Bewertung von Derivaten Teil I: Allgemeine Bewertungstheorie Am arbitragefreien Kapitalmarkt werden europäische und amerikanische Kauf- und Verkaufsoptionen mit einer Restlaufzeit von jeweils

Mehr

Der Informationsgehalt von Optionspreisen

Der Informationsgehalt von Optionspreisen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Martin Wallmeier Der Informationsgehalt von Optionspreisen Mit 62

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Die optimale Anlagestrategie im Niedrigzinsumfeld

Die optimale Anlagestrategie im Niedrigzinsumfeld Die optimale Anlagestrategie im Niedrigzinsumfeld Tungsten Investment Funds Asset Management Boutique Fokus auf Multi Asset- und Absolute Return Strategien Spezialisiert auf den intelligenten Einsatz von

Mehr

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Teilnehmer: Lukas Thum Yu Wang Luciana Plocki Johanna Ridder Felix Tschierschke Thu Hien Nguyen Janin Rekittke Johanna Lindberg Gruppenleiter:

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Futures und Optionen. Einführung

Futures und Optionen. Einführung Futures und Optionen Einführung Plan Märkte Kassamarkt Terminmarkt Unterscheidung Funktionsweise Die statische Sichtweise Futures und Forwards Verpflichtungen Optionen Rechte und Verpflichtungen Grundpositionen

Mehr

Zeit- und Dividendeneinfluss. auf einen amerikanischen Aktien-Call-Optionsschein.

Zeit- und Dividendeneinfluss. auf einen amerikanischen Aktien-Call-Optionsschein. HSBC Zertifikate-Akademie Zeit- und Dividendeneinfluss auf einen amerikanischen Aktien-Call-Optionsschein Liebe Leserinnen und Leser der HSBC Zertifikate-Akademie In den vergangenen Ausgaben wurden verschiedene

Mehr

Mit welcher Strategie hast Du am Glücksrad Erfolg?

Mit welcher Strategie hast Du am Glücksrad Erfolg? Mit welcher Strategie hast Du am Glücksrad Erfolg? Kinderuni, Workshop an der TU Wien 24. Juli 2009, 10:30 11:30 Uhr Univ.-Prof. Dr. Uwe Schmock Forschungsgruppe Finanz- und Versicherungsmathematik Institut

Mehr

Warrants Investment mit Hebeleffekt.

Warrants Investment mit Hebeleffekt. Warrants Investment mit Hebeleffekt. Kapitalschutz Ertragsoptimierung Zertifikate Produkte mit Hebelwirkung Kleiner Kick grosse Wirkung. Mit einem Warrant erwerben Sie das Recht, aber nicht die Pflicht,

Mehr

Volatilitätsstrategie mit Optionen

Volatilitätsstrategie mit Optionen MT AG MANAGING TECHNOLOGY IMPROVING BUSINESS PERFORMANCE Volatilitätsstrategie mit Optionen Referent: Guido Neander, Senior-Berater, MT AG, Ratingen Agenda Begriffsdefinitionen Optionen Volatilität Preisbestimmungsfaktoren

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Michaela Baumann Universität Bayreuth Dornbirn, 12. März 2015 Motivation Ein Kunde möchte bei einer Bank

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Die beste Investment-Erfahrung Ihres Lebens: Optionen

Die beste Investment-Erfahrung Ihres Lebens: Optionen Die beste Investment-Erfahrung Ihres Lebens: Optionen Rainer Heißmann, Frankfurt, 27.03.2015 Experten. Sicherheit. Kompetenz. Die beste Investment-Erfahrung Ihres Lebens Optionen (nicht Optionsscheine)

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Trader-Ausbildung. Teil 1 Einleitender Teil

Trader-Ausbildung. Teil 1 Einleitender Teil Trader-Ausbildung Teil 1 Einleitender Teil Teil 1 - Einleitender Teil - Was ist "die Börse" (und wozu brauche ich das)? - Was kann ich an der Börse handeln? (Aktien, Zertifikate, Optionsscheine, CFDs)

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca BIAGINI, München, Daniel ROST, München Money out of nothing? - Prinziien und Grundlagen der Finanzmathematik Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren

Mehr

So wähle ich die EINE richtige Option aus

So wähle ich die EINE richtige Option aus So wähle ich die EINE richtige Option aus Rainer Heißmann, Dresden, 16.01.2016 Experten. Sicherheit. Kompetenz. So wähle ich die EINE richtige Option aus Seite 2 von 18 Geld machen Voltaire (französischer

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Trading Chancen mit intelligenten Ordertypen optimal ausnutzen. 29. April 2015 Christopher Pawlik

Trading Chancen mit intelligenten Ordertypen optimal ausnutzen. 29. April 2015 Christopher Pawlik 1 Trading Chancen mit intelligenten Ordertypen optimal ausnutzen 29. April 2015 Christopher Pawlik Ordertypen an der Börse Frankfurt 2 Unlimited-Turbo Turbo Long-Turbo Smart-Mini-Short Mini Long Call-Sprinter

Mehr

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner Optionsstrategien Die wichtigsten marktorientierte Strategien Jennifer Wießner Yetkin Uslu 12.05.2014 Gliederung Grundlagen Definition einer Option Begriffsbestimmungen Optionen Put Option Call Option

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Bevor Sie sich zu einer Anlage in Investmentfonds entscheiden, sollten Sie sich unbedingt vollständig der damit verbundenen Risiken bewusst sein.

Bevor Sie sich zu einer Anlage in Investmentfonds entscheiden, sollten Sie sich unbedingt vollständig der damit verbundenen Risiken bewusst sein. Risikohinweise Bevor Sie sich zu einer Anlage in Investmentfonds entscheiden, sollten Sie sich unbedingt vollständig der damit verbundenen Risiken bewusst sein. Die zukünftigen Werte und Erträge von Investmentfondsanteile

Mehr

Alle Texte sind zum Abdruck freigegeben, Belegexemplar erbeten

Alle Texte sind zum Abdruck freigegeben, Belegexemplar erbeten DirektAnlageBrief Der Themendienst für Journalisten Ausgabe 26: Februar 2013 Inhaltsverzeichnis 1. In aller Kürze: Summary der Inhalte 2. Zahlen und Fakten: Außerbörslicher Handel immer beliebter 3. Aktuell/Tipps:

Mehr

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr.

Optionen, Futures und andere Derivate. John C. Hull. Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Optionen, Futures und andere Derivate 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner 11 Eigenschaften von Aktienoptionen

Mehr

Ausführungsgrundsätze der LBBW Asset Management Investmentgesellschaft mbh Stuttgart

Ausführungsgrundsätze der LBBW Asset Management Investmentgesellschaft mbh Stuttgart der LBBW Asset Management Investmentgesellschaft mbh Stuttgart Inhaltsverzeichnis 2 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1 Allgemein... 3 2 Geltungsbereich und Einschränkungen... 4 3 Grundsätze zur

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate

Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Interdisziplinäres Vertiefungsfach Geld und Finanzierung Vertiefungskurs I: Optionspreise und Derivate Klaus Pötzelberger Institut für Statistik und Mathematik Wirtschaftsuniversität Wien Inhaltsverzeichnis

Mehr

Lernender.ch - Das Infoportal für Lernende

Lernender.ch - Das Infoportal für Lernende Wertpapiere Börse spezieller Marktplatz für Geldforderungen Wertpapier (auch Effekten genannt) Urkunden gesetzlich vorgeschriebenen Anforderungen Emission Die Ausgabe von Wertpapieren Ablauf einer Wertschriftausgabe

Mehr

Safe Zertifikate. Produktinformation. Gemeinsam mehr erreichen

Safe Zertifikate. Produktinformation. Gemeinsam mehr erreichen Safe Zertifikate Produktinformation Gemeinsam mehr erreichen Inhalt Safe Zertifikate Immer ein Sicherheitsnetz gespannt 4 Was zeichnet Safe Zertifikate aus? 4 Safe Zertifikate Classic Nach oben gute Chancen,

Mehr

Der Börsenführerschein

Der Börsenführerschein Börsenführerschein Der Börsenführerschein Börsenführerschein Agenda: I. Einführung: Börse, Kapitalmarkt, Handel II. III. IV. Aktien Fonds Renten und Anleihen V. Fundamental Analyse VI. Technische Analyse

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Aktien, Optionen (und Credit Default Swaps)

Aktien, Optionen (und Credit Default Swaps) Aktien, Optionen (und s) Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. Februar 2009 1 / 7 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten

Mehr

Mechanismus Design Auktionen

Mechanismus Design Auktionen Mechanismus Design Auktionen Universität Hohenheim Alexander Staus Mechanismus Design Universität Hohenheim 1/25 Welche Auktionen kennen Sie? traditionelle Auktionshäuser ebay Immobilien Fahrräder Blumen

Mehr

Datenanalyse mit Python. Dr. Wolfram Schroers

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org> Datenanalyse mit Python Dr. Wolfram Schroers Problem Beobachtungen Modell (Annahmen, Vereinfachungen) Vorhersagen Vergleich Python: Stärken und Schwächen Anwendung:

Mehr