Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C."

Transkript

1 Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski

2 Übungsaufgaben zur Regelungstechnik B Aufgabe 0 Inhaltsverzeichnis 1 Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe Aufgabe

3 Übungsaufgaben zur Regelungstechnik B Aufgabe 1 1 Aufgabe 01 Gegeben sei ein System bestehend aus einem Elektromagneten und einer Kugel aus Eisen, die durch die Anziehungskraft des Magneten in einem Schwebezustand gehalten wird. i R L Regler u s F m s Höhensensor Abb. 1: Im Magnetfeld schwebende Eisenkugel Das physikalische Gesetz, das den Zusammenhang zwischen der Anziehungskraft des Magneten und dem Abstand zu der Kugel beschreibt, ist nichtlinear. Der Abstand soll konstant gehalten und Abweichungen ausgeregelt werden. Dazu wird die abstands- und stromabhängige Kraftgleichung des Elektromagneten um den stationären Betriebspunkt linearisiert. 1.1 Beschreiben Sie mathematisch den Zusammenhang zwischen der Anziehungskraft und dem Abstand zu der Kugel. Vernachlässigen Sie dabei den magnetischen Widerstand des Eisenkerns und etwaige Streuflüsse des magnetischen Feldes. 1.2 Stellen Sie das nichtlineare Zustandsmodell des Systems auf. 1.3 Linearisieren Sie das Modell um einen stationären Betriebspunkt. 1.4 Für das linearisierte Modell mit folgenden Systemparametern A = , 8, b = 0 (1) berechnen Sie einen Zustandsregler, sodass das rückgekoppelte stabilisierte Gesamtsystem eine Systemmatrix mit folgenden Eigenwerten besitzt: s 1 = j, s 2 = 10 10j, s 1 = 50. (2) mg 2

4 Übungsaufgaben zur Regelungstechnik B Aufgabe 2 2 Aufgabe Berechnen Sie den Korrekturvektor des vollständigen Beobachters für das linearisierte System mit dem Zustandsregler aus der ersten Aufgabe. Nehmen Sie dafür die drei folgenden Fälle der Eigenwertvorgabe: a) ˆΠ(s) = (s j)(s j)(s + 50), (3) b) ˆΠ(s) = (s j)(s j)(s + 100), (4) c) ˆΠ(s) = (s + 5 5j)(s j)(s + 25), (5) 2.2 Simulieren Sie mit Hilfe von Matlab/Simulink das Verhalten des Systems, des Systems mit Zustandsregler und des Systems mit Zustandsregler und Beobachter für die oben genannten drei Fälle. Gehen Sie von dem folgenden Anfangszustand des Systems aus: s 0 0, 01 x 0 = v 0 i 0 = 0 7 (6) Beschreiben Sie dieses Verhalten. Was bewirkt eine Veränderung des Anfangszustandes? 3

5 Übungsaufgaben zur Regelungstechnik B Aufgabe 3 3 Aufgabe 03 Gegeben sei ein lineares zeitinvariantes System bestehend aus der Regelstrecke, Zustandsregler und Zustandsbeobachter. r(t) u(t) Regelstrecke y(t) u (t) R Beobachter k T xˆ ( t) Abb. 2: Regelstrecke mit Zustandsregler und -beobachter Das Gesamtsystem werde im Zustandsraum mit folgenden Gleichungen beschrieben: [ ] [ ] [ ] [ ] ẋ A + bk T bk T x b = ė 0 A + ˆkc T + r e 0 y = [ c T 0 ] [ ] T x e 3.1 Berechnen Sie die Übertragungsfunktion des aus Zustandsregler und -beobachter bestehenden Teilsystems, ausgehend von der gegebenen Zustandsbeschreibung. 3.2 Zeichnen Sie das Strukturbild des Gesamtsystems und formen Sie dieses so um, dass zum Schluss eine vereinfachte Regelkreisstruktur mit nur einem Rückkopplungszweig bleibt. 3.3 Berechnen Sie anhand des Strukturbildes die Führungsübertragungsfunktion des Gesamtsystems. Diskutieren Sie das Ergebnis. 4

6 Übungsaufgaben zur Regelungstechnik B Aufgabe 4 4 Aufgabe 04 Gegeben sei eine Regelstrecke mit folgender Übertragungsfunktion: G(s) = 1 s(s + 1)(s + 2) (7) 4.1 Entwerfen Sie mit Hilfe des FKL-Verfahrens einen P-Regler so, dass die Sprungantwort des geschlossenen Regelkreises um 10% überschwingt. 4.2 Simulieren Sie mit Hilfe von Matlab/Simulink das Verhalten des Systems mit dem entworfenen Regler. Wie verhält sich das System mit steigender Verstärkung? 4.3 Bauen sie in das Matlab/Simulink-Modell ein nichtlineares Dreipunktglied ein. Wie verhält sich dieses System mit steigender Verstärkung? 5

7 Übungsaufgaben zur Regelungstechnik B Aufgabe 5 5 Aufgabe 05 Gegeben sei eine Zweipunktkennlinie mit Hysterese. Abb. 3: Zweipunktkennlinie mit Hysterese Die Eingangsgröße des nichtlinearen Übertragungsgliedes sei wie folgt gegeben: e(t) = ê sin ωt, 0 ωt 2π, ê > a (8) Berechnen Sie die Beschreibungsfunktion dieses Übertragungsgliedes. 6

8 Übungsaufgaben zur Regelungstechnik B Aufgabe 6 6 Aufgabe 06 Gegeben sei das Strukturbild nach Abb. 4 eines nichtlinearen Regelkreises. Abb. 4: Nichtlinearer Regelkreis Die Übertragungsfunktionen lauten: G R (s) = K R(1 + st n ) und (9) st n K S G S (s) = (1 + st n )(1 + st 1 )(1 + st 2 ). (10) 6.1 Berechnen Sie die Beschreibungsfunktion des nichtlinearen Teilsystems. 6.2 Skizzieren Sie die Nyquist-Ortskurve des linearen Teilsystems und die negativ inverse Beschreibungsfunktion in ihren möglichen Lagen zueinander. 6.3 Berechnen Sie Amplitude und Frequenz der Dauerschwingung mittels des Verfahrens der harmonischen Balance für folgende Werte: T n = 4s, T 1 = 2s, T 2 = 0, 5s, K S = 5, K R = 1, m = 1, b = 0, Ist die ermittelte Dauerschwingung stabil? 6.5 Skizzieren Sie für die errechnete Dauerschwingung die Verläufe von u(t) und y(t), und berechnen Sie die charakteristischen Größen. 6.6 Wie verhält sich der Regelkreis im Zustand der harmonischen Balance, wenn die Verstärkung K R auf 3 erhöht wird? Hinweis: sin n (cx)dx = sinn 1 (cx)cos(cx) nc + n 1 n sin n 2 (cx)dx, n > 0 7

9 Übungsaufgaben zur Regelungstechnik B Aufgabe 7 7 Aufgabe 07 Gegeben sei der nichtlineare Regelkreis nach Abb. 5: Abb. 5: Nichtlinearer Regelkreis Die Übertragungsfunktion des linearen Teilsystems lautet: G(s) = 1 s(1+st ) 7.1 Um welches nichtlineare Kennlinienglied handelt es sich hier? 7.2 Die negativ inverse Beschreibungsfunktion des statischen Kennliniengliedes läßt sich in der Form N I (ê) = α(ê) + jβ(ê) (11) angeben. Berechnen Sie dazu die Koeffizienten α und β in Abhängigkeit von der Amplitude ê (siehe Hinweis). 7.3 Skizzieren Sie den Verlauf der Nyquist-Ortskurve des linearen Teilsystems und den Verlauf der negativ inversen Beschreibungsfunktion N I (ê) in der komplexen Ebene. Sind die möglichen Dauerschwingungen stabil? 7.4 Wie sind b und K zu wählen, damit sich eine Dauerschwingung mit einstellt? ω = 1 T und ê = 2 2 π (12) Hinweis: [ ( N(ê) = 2b a πa ê 1 ( a ê ) ( ) ) qa 2 ê j ( ] ) a 2 ê (1 q) 8

10 Übungsaufgaben zur Regelungstechnik B Aufgabe 8 8 Aufgabe 08 Gegeben seien zwei Kennlinienglieder (siehe Abb. 6) mit u 1 = N 1 (e 1 ) und u 2 = N 2 (e 2 ). Abb. 6: Kennlinien der nichtlinearen Übertragungsglieder N 1 (e 1 ) und N 2 (e 2 ) Ermitteln Sie auf graphischem Weg die nichtlineare Kennlinie u = N(e), die sich für die beiden folgenden Kettenschaltungen ergibt. 8.1 Kettenschaltung Kettenschaltung 2 9

11 Übungsaufgaben zur Regelungstechnik B Aufgabe 9 9 Aufgabe 09 Gegeben sei das Strukturbild eines nichtlinearen Regelkreises. Abb. 7: Nichtlinearer Regelkreis 9.1 Die zur Nichtlinearität NL gehörende Beschreibungsfunktion läßt sich in der Form N(ê) = α jβ, α, β R + (13) ê angeben. Ermitteln Sie die Parameter α und β in Abhängigkeit von a und b. 9.2 Die Beschreibungsfunktion N(ê) hängt nur von der Schwingungsamplitude ê, nicht jedoch von der Kreisfrequenz ω ab, obwohl die Nichtlinearität ein dynamisches Glied enthält. Begründen Sie kurz, warum dies so ist. 9.3 Skizzieren Sie in der komplexen s-ebene die Nyquist-Ortskurve des linearen Teilsystems G(s) sowie die negativ inverse Beschreibungsfunktion N I (ê) der Nichtlinearität. 9.4 Welche besondere Eigenschaft weist die negativ inverse Beschreibungsfunktion auf? Wie läßt sich diese Eigenschaft bei der Schwingungsanalyse von Vorteil nutzen, wenn als Grundlage der Analyse das Verfahren der harmonischen Balance dient? 9.5 Wie sind die Parameter des Regelkreises a, b und K zu wählen, damit sich am Ausgang der Regelstrecke eine Dauerschwingung mit der Kreisfrequenz ω = 1s 1 und der Amplitude ŷ = 1 einstellt, und gleichzeitig der exakte Maximalwert der Stellgröße u max = 2 beträgt? 10

12 Übungsaufgaben zur Regelungstechnik B Aufgabe Aufgabe 10 Gegeben sei eine Regelstrecke mit folgender Übertragungsfunktion: G(s) = K S (1 + T 1 s)(1 + T 2 s)(1 + T 3 s) (14) mit den Werten T 1 = 0, 363s, T 2 = 0, 205s, T 3 = 0, 062s, K S = 23, Entwerfen Sie mit Hilfe des FKL-Verfahrens einen PI-Regler derart, dass er die größte Verzögerungszeit der Strecke kompensiert, und der geschlossene Regelkreis eine Phasenreserve von Φ = 60 hat Simulieren Sie mit Hilfe von Matlab/Simulink das Verhalten des geschlossenen Regelkreises mit dem entworfenen Regler. Bauen Sie in das Modell eine Stellgrößenbegrenzung ein, und führen Sie die erforderlichen Maßnahmen zur Verbesserung des Regelkreisverhaltens durch. Hinweis: Sie können dazu die Matlab-Funktion acker(a,b,p) benutzen Nehmen Sie nun die offene Übertragungsfunktion L(s) (Glg. 15) und bauen Sie dazu ein Simulink-Modell mit Stellgrößenbegrenzung. L(s) = 5 s(1 + 0, 2s)(1 + 0, 035s) 2 (15) Was ist der prinzipielle Unterschied bezüglich des Windup-Effektes zum Regelkreis von oben? Welche Auswirkung hat er auf den Verlauf der Regelgröße? 10.4 Welcher Vorteil ergibt sich für die Maßnahmen gegen einen auftretenden Windup beim Vorhandensein eines Zustandsbeobachters? Hinweis: Stellgrößenbegrenzung ±0, 045 p = [ ] T 11

13 Übungsaufgaben zur Regelungstechnik B Aufgabe Aufgabe 11 Platzhalter für eine neue Aufgabe. Aufgabe wird zu gegebener Zeit über Paul bekannt gegeben! 12

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Systemtheorie und Regelungstechnik Abschlussklausur

Systemtheorie und Regelungstechnik Abschlussklausur Systemtheorie und Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 7. März 5, 9:-:, Freiburg, Georges-Koehler-Allee, HS 6 und HS 6 page

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Linearisierung. Vorlesung 4. Realität: nichtlinear. Wunsch: Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) A=F(Y)

Linearisierung. Vorlesung 4. Realität: nichtlinear. Wunsch: Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) A=F(Y) Realität: nichtlinear Y AF(Y) A Wunsch: im Betriebspunkt linear Y K A Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) 1 Beispiel für Nichtlineare Systemkomponente: Ventil in

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang

Vorlesung 13. Die Frequenzkennlinien / Frequenzgang Vorlesung 3 Die Frequenzkennlinien / Frequenzgang Frequenzkennlinien geben das Antwortverhalten eines linearen Systems auf eine harmonische (sinusförmige) Anregung in Verstärkung (Amplitude) und Phasenverschiebung

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik 1. Einführung in die Regelungstechnik 1.1 Zielsetzung der Regelungstechnik und Begriffsdefinitionen 1.2 Beispiele

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

3. Übung zur Vorlesung Steuer- und Regelungstechnik

3. Übung zur Vorlesung Steuer- und Regelungstechnik 3. Übung zur Vorlesung Steuer- und Regelungstechnik Linearisierung Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Umdruck RT: Grundlagen der Regelungstechnik. 1 Grundbegriffe der Steuerungs- und Regelungstechnik. 1.2 Regelung

Umdruck RT: Grundlagen der Regelungstechnik. 1 Grundbegriffe der Steuerungs- und Regelungstechnik. 1.2 Regelung Universität Stuttgart Institut für Leistungselektronik und lektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow.2 Regelung ÜBUG ZU LKRISCH RGICHIK II Umdruck R: Grundlagen der Regelungstechnik Grundbegriffe

Mehr

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 Hörsaal 2 Montag, den 08. 08. 2016 Beginn: 10.00 Uhr Bearbeitungszeit: 120

Mehr

Institut für Elektrotechnik u. Informationstechnik. Systemtheorie - Nichtlineare Systeme

Institut für Elektrotechnik u. Informationstechnik. Systemtheorie - Nichtlineare Systeme Institut für Elektrotechnik u. Informationstechnik Systemtheorie - Nichtlineare Systeme Stabilitätskonzepte nach Ljapunov Prof. Dr. techn. F. Gausch 211 Inhaltsverzeichnis 1 Gegenüberstellung von Eigenschaften

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler FELJC 4a_Geschlossener_ Regelkreis_Störverhalten.odt 1 4. Der geschlossene Regelkreis mit P-Strecke und P-Regler 4.1. Störverhalten (disturbance behaviour, comportement au perturbations) 4.1.1 Angriffspunkt

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Behrang Monajemi Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Theorie der Regelungstechnik

Theorie der Regelungstechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. H. Gassmann Theorie der Regelungstechnik Eine Einführung Verlag Harri

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

SIMULINK. Regelkreise

SIMULINK. Regelkreise SIMULINK Regelkreise Dipl.-Ing. U. Wohlfarth Inhalt Modellierung einer Regelstrecke in Simulink Analyse der Streckeneigenschaften in Matlab Berechnung von Reglerkoeffizienten in Matlab Auslegung eines

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 69 Punkte) BSc - Sessionsprüfung 29.8.2 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten 8 (unterschiedlich gewichtet, total 69 Punkte) Um die

Mehr

Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren

Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Frequenzgangmessung, Entwurf

Mehr

Regelungstechnik 1. Oldenbourg Verlag München Wien

Regelungstechnik 1. Oldenbourg Verlag München Wien Regelungstechnik 1 Lineare und Nichtlineare Regelung, Rechnergestützter Reglerentwurf von Prof. Dr. Gerd Schulz 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Frequenzgang und Übergangsfunktion

Frequenzgang und Übergangsfunktion Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 0 Versuchsziel Versuch Temperaturregelung Untersuchung des Regelverhaltens eines Zweipunktreglers Datum Versuchsdurchführung: Datum Protokoll: Versuchsgruppe:

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Versuchsanleitung. Labor Mechatronik. Versuch DV_5 Regelkreis mit analogen Reglern. Labor Mechatronik Versuch BV-5 analoge Regelung

Versuchsanleitung. Labor Mechatronik. Versuch DV_5 Regelkreis mit analogen Reglern. Labor Mechatronik Versuch BV-5 analoge Regelung Fachbereich 2 Ingenieurwissenschaften II Labor Mechatronik Steuerungund Regelung Lehrgebiet: Mechatronik Versuchsanleitung Versuch DV_5 Regelkreis mit analogen Reglern FB2 Stand April 2009 Seite1von 9

Mehr

Einstieg in die Regelungstechnik

Einstieg in die Regelungstechnik Hans-Werner Philippsen Einstieg in die Regelungstechnik Vorgehensmodell für den praktischen Reglerentwurf 2., neu bearbeitete Auflage Philippsen Einstieg in die Regelungstechnik Bleiben Sie auf dem Laufenden!

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Chapter 1 : þÿ w i e e i n e n G u t s c h e i n a u f b e t a t h o m e s e t z e n c h a p t e r

Chapter 1 : þÿ w i e e i n e n G u t s c h e i n a u f b e t a t h o m e s e t z e n c h a p t e r Chapter 1 : þÿ w i e e i n e n G u t s c h e i n a u f b e t a t h o m e s e t z e n c h a p t e r þÿ b e t - a t - h o m e. c o m h a t h e u t e s e h r s t a r k e Q 3 - Z a h l e n b e r i c h t e

Mehr

Aufgabensammlung zum Grundkurs Regelungstechnik

Aufgabensammlung zum Grundkurs Regelungstechnik Aufgabensammlung zum Grundkurs Regelungstechnik Otto-von-Guericke-Universität Magdeburg Institut für Automatisierungstechnik 6. Oktober 2003 Aufgabe Das dynamische Verhalten einer Regelstrecke aus der

Mehr

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT TECHNISCHE UNIVERSITÄT ILMENAU Institut für Automatisierungs- und Systemtechnik Fachgebiet Simulation und Optimale Prozesse Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge

Mehr

Automatisierungstechnik 1

Automatisierungstechnik 1 Automatisierungstechnik Hinweise zum Laborversuch Motor-Generator. Modellierung U a R Last Gleichstrommotor Gleichstromgenerator R L R L M M G G I U a U em = U eg = U G R Last Abbildung : Motor-Generator

Mehr

Mechatronik Grundlagen

Mechatronik Grundlagen Prüfung WS 2009/2010 Mechatronik Grundlagen Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit lesbarem Namen werden korrigiert. Keine rote Farbe verwenden.

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung der Diplomarbeit: Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen

Mehr

Drehzahlregelung eines Gleichstrommotors

Drehzahlregelung eines Gleichstrommotors Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungsssteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik 1 Einführung Versuch 1b

Mehr

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte)

Musterlösung. 120 Minuten + 15 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet, total 67 Punkte) BSc - Sessionsprüfung 7.8.23 Regelungstechnik I (5-59-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 2 Minuten + 5 Minuten Lesezeit am Anfang! 8 (unterschiedlich gewichtet,

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte)

Musterlösung. 9 (unterschiedlich gewichtet, total 60 Punkte) Prof. L. Guzzella Prof. R. D Andrea BSc - Sessionsprüfung 5.8.8 Regelungstechnik I (151-591-) Prof. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: 1 Minuten 9 (unterschiedlich

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2 19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur

Mehr

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte)

Musterlösung. 8 (unterschiedlich gewichtet, total 62 Punkte) BSc - Sessionsprüfung 6.8.8 Regelungstechnik II (5-59-) Prof. Dr. L. Guzzella Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Minuten 8 (unterschiedlich gewichtet, total 6 Punkte) Um die

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Entwurf durch Polvorgabe

Entwurf durch Polvorgabe Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 16. Februar 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K J. Ackermann Abtastregelung Zweite Auflage Band I: Analyse und Synthese Mit 71 Abbildungen lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K laventa r- h' r O o JJj Sadigebiefei

Mehr

Lösungen zur 3. Übung

Lösungen zur 3. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung HS oblenz FB ngenieurwesen Prof. Dr. röber Seite von 7 Versuch 4: Hydraulische Positionsregelung. Versuchsaufbau.. mfang des Versuches m Versuch werden folgende Themenkreise behandelt: - Aufbau eines Prüfstandes

Mehr