EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "EINFÜHRUNG IN DIE HÖHERE MATHEMATIK"

Transkript

1 EINFÜHRUNG IN DIE HÖHERE MATHEMATIK MIT BESONDERER BERÜCKSICHTIGUNG IHRER ANWENDUNGEN AUF GEOMETRIE, PHYSIK, NATURWISSENSCHAFTEN UND TECHNIK VON DR.PHIL.KARL STRUBECKER ORD. PROFESSOR AN DER TECHNISCHEN HOCHSCHULE KARLSRUHE.< > " >^ BAND II: DIFFERENTIALRECHNUNG EINER REELLEN VERÄNDERLICHEN MIT 253 ABBILDUNGEN R. OLDENBOURG MÜNCHEN-WIEN 1967

2 INHALTSVERZEICHNIS Vorwort xv ZWEITER ABSCHNITT: Differentialrechnung für Funktionen einer reellen Veränderlichen A. Begriff der Ableitung einer Funktion /(*). Ableitungsregeln 1. Das Tangentenproblem. Die Ableitung einer Funktion f(x) als Grenzwert ihres Differenzenquotienten 3 2. Ableitung der Potenzfunktion y = x* für positive ganze und rationale Exponenten n Ableitung der Funktionen 4-sin (cox + a) und ^4-cos (cox + a), insbesondere von sin x und cos x Ableitung der logarithmischeh Funktion "log x Ableitung der Exponentialfunktion A-a** Das Geschwindigkeitsproblem. Geschwindigkeit einer geradlinigen Bewegung Verallgemeinerung. Änderungsgeschwindigkeit eines zeitlichen Vorgangs Verschiedene andere Deutungen der Ableitung Das LANDAUsche Symbol o Das LANDAUsche Symbol O Stetigkeit und Differenzierbarkeit einer Funktion Zerlegungssatz von J. L. LAGRANGE 53 B. Differential und Differentialquotient einer Funktion y(x). Weitere Differentialregeln 13. Differential und Differentialquotient einer Funktion y(x) Geometrische Deutung und praktische Bedeutung der Differentiale Anwendungen* des Differentials. Geschichtliche Bemerkungen Linksseitige und rechtsseitige Ableitung einer Funktion f(x) Uneigentliche (unendliche) Ableitungen,. 79

3 VIII Inhaltsverzeichnis 18. Ableitung von Summe, Differenz, Produkt und Quotient zweier differenzierbarer Funktionen 86 1# Beispiele und Anwendungen der Summenregel und der Produktregel Beispiele zur Quotientenregel. Ableitung von tg x und ctg x. Anwendungen Feststellung mehrfacher (reeller oder komplexer) Wurzeln einer reellen algebraischen Gleichung Befreiung einer reellen algebraischen Gleichung von mehrfachen (reellen oder komplexen) Nullstellen. Kettendivision Ableitung der Hyperbelfunktionen Zusammenfassung einiger weiterer Regeln der Differentialrechnung Berührungsgrößen von Kurven in cartesischen Koordinaten 106 C. Der Mittelwertsatz der Differentialrechnung. Kettenregel. Anwendung auf weitere Differentiationsregeln 2-6. Der.Satz von ROLLE Einige Anwendungen des Satzes von ROLLE 111 %8. Der Mittelwertsatz der Differentialrechnung Verallgemeinerter Mittelwertsatz 121,J0. Anwendungen des Mittelwertsatzes. Der Eindeutigkeitssatz der Differentialrechnung Einige weitere Anwendungen des Mittelwertsatzes. Satz von DAR- BOUX über die Zwischenwerte der Ableitung Ableitung zusammengesetzter oder mittelbarer Funktionen. Kettenregel der Differentialrechnung Weitere Anwendungen der Kettenregel. Logarithmische Ableitung Das logarithmische Differential. Anwendung auf Fehlerrechnung Einige Beispiele zur Fehlerrechnung Die Ableitung der Umkehrfunktion Die Ableitungen der Arcusfunktionen Die Ableitungen der Areafunktionen...> Erste Verallgemeinerung der Kettenregel,t, 161 D. Zweite Verallgemeinerung der Kettenregel. Ableitung impliziter Funktionen. 40. Einführende Bemerkungen über stetige Funktionen von zwei und mehr unabhängigen Veränderlichen Partielle Ableitungen Zweite Verallgemeinerung der Kettenregel Ableitung der durch die Gleichung f(x, y) = 0 implizit definierten Funktion y = y(x)~.". 174

4 Inhaltsverzeichnis IX 44. Beispiele zur Tangentenbestimmung algebraischer und transzendenter Kurven Allgemeine Bemerkungen über elementare Funktionen und ihre Ableitungen 186 E. Differentiation von Funktionen, die durch konvergente unendliche Reihen definiert sind. Anwendungen 46>xDie als Summen von konvergenten Potenzreihen f(x) = a n x n defi- * nierten analytischen Funktionen 192 4>. Die Ableitung der durch konvergente Potenzreihen definierten analytischen Funktionen Die Ableitung der Summenfunktion F(x) einer konvergenten Reihe ' F(x) = Y, u n [x) mit differenzierbaren Gliedern u (x) Ableitung und Stammfunktion einer analytischen Funktion. Integration einer Potenzreihe Die Potenzreihenentwicklung der Funktion ln(l+a;). Berechnung einiger Logarithmen Die systematische Berechnung der Logarithmen "log x ; Die systematische Berechnung der Logarithmen zusammengesetzter Zahlen. Lineare Interpolation in Logarithmentafeln Die Potenzreihenentwicklung der Funktion arc tg x, Berechnung der Zahl 7i. EuLERsche Reihentransformation Genauere Berechnung der Zahl n 231 F. Stetige, nirgends differenzierbare Funktionen,55. Einige Beispiele von stetigen aber nirgends differenzierbaren Funktionen Die überall stetigen aber nirgends eigentlich differenzierbaren Funktionen von B. BOLZANO und T. TAKAGI Einige weitere Eigenschaften der TAKAGischen Kurve 256 G. Ableitungen und Differentiale höherer Ordnung 58. Ableitungen höherer Ordnung, 262,59. Einige Anwendungen der höheren Ableitungen. Erste Verallgemeinerung des Satzes von ROLLE 266 fö. TAYLORsche Entwicklung eines Polynoms P(x) an einer Stelle x Mehrfache Nullstellen einer Funktion f(x). Zweite Verallgemeinerung des Satzes von ROLLE Differentiale höherer Ordnung. Höhere Differentialquotienten Allgemeine Regeln über Ableitungen und Differentiale höherer Ordnung. Beispiele 276 JXk. Die physikalische Bedeutung der zweiten Ableitung. Beschleunigung 281

5 X Inhaltsverzeichnis 65. Explizite Darstellung der höheren Ableitungen von arc sin x und arc tgz Höhere Ableitungen einer zusammengesetzten Funktion 288 H. Monotone und konvexe Funktionen 67. Die Bedeutung des Vorzeichens der ersten Ableitung f'(x) einer Funktion f(x) Anwendungen und Beispiele Konvexe Funktionen Weitere Beispiele und Anwendungen von konvexen Funktionen Nach oben beschränkte konvexe Funktionen. Ihre Stetigkeit und einseitige Differenzierbarkeit Verallgemeinerung der Eigenschaften von konvexen Funktionen Weitere Kennzeichnungen der konvexen Funktionen Beispiele und Anwendungen. Die Ungleichungen von CAUCHY, HOLDER und MINKOWSKI Geometrische Bedeutung des Vorzeichens der zweiten Ableitung Anwendungen auf die Diskussion von Kurven y = f(x) 337 I. Elementare Theorie der Extrema 77. Absolute und relative Maxima und Minima (Extrema) einer Funktion Die elementare Theorie der relativen Extrema nach A. CAUCHY Die elementare Theorie der relativen Extrema nach LEIBNIZ Elementare Beispiele zur Bestimmung relativer Extrema Weitere einfache Extremalaufgaben 369 ff2. Einige weitere Extremalaufgaben Einige physikalische Extremalaufgaben Randextrema 390 J. Bestimmung von Grenzwerten (Theorie der unbestimmten Formen) 85. Ein Sonderfall der Regel von DE L'HOSPITAL 397 8Ä. Die Regel von DE L'HOSPITAL zur Bestimmung von Grenzwerten Beispiele und Anwendungen Erweiterungen der Regel von DE L'HOSPITAL Wiederholte Anwendung der Regel von DE L'HOSPITAL Zwei weitere Grenzwertprobleme. (Unbestimmte Formen der Gestalt O-oo und oo-oo) Beispiele und Anwendungen 430

6 Inhaltsverzeichnis XI 92. Grenzwerte von Ausdrücken der Gestalt [?>(a:)p*,t,. (Unbestimmte Formen der Gestalt 0, oo» und 1 ) Allgemeine Bemerkungen über Grenzwertbestimmungen Die verschiedenen Ordnungen des Unendlichklein-Werdens und Unendlichgroß-Werdens von Funktionen Das Rechnen mit Größen, die unendlich klein oder unendlich groß werden 455 K. Die TAYLORsche Formel 9X Zusammenhang zwischen den höheren Steigungen und höheren Ableitungen einer Funktion. CAucHYscher Mittelwertsatz für höhere Steigungen und Differenzenquotienten Beweis des Mittelwertsatzes von CAUCHY für" die höheren Steigungen einer Funktion f(x). Anwendung auf das Restglied der NEWTONschen Interpolationsformel Bestimmung des HERMiTEschen Interpolationspolynoms P(x) durch, Funktionswerte und Ableitungen an mehreren Stützstellen Ermittlung des HERMiTEschen Interpolationspolynoms mit Hilfe des Steigungsspiegels Das Restglied der HERMiTEschen Interpolationsformel Die Formel von TAYLORundihre Restglieder nach LAGRANGE, CAUCHY, ROCHE und SCHLÖMILCH Die Schmiegparabeln höherer Ordnung einer Kurve y = f(x) Anwendung auf die Parabeln dritter und vierter Ordnung Verschiedene andere Gestalten der TAYLORschen Formel und ihres Restgliedes. Die Formel von MACLAURIN Allgemeine Theorie der relativen Extrema einer Funktion f(x) Verschiedene Beispiele 499 L. TAYLORsche Entwicklung einer Funktion f(x). Anwendungen auf elementare Funktionen 1^7. Berechnung einer Funktion f(x) mittels der TAYLORschen Formel. Entwicklung einer Funktion f(x) in eine TAYLORsche Reihe 504 lq4f. Hinreichende Bedingungen für die Darstellbarkeit einer Funktion f(x) durch ihre TAYLORsche Reihe. Satz von N. S. BERNSTEIN Die TAYLORsche Reihe als Potenzreihe Die MACLAURiNschen Entwicklungen der Funktionen e* und e~ x Die MACLAURiNschen Entwicklungen der Funktionen cos x, sin x und Sof x, in x Die logarithmische Reihe Die MACLAURiNschen Entwicklungen der Funktionen arctga; und arc sin x 531

7 XII Inhaltsverzeichnis \Jkü. Die binomische Reihe (Binomialreihe) Das Verhalten der Binomialreihe an den Stellen x = +1 und x = Beispiele und Anwendungen der Binomialreihe Die BERNOULLischen Zahlen Die MACLAURiisrschen Entwicklungen der Funktionen tg x, x-ctgz, Sg x, X-&.Q x Teilbruchzerlegungen der Funktionen jrz-ctg nx und ji-tg {nx/2), ;r/sin nx und jr/cos nx Anwendungen TAYLORSche Entwicklung von 1/cos x. EuLERsche Zahlen Herleitung neuer Potenzreihenentwicklungen durch Differentiation oder Integration bekannter Entwicklungen 566 \3&. Anwendungen auf die Berechnung von Grenzwerten Anwendung auf Näherungsformeln 573 M. Graphische, instrumentelle und numerische Differentiation 125. Konstruktion der abgeleiteten Kurve y =y'[x) einer stetig differenzierbaren Funktion y = y(x) ' Ein globales Verfahren zur angenäherten graphischen Differentiation Graphische Ermittlung der Tangenten und Normalen einer Kurve Instrumentelle Ermittlung der Tangenten und Normalen einer Kurve (Derivatoren, Derivimeter) Numerische Differentiation Vorbemerkungen zum Sonderfall äquidistanter Argumente. Die Differenzenoperatoren A und E sowie V und H Numerische Differentiation bei äquidistanten Argumenten. NEWTONsche Ableitungsformeln bei absteigenden Differenzen Numerische Differentiation mittels der NEwroNschen Formeln mit aufsteigenden Differenzen Numerische Differentiation nach STIRLING und BESSEL 612 N. Numerische Lösung von Gleichungen 134. Die Regula falsi Weitere Betrachtungen zur Regula falsi. Satz von FOURIER Ein Beispiel zur Regula falsi Das Iterationsverfahren von GREGORY zur Lösung von Gleichungen Das Iterationsverfahren von GREGORY zur Lösung von Gleichungen (Fortsetzung) Anwendungen und Beispiele zum Iterationsverfahren von GREGORY Konvergenz erster und höherer Ordnung eines Iterationsverfahrens 641

8 Inhaltsverzeichnis XIII 141. Das NEWTONsche Verfahren Beispiele zum NEWTONschen Verfahren Algebraische Gleichungen. Ihre Befreiung von mehrfachen Wurzeln Einschränkung der reellen Wurzeln einer reellen algebraischen Gleichung nach MACLAURIN und LAGRANGE Die Verfahren von NEWTON und LAGUERRE zur Einschränkung der reellen Wurzeln einer reellen algebraischen Gleichung Einschränkung der reellen Wurzeln einer reellen algebraischen Gleichung nach CAUCHY Der Satz von STURM Anwendungen und Beispiele zum Satz von STURM Der Satz von BUDAN-FOURIER Die Cartesische Zeichenregel Die Ungleichungen von EULER und DE GUA Ebene Kurven 152. Stetige ebene Kurven Die Konstruktion einer PEANOschen Kurve Weitere Bemerkungen über die nach HILBERT erzeugte PEANosche Kurve Rechnerische Behandlung der HiLBERTschen Abbildung JoRDANsche Kurven Glatte Kurven Anwendungen und Beispiele Parameteränderung Parameterinvarianz des Tangentendifferentials. Bogendifferential und Bogenlänge Differentiation der Vektorprodukte Gerade und krumme Linien Mehrpunktig (von höherer Ordnung) berührende Tangenten Berührung höherer Ordnung zweier Kurven y = f(x) und y = g(x) Berührung höherer Ordnung der Kurven = %(t) und f[x, y) = Schmiegkreis einer ebenen Kurve. Evolute Einige Beispiele Schmiegkreise der Kurven y = y(x) Schmiegkreise der Kurven y* = f(x) Asymptoten ebener Kurven Geradlinige (vertikale) Asymptoten ebener Kurven Geradlinige (nicht vertikale) Asymptoten ebener Kurven 783

9 XIV Inhaltsverzeichnis Schrifttum 792 Namen- und Sachverzeichnis 795.

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK H. v. MANGOLDT'S EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM SEIT DER SECHSTEN AUFLAGE NEU HERAUSGEGEBEN UND ERWEITERT VON KONRAD KNOPP E. 0. PROFESSOR DER MATHEMATIK AN DER

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Analysis für Wirtschaftswissenschaftler und Ingenieure

Analysis für Wirtschaftswissenschaftler und Ingenieure Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I

Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Stichpunkte zum Abschnitt Analysis der Höheren Mathematik für Ingenieure I Komplexe Zahlen Definition komplexer Zahlen in der Gaußschen Zahlenebene, algebraische Form, trigonometrische Form, exponentielle

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage

Mathematik kompakt. ^ Springer. Y. Stry R. Schwenkert. für Ingenieure und Informatiker. Zweite, bearbeitete Auflage Y. Stry R. Schwenkert Mathematik kompakt für Ingenieure und Informatiker Zweite, bearbeitete Auflage Mit 156 Abbildungen und 10 Tabellen ^ Springer Inhaltsverzeichnis 1 Mathematische Grundbegriffe 1 1.1

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung

S.L. Salas/Einar Hille. Calculus. Einführung in die Differential- und Integralrechnung * S.L. Salas/Einar Hille Calculus Einführung in die Differential- und Integralrechnung Aus dem Amerikanischen von Michael Basler, Thomas Lange und Karl-Heinz Lotze Mit 670 Abbildungen Spektrum Akademischer

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 4. Differentialrechnung Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

I. Zahlen, Rechenregeln & Kombinatorik

I. Zahlen, Rechenregeln & Kombinatorik XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen Stetigkeit von Funktionen Definition. Es sei D ein Intervall oder D = R, x D, und f : D R eine Funktion. Wir sagen f ist stetig wenn für alle Folgen (x n ) n in D mit Grenzwert x auch die Folge der Funktionswerte

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Mathematik. Aufgabensammlung mit Lösungen. 6., verbesserte und erweiterte Auflage. R. Oldenbourg Verlag München Wien. Von Professor Aribert Nieswandt

Mathematik. Aufgabensammlung mit Lösungen. 6., verbesserte und erweiterte Auflage. R. Oldenbourg Verlag München Wien. Von Professor Aribert Nieswandt Mathematik Aufgabensammlung mit Lösungen Von Professor Aribert Nieswandt 6., verbesserte und erweiterte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis Aufgaben zur Mengenalgebra und Kombinatorik

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

3. Differentialrechnung

3. Differentialrechnung 3. Differentialrechnung 3.1. Differentialquotient, Ableitung und Differential Bildachse y Funktion y = f(x ) y(x 0 + Δx) y(x ) 0 Sekante: Δy/ Δx := [y(x + Δx) - y(x )]/ Δx 0 0 α Tangente in x 0 Winkel

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik

Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik István Pál Email: inpal@gmx.de 15. Okt. 2014 Gliederung Bekannte Grundbegriffe Geschichte der Differentialrechnung Anwendungsgebiete

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Inhaltsverzeichnis. I A n alysis Grundlagen über Mengen und die Sätze von Bolzano-Weierstrass 55

Inhaltsverzeichnis. I A n alysis Grundlagen über Mengen und die Sätze von Bolzano-Weierstrass 55 Inhaltsverzeichnis I A n alysis 1 9 1 G rundlagen 11 1.1 Motivation... 11 1.2 G rundlagen... 12 1.2.1 Funktionen... 12 1.2.2 Eigenschaften von Funktionen... 13 1.2.3 Verkettete Funktionen... 15 1.2.4 Reelle

Mehr

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen

Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

Bezeichnung von Funktionen x := y:=

Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Bezeichnung von Funktionen x := y:= Analytische Darstellung (Funktionsgleichung) Explizit: (aufgelöst nach y) Analytische Darstellung (Funktionsgleichung) Explizit:

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Inhaltsverzeichnis. xiii. Vorworte

Inhaltsverzeichnis. xiii. Vorworte Inhaltsverzeichnis Vorworte xiii I Einführung 1 I.1 Ein paar Beispiele............................... 1 I.2 Interpretation von Schaubildern....................... 3 I.3 Mathematische Beschreibung von Abhängigkeiten.............

Mehr

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik

Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Kompaktkurs Ingenieurmathematik mit Wahrscheinlichkeitsrechnung und Statistik Bearbeitet von Wolfgang Schäfer, Gisela Trippler 2. Auflage 2001. Buch. 376 S. Hardcover ISBN 978 3 446 21595 5 Format (B x

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Inhaltsverzeichnis s.

Inhaltsverzeichnis s. Inhaltsverzeichnis s. Abschnitt I. Rechnung mit bestimmten Grössen. Capitel I. Elemente der Lehre von den ganzen Zahlen. 1. Begriff der Zahl. Unabhängigkeit einer Summe gegebener Zahlen von der Anordnung

Mehr

Inhaltsverzeichnis. 4 Elementare Funktionen und ihre Graphen...51

Inhaltsverzeichnis. 4 Elementare Funktionen und ihre Graphen...51 Inhaltsverzeichnis 1 1 Analysis...17 1.1 Funktionen...17 1.1.1 Begriff...17 1.1.2 Nutzen von Funktionen...19 1.1.3 Graph der Funktion...19 1.2 Aufgaben der Analysis...21 1.3 Vorschau...22 2 Elementares

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare

Mehr

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Vermischte Aufgaben zu den Ableitungen

Vermischte Aufgaben zu den Ableitungen Vermischte Aufgaben zu den Ableitungen Seite 01 Kapitel mit 322 Aufgaben Seite Übersicht der Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (28 Aufgaben) 06 Lösungen zum Aufgabenblatt 1 07 Aufgabenblatt

Mehr

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n-

Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung. Permutationen, Inversionen. Explizite Formel für die Determinante einer n n- I. Lineare Algebra Mathematik 2, SS 2015 Prof. F. Brock Zusammenfassung 1. Determinanten (siehe Fischer/Kaul I, S.329-339) Matrix. Determinanten von 2 2- und 3 3-Matrizen. Alternierende Multilinearformen

Mehr

Mathematische und statistische Hilfsmittel für Pharmazeuten

Mathematische und statistische Hilfsmittel für Pharmazeuten Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Mathematische Begriffe visualisiert mitmaplev

Mathematische Begriffe visualisiert mitmaplev T. Westermann W. Buhmann L. Diemer E. Endres M. Laule G. Wilke Mathematische Begriffe visualisiert mitmaplev für Lehrer und Dozenten 0» Springer Inhaltsverzeichnis 1. Einführung 1 1.1 Systemvoraussetzungen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Adolf Riede. Mathematik für Biologen. Eine Grundvorlesung. Mit 120 Abbildungen und zahlreichen durchgerechneten Beispielen.

Adolf Riede. Mathematik für Biologen. Eine Grundvorlesung. Mit 120 Abbildungen und zahlreichen durchgerechneten Beispielen. 9vieweg Adolf Riede Mathematik für Biologen Eine Grundvorlesung Mit 120 Abbildungen und zahlreichen durchgerechneten Beispielen IX I Zahlen 1 1.1 Anzahlen 1 1.2 Reelle Zahlen 8 1.3 Dokumentation von Meßwerten

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoff mann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysis Theorie und Numerik PEARSON btudiurn. ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr