2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:

Größe: px
Ab Seite anzeigen:

Download "2. Schätzverfahren 2.1 Punktschätzung wirtschaftlicher Kennzahlen. Allgemein: Punktschätzung eines Parameters:"

Transkript

1 . Schätzverfahre. Puktschätzug wirtschaftlicher Kezahle Allgemei: Puktschätzug eies Parameters: Ermittlug eies Schätzwertes für eie ubekate Parameter eier Zufallsvariable i der Grudgesamtheit mit Hilfe vo Ergebisse aus eier Zufallsstichprobe, d.h. als Stichprobefuktio. Alterative? II.

2 . Puktschätzug wirtschaftlicher Kezahle Beispiel: Relative Häufigkeit ist: Schätzug der Wahrscheilichkeit P(A) eies zufällige Ereigisses A ud damit Puktschätzug für Parameter p P(A) eier Zweipukt- oder Biomialverteilug II.

3 . Puktschätzug wirtschaftlicher Kezahle (II) Formal: X Variable (Statistisches Merkmal) i eier Grudgesamtheit G mit bestimmter Häufigkeitsverteilug sowie bekate ud ubekate Kegröße (Parameter). Gesucht: Ubekater kokreter Parameter π vo X i G. II. 3

4 . Puktschätzug wirtschaftlicher Kezahle Beispiele für Parameter π: - Arithmetisches Mittel des Merkmals X, Erwartugswert der Zufallsvariable µ X: E( X ), - Var( X ) σ - Relative Häufigkeit der Ausprägug x i, Wahrscheilichkeit p i des Ereigisses E i - Weitere? II. 4

5 . Puktschätzug wirtschaftlicher Kezahle (III) Hilfsmittel: Zufallsstichprobe S aus G: Stichprobevariable X, X,..., X Nach der Erhebug: Realisatioe (vo X): x, x,..., x Schätzfuktio, Schätzer Πˆ : Vorschrift (Formel, Regel) zur Bestimmug eies Näherugswertes für π aus X,...X (eie Stichprobefuktio ) II. 5

6 . Puktschätzug wirtschaftlicher Kezahle (IV) Πˆ ist Zufallsvariable mit Realisatio πˆ. Warum?? Beispiel: Schätzfuktioe für de Erwartugswert E(X) µ: Vorschläge?? Schätzfehler: π Πˆ ( Zufallsvariable??) II. 6

7 .. Agestrebte Eigeschafte vo Schätzer Erwüscht, (icht ubedigt gegebe!!): E( Π) ˆ π a) We, da heißt erwartugstreu. Πˆ Bedeutug? B E( Πˆ ) π Gegeteil: Verzerrug (Bias): Schätzfehler Zufallsfehler + Bias II. 7

8 .. Agestrebte Eigeschafte vo Schätzer (II) Beispiel: Stichprobemedia ist i. d. R. verzerrter Schätzer für µ. (We icht erwartugstreu, da vielleicht weigstes) Asymptotisch erwartugstreu: d.h. lim B lim{e( Πˆ ) π} 0 II. 8

9 .. Agestrebte Eigeschafte vo Schätzer (III) Πˆ b) We midestes asymptotisch erwartugstreu ud lim Var( Πˆ ) lim [E( π Πˆ ) ] 0, da heißt Πˆ kosistet Bedeutug? II. 9

10 .. Agestrebte Eigeschafte vo Schätzer (IV) c) We Var( Πˆ da heißt Πˆ j j ) Var( Πˆ ) effiziet i für i,...,k ud alleπ, uter de Πˆ, Πˆ,... Πˆ k (Güte eies Schätzers uter verschiedee erwartugstreue Puktschätzer für eie Parameter B auf Grud des Variazvergleichs) II. 0

11 .. Agestrebte Eigeschafte vo Schätzer (V) Awedbarkeit vieler Schätzer oft durch strege Voraussetzuge begrezt. Deshalb wichtig: d) We ei Schätzer gegeüber der Nicht-Erfüllug eigetlich otwediger Voraussetzuge, etwa hisichtlich der Verteilug des utersuchte Merkmals (z. B. Ausreißer!), uempfidlich ist, da heißt er robust. II.

12 .. Beispiele Erwartugswert ud Variaz a) Gesucht: Durchschitt vo X i der Grudgesamtheit: µ E(X) Ei möglicher Schätzer ist der Stichprobedurchschitt: Erwartugstreu? Prüfe: E X i i E( X i ) E( X ) µ µ d.h.?? II.

13 .. Beispiele Erwartugswert ud Variaz (II) Kosistet? Prüfe: Var( X X i ) Var( ) ( X uabhägig) i Var( ) Var( ) X i X Var( X) Var( X )?? Voraussetzug: uedliche Wiederholbarkeit Sost?? II. 3

14 .. Beispiele Erwartugswert ud Variaz (III) Nebeergebis: Var( X ) σ Bedeutug? Für kleie edliche Grudgesamtheit (N) ud Stichprobe ohe Zurücklege Korrektur Var( N... σ N X ) Warum? II. 4

15 .. Beispiele Erwartugswert ud Variaz (IV) b) Gesucht: Variaz vo X i der Grudgesamtheit: Var(X)σ² Eie Schätzfuktio σ ˆ (X i X )² Erwartugstreu? σ ² E ( ˆ σ ²) ( ) <... d.h.? aber asymptotisch erwartugstreu (warum?) ud kosistet. II. 5

16 .. Beispiele Erwartugswert ud Variaz (V) Aderer Schätzer: Stichprobevariaz S ( X i X )... bzw. S ( N ) N X i X ) ( ) Wa, wie? Erwartugstreu? Bitte zeige! S² ist kosistet (ohe Beweis) II. 6

17 .. Beispiele Erwartugswert ud Variaz (VI) Wichtige Frage: Wie fidet ma geeigete Schätzer? Es gibt viele Methode, um zu eier Schätzfuktio zu komme, z.b. II. 7

18 ..3. Schätzprizipie: ML ud LS a) Maximum-Likelihood-Methode Wahl des Parameterwerts so, dass für ih - we er als wahrer Parameter geomme würde das gefudee Zufallsstichprobeergebis die höchste Wahrscheilichkeit (-sdichte) hätte II. 8

19 ..3. Schätzprizipie: ML ud LS (II) Beispiel: X zweipuktverteilt (0; ) mit Parameter p (ubekat) Versuche: X, X,..., X Realisatioe: x, x,..., x z.b Zufallsvariable H Azahl des Auftretes der bei Versuche (Verteilug??) II. 9

20 ..3. Schätzprizipie: ML ud LS (III) och Beispiel: Realisierug vo H: kokrete atürliche Zahl h also: h-mal, (-h)-mal 0 h Σ x i Wahrscheilichkeitstabelle für X (d.h. für alle X i!) x j p j 0 -p p II. 0

21 ..3. Schätzprizipie: ML ud LS (IV) och Beispiel: Wahrscheilichkeit für Stichprobeergebis x, x,..., x ist ach Multiplikatiossatz für uabhägige Ereigisse P[( X P( X p x ) ( X h ( p) L( x,..., x ) P( X h x x )... ( X x )... P( X ; p) Likelihood fuktio x )] x ) II.

22 ..3. Schätzprizipie: ML ud LS (V) Für p Schätzer eisetze. Fuktio durch Logarithmiere liearisiere: p ˆl L h l pˆ + ( - h) l (- pˆ ) Loglikelihoodfuktio Maximiere, d.h. Differeziere ach ud Nullsetze: pˆ h pˆ h ( pˆ) 0; h pˆ h ( pˆ) II.

23 ..3. Schätzprizipie: ML ud LS (VI) pˆ( h) p ˆ h; ( pˆ) h; p ˆ ph ˆ pˆ h ph ˆ Als was bekat?? ML-Schätzer pˆ H X i für Parameter p der Zweipukt- ud Biomialverteilug sowie für Wahrscheilichkeite ud Ateile allgemei. II. 3

24 ..3. Schätzprizipie: ML ud LS (VII) E( pˆ)... p( p) Var( pˆ)... Beweis: Zu : E(H) p ( s. Biomialverteilug) H p E( p ˆ) E( ) p II. 4

25 ..3. Schätzprizipie: ML ud LS (VIII) Zu : Var( H ) p(- p) H Var( pˆ) Var( ) Var( H ) ² p( p) p( p) ² Eigeschafte dieses Schätzers?? (Übug!!) II. 5

26 ..3. Schätzprizipie: ML ud LS (IX) b) Methode der kleiste Quadrate (LS) Schätzer so wähle, dass eie spezielle Fehlerquadratsumme miimal wird. Beispiel : Merkmal (Zufallsvariable) Gesucht: Erwartugswert E(X) µ (Durchschitt) Stichprobevariable Realisatioe X X,..., X x,..., x ubekater Schätzer µˆ II. 6

27 ..3. Schätzprizipie: ML ud LS (X) och Beispiel : Forderug : ( X i µ ˆ) mi daraus folgt : µ ˆ X X i d. h. der Stichprobedurchschitt Warum? II. 7

28 ..3. Schätzprizipie: ML ud LS (XI) Beispiel : Zwei Merkmale X ud Y, wobei die Zufallsvariable Y vo X abhägt. Modell: Erwartugswert vo Y ist eie (lieare) Fuktio der gegebee Realisatio x vo X: y(x) E(Y X x) α + β x, α ud β sid zu schätzede Parameter II. 8

29 ..3. Schätzprizipie: ML ud LS (XII) och Beispiel : Stichprobe ergibt Paare (x, Y ),..., (x, Y ) Schätzer a ud b für α ud β so bestimme, dass Fehlerquadratsumme Σ(Y i - (a + b x i ))² mi Bekat: Differeziere ud Nullsetze ergibt Normalgleichuge: a + b Σ x i Σ... a Σ x i + b Σ x i ² Σ x i y i II. 9

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

7. Stichproben und Punktschätzung

7. Stichproben und Punktschätzung 7. Stichprobe ud Puktschätzug 7. Grudgesamtheit ud Stichprobe Ausgagspukt der iduktive Statistik (beurteilede Statistik) sid Stichprobedate. Speziell stamme die Date aus Zufallsstichprobe. Die Stichprobeergebisse

Mehr

Wirksamkeit, Effizienz

Wirksamkeit, Effizienz 3 Parameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische Verteilugsaahme mit Parameterraum Θ. 1 Seie θ ud θ erwartugstreue

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Statistische Modelle und Parameterschätzung

Statistische Modelle und Parameterschätzung Kapitel 2 Statistische Modelle ud Parameterschätzug 2. Statistisches Modell Die bisher betrachtete Modellierug eies Zufallsexperimetes erforderte isbesodere die Festlegug eier W-Verteilug. Oft besteht

Mehr

Logarithmusfunktion, Rechenregeln für Logarithmen, Ableiten von Logarithmen (die Ableitung nach p wird hier stets als p geschrieben)

Logarithmusfunktion, Rechenregeln für Logarithmen, Ableiten von Logarithmen (die Ableitung nach p wird hier stets als p geschrieben) Wirtschaftswisseschaftliches Zetrum Uiversität Basel Statistik Dr. Thomas Zehrt (Pukt)Schätze Motivatio Eie vollstädige Iformatio über die Verteilug eies Merkmals X i eier Grudgesamtheit ka ur durch eie

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Maximum-Likelihood-Methode (ML-Methode)

Maximum-Likelihood-Methode (ML-Methode) 3 Parameterpuktschätzer Maximum-Likelihood-Methode 3.2 Maximum-Likelihood-Methode (ML-Methode Weitere geläufige Schätzmethode: Maximum-Likelihood-Methode Vor Erläuterug der Methode: eileitedes Beispiel

Mehr

Maximum Likelihood Version 1.6

Maximum Likelihood Version 1.6 Maximum Likelihood Versio 1.6 Uwe Ziegehage 15. November 2005 Logarithmegesetze log a (b) + log a (c) = log a (b c) (1) log a (b) log a (c) = log a (b/c) (2) log a (b c ) = c log a (b) (3) Ableitugsregel

Mehr

II. Grundzüge der Stichprobentheorie

II. Grundzüge der Stichprobentheorie II. Grudzüge der Stichprobetheorie Grüde für Stichprobeerhebug - deutlich gerigere Koste - größere Awedugsbreite - kürzere Erhebugs- ud Auswertugszeite - i der Regel größere Geauigkeit der Ergebisse Begriffsbestimmug

Mehr

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten.

Bei 95%iger Konfidenz wäre der Mittelwert der GG zwischen 1421,17DM und 1778,83DM zu erwarten. Aufgabe 36 (S. 346: Schätzverfahre für Mittelwert ud Stadardabweichug a Puktschätzuge für µ aufgrud der Werte der kleie Stichprobe aus Aufgabe 3 Bei eier Puktschätzug wird für de zu schätzede Parameter

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Diskrete Zufallsvariablen

Diskrete Zufallsvariablen Erste Beispiele diskreter Verteiluge Diskrete Zufallsvariable Beroulli-Verteilug Eie diskrete Zufallsvariable heißt beroulliverteilt mit arameter p, falls sie die Wahrscheilichkeitsfuktio p,, f ( ) ( )

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Kapitel 2. Induktive Statistik. 2.1 Grundprinzipien der induktiven Statistik

Kapitel 2. Induktive Statistik. 2.1 Grundprinzipien der induktiven Statistik Kapitel Iduktive Statistik.1 Grudprizipie der iduktive Statistik Ziel: Iferezschluss, Repräsetatiosschluss: Schluss vo eier Stichprobe auf Eigeschafte der Grudgesamtheit, aus der sie stammt. Vo Iteresse

Mehr

Einführung in die Stochastik 10. Übungsblatt

Einführung in die Stochastik 10. Übungsblatt Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

4. Übung Konfidenzintervalle für Anteile und Mittelwerte

4. Übung Konfidenzintervalle für Anteile und Mittelwerte Querschittsbereich 1: Epidemiologie, Mediziische Biometrie ud Mediziische Iformatik - Übugsmaterial - Erstellt vo Mitarbeiter des IMISE ud des ZKS Leipzig 4. Übug Kofidezitervalle für Ateile ud Mittelwerte

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert.

Übersicht: BS - 08 BS Häufigkeitsverteilung. Häufigkeitsverteilungen. Parametrisierung. unklassiert. eindimensional. klassiert. Übersicht: eidimesioal mehrdimesioal Häufigkeitsverteilug uklassiert klassiert tabellarische Darstellug Modul 07, graphische Darstellug Modul 07,2 Parametrisierug Lageparameter Modul 08 Streuugsparameter

Mehr

Stichprobenverteilungen, Schätz und Testtheorie

Stichprobenverteilungen, Schätz und Testtheorie Stichprobeverteiluge, Schätz ud Testtheorie Begleitede Uterlage zur Übug Iduktive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 1 Grudzüge der Stichprobetheorie.....................................

Mehr

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia

1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre Morgasche Formel A \ B = A [ B A [ B = A \ B Kommutativgesetz A \ B = B \ A A [ B = B [ A Assozia Statistik I - Formelsammlug Ihaltsverzeichis 1 Wahrscheilichkeitsrechug 1.1 Elemete der Megelehre................................. 1. Kombiatorik........................................ 1.3 Wahrscheilichkeite....................................

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen.

(4) = 37,7 % mit 37,7 % Wahrscheinlichkeit sind es höchstens 4 Fahrräder, das ist recht hoch; man kann also die Behauptung nicht wirklich ablehnen. Schülerbuchseite 98 1 Lösuge vorläufig IV Beurteilede Statistik S. 98 p S. 1 p w a t Tabelle Tabelle dowloadbar im Iteretauftritt 1 Teste vo Hypothese 1 a) Erwartugswert μ = 5 ud Stadardabweichug σ = 1,6;

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Eiführug i die statistische Testtheorie Statistische Tests zu ausgewählte Probleme Teil : Tests für Erwartugswerte Statistische Testtheorie I Eiführug Beschräkug auf parametrische Testverfahre Beschräkug

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle

Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht

Mehr

Statistik Einführung // Beschreibende Statistik 2 p.2/61

Statistik Einführung // Beschreibende Statistik 2 p.2/61 Statistik Eiführug Beschreibede Statistik Kapitel Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Beschreibede Statistik

Mehr

Kovarianz und Korrelation

Kovarianz und Korrelation Kapitel 2 Kovariaz ud Korrelatio Josef Leydold c 2006 Mathematische Methode II Kovariaz ud Korrelatio 1 / 41 Lerziele Mathematische ud statistische Grudlage der Portfoliotheorie Kovariaz ud Korrelatio

Mehr

Kapitel 12. Schätzung von Parametern

Kapitel 12. Schätzung von Parametern Kapitel 12 Schätzug vo Parameter Die Verteilug eier Zufallsvariable hägt i der Regel vo eiem oder mehrere Parameter ab. Bei der Poissoverteilug ist dies der Parameter λ, währed es bei der Normalverteilug

Mehr

Übungsblatt 9 zur Vorlesung. Statistische Methoden

Übungsblatt 9 zur Vorlesung. Statistische Methoden Dr. Christof Luchsiger Übugsblatt 9 zur Vorlesug Statistische Methode Schätztheorie ud Kofidezitervalle Herausgabe des Übugsblattes: Woche 8, Abgabe der Lösuge: Woche 9 (bis Freitag, 65 Uhr), Besprechug:

Mehr

Angewandte Stochastik II

Angewandte Stochastik II Vorlesugsskript Agewadte Stochastik II Dr. Katharia Best Witersemester 2010/2011 Ihaltsverzeichis 1 Grudidee der statistische Dateaalyse 5 1.1 Stichprobe..............................................

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Bernoulli-Experiment und Binomialverteilung

Bernoulli-Experiment und Binomialverteilung IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 8.1 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12.075, p-wert: 0.0168 f χ

Mehr

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage

Konfidenzintervall_fuer_pi.doc Seite 1 von 6. Konfidenzintervall für den Anteilswert π am Beispiel einer Meinungsumfrage Kofidezitervall_fuer_pi.doc Seite 1 vo 6 Kofidezitervall für de Ateilswert π am Beispiel eier Meiugsumfrage Nach eier Meiugsumfrage der Wochezeitug Bezirksblatt vom März 005, ei halbes Jahr vor de Ladtagswahle

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit

SBP Mathe Aufbaukurs 1. Absolute und relative Häufigkeit. Das arithmetische Mittel und seine Eigenschaften. Das arithmetische Mittel und Häufigkeit SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf # 0 Atwort Diese Lerkarte sid sorgfältig erstellt worde, erhebe aber weder Aspruch auf Richtigkeit och auf Vollstädigkeit. Das Lere mit Lerkarte fuktioiert ur

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürge Seger INDUKTIVE STATISTIK Wahrscheilichkeitstheorie, Schätz- ud Testverfahre ÜBUNG. - LÖSUNGEN. ypothesetest für die Dicke vo Plättche Die Dicke X vo Plättche, die auf eier bestimmte Maschie

Mehr

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen

Standard Normalverteilung Dichtefunktion von Standard Normal Verteilung. Grenzwertsatz. Normalverteilung. Andere wichtige Verteilungen: Anwendungen Statistik. Vorlesug, September, 00 f() 0.0 0. 0. 0.3 0.4 Stadard Normalverteilug Dichtefuktio vo Stadard Normal Verteilug -4-0 4 Der Erwartugswert: mittlere Wert E ( = f( ) d=0 für die Stadard Normal Verteilug

Mehr

P{k Fehlschläge vor dem ersten Erfolg} P(X=k) = p k = f(k) = p(1-p) k, k= 0, 1, 2,..., 0< p <1, F(k) = 1 - q k+1, q:=1-p, E(X) = q p, var(x) = q p 2

P{k Fehlschläge vor dem ersten Erfolg} P(X=k) = p k = f(k) = p(1-p) k, k= 0, 1, 2,..., 0< p <1, F(k) = 1 - q k+1, q:=1-p, E(X) = q p, var(x) = q p 2 GEOMETRIC geometrische Verteilug (Pascalverteilug mit r)/geometric distributio (df)/ la loi geometrique/distribució geométrica/distribuzioe geometrica P{k Fehlschläge vor dem erste Erfolg} P(Xk) k f(k)

Mehr

Stochastisches Integral

Stochastisches Integral Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

8. Intervallschätzung

8. Intervallschätzung 8. Itervallschätzug 8.1 Begriff des Kofidezitervalls Mit uterschiedliche Stichprobe lasse sich verschiedee Puktschätzer θ für de Parameter der Grudgesamtheit erziele. We m Stichprobe aus der Grudgesamtheit

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung

Klassifizierung der Verteilungen. Streuung der diskreten Verteilung Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug

Mehr

Ökonometrie Formeln und Tabellen

Ökonometrie Formeln und Tabellen Ökoometrie Formel ud Tabelle Formelsammlug 1 Lieares Modell ud KQ-Schätzug 11 Eifachregressio Lieares Modell: Y i = β 0 + β 1 x i + U i, i = 1,2,, Aahme des lieare Modells: A1: E[U i ] = 0 für alle i =

Mehr

Intervallschätzung II 2

Intervallschätzung II 2 Itervallschätzug Kofidezitervall für die Variaz Kofidezitervall für de Ateilswerte Kofidezitervall für die Differez zweier Ateile Bestimmug des Stichrobeumfags Itervallschätzug II Bibliografie Bleymüller

Mehr

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik

Pflichtlektüre: Kapitel 10 Grundlagen der Inferenzstatistik Pflichtlektüre: Kapitel 10 Grudlage der Iferezstatistik Überblick der Begriffe Populatio Iferezstatistik Populatiosparameter Stichprobeverteiluge Auch Stichprobekewerteverteiluge Wahrscheilichkeitstheorie

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Einführung in die Statistik

Einführung in die Statistik Eiführug i die Statistik Dr. C.J. Luchsiger 7 Crash-Course i Statistics II: Schätztheorie ud Kofidezitervalle Literatur Kapitel 7 * Statistik i Cartoos: Kapitel 6 ud 7 * Kregel: 4 ud 13 * Storrer: 43 7.1

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

TESTEN VON HYPOTHESEN

TESTEN VON HYPOTHESEN TESTEN VON HYPOTHESEN 1. Grudlage Oft hat ma Vermutuge zu Sachverhalte ud möchte diese gere durch Experimete bestätige. Dabei ka es sich i der Praxis zum Beispiel um Verteiluge vo gewisse Zufallsgröße

Mehr

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0.

Beispiel: p-wert bei Chi-Quadrat-Anpassungstest (Grafik) Auftragseingangsbeispiel, realisierte Teststatistik χ 2 = , p-wert: 0. 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 = 12075, p-wert: 00168 f χ 2 (4)

Mehr

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik:

3 Kritischer Bereich zum Niveau α = 0.10: K = (χ 2 k 1;1 α, + ) = (χ2 5;0.90, + ) = (9.236, + ) 4 Berechnung der realisierten Teststatistik: 8 Apassugs- ud Uabhägigkeitstests Chi-Quadrat-Apassugstest 81 Beispiel: p-wert bei Chi-Quadrat-Apassugstest (Grafik) Auftragseigagsbeispiel, realisierte Teststatistik χ 2 1275, p-wert: 168 8 Apassugs-

Mehr

Übungsaufgaben - Organisatorisches

Übungsaufgaben - Organisatorisches Übugsaufgabe - Orgaisatorisches Der Abgabetermi der eue Übugsblätter ist: Motag, 4:00 Uhr Fehlerrechugsbriefkaste Der Abgabetermi der verbesserte Übugsblätter ist: Freitag, 6:00 Uhr T. Kießlig: Auswertug

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch

Einführung in die induktive Statistik. Inferenzstatistik. Konfidenzintervalle. Friedrich Leisch Spiel Körpergröße Zahl: Azahl weiblich Eiführug i die iduktive Statistik Friedrich Leisch Istitut für Statistik Ludwig-Maximilias-Uiversität Müche Tafelgruppe 8.5 8.6 8.7 8.8 8.9 9.0 9.1 4 5 3 2 1 0 1

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Demo für www.mathe-cd.de

Demo für www.mathe-cd.de Wahrscheilichkeitsrechug Hypergeometrische Verteilug Themeheft ud Traiigsheft Datei r. 4211 Stad 17. April 2010 Friedrich W. Buckel Demo für ITERETBIBLIOTHEK FÜR SCHULMATHEMATIK 4211 Hypergeometrische

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Mathematik IV für Maschinenbau und Informatik

Mathematik IV für Maschinenbau und Informatik UNIVERSITÄT ROSTOCK Mathematik IV für Maschiebau ud Iformatik Stochastik Prof. Dr. Friedrich Liese Sommersemester 2007 2 Mathematik IV für Maschiebau ud Iformatik INHALT Ihalt... 2 Vorlesugsverzeichis...

Mehr

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung

7. Grenzwertsätze Grenzwertsätzen Zentraler Grenzwertsatz Gesetz der großen Zahlen Tschebyscheffsche Ungleichung 7. Grezwertsätze Bei de Grezwertsätze geht es um Aussage, die ma sogar da treffe ka, we keierlei Iformatioe über de Verteilugs-Typ der betrachtete Zufallsvariable vorliege. Zetraler Grezwertsatz Aussage

Mehr

}) = ϑ Einsen (1 ϑ) Nullen,

}) = ϑ Einsen (1 ϑ) Nullen, 6. Schätzprobleme 6.1. Beispiele a) I eiem Teich befidet sich eie ubekate Azahl vo Fische. Ma schätze z. B. durch Agel, markiere, wieder aussetze ud ochmal agel; vgl. Übug) b) Weiteres Beispiel: Wie groß

Mehr

Verteilungsfunktionen

Verteilungsfunktionen Verteilugsfuktioe Wie sid zufällige Fehler verteilt? Wie sid Messwerte verteilt? Fehler Messwerte Verteilugsfuktioe: Maxwell-Boltza Feri-Dirac Bose-Eistei Placksche Verteilug Frage ist stets, wie groß

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Statistische Schätzungen

Statistische Schätzungen Statitiche Schätzuge Statitiche Schätzuge, Ei Wiechaftler mu geau mee, icht chätze! Da it aber eie wiechaftliche Schätzug! Lázló Smeller? (8,5±1,5) cm Aalytiche Statitik (iduktive o. chließede Statitik)

Mehr

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω

A = Ereignisraum = σ-algebra (Sigma-Algebra) = Menge aller messbaren Ergebnisse über eine definierte Grundmenge Ω Statistik Theorie Defiitioe Ω = Grudmege = Ergebismege = Mege aller mögliche Ergebisse A = Ereigisraum = σ-algebra (Sigma-Algebra) = Mege aller messbare Ergebisse über eie defiierte Grudmege Ω P(Ω) = Potezmege

Mehr

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10

Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10 Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei

Mehr

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht?

Der χ 2 Test. Bei Verteilungen Beantwortung der Frage, ob eine gemessene Verteilung Gauß- oder Poisson-verteilt ist oder nicht? Der χ Test Es gibt verschiedee Arte vo Sigifikaztests Nebe Sigifikaztests, die sich mit dem Mittelwert beschäftige, gibt es auch Testverfahre für Verteiluge Bei Verteiluge Beatwortug der Frage, ob eie

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Momente der Logarithmischen Normalverteilung

Momente der Logarithmischen Normalverteilung Momete der Logarithmische Normalverteilug Die Paramter m ud s sid die Momete der Logarithmierte Verteilug, also m E(l(X )) ud s Var(l(X)) Es gilt jedoch: s m+ m+ s s E ( X ) e ud Var ( X ) e ( e 1 ) 16

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr

Konvergenz von Folgen reeller Zufallsvariablen

Konvergenz von Folgen reeller Zufallsvariablen Kapitel 4 Kovergez vo Folge reeller Zufallsvariable 4. Fa-sichere ud ochaische Kovergez Seie (Ω, C, ) ei W-Raum, X ( N) eie Folge reeller Zufallsvariable auf Ω ud X eie reelle Zufallsvariable auf Ω. Defiitio

Mehr

Aussage über die Verteilung Summen und Durchschnitte beliebig verteilter Zufallsvariablen

Aussage über die Verteilung Summen und Durchschnitte beliebig verteilter Zufallsvariablen 7. Grezwertsätze Die Grezwertsätze bilde de Abschluss der Wahrscheilichkeitsrechug ud sid vo zetraler Bedeutug vor allem für die iduktive Statistik. Gesetz der große Zahle Aussage über die Geauigkeit der

Mehr

Methoden zur Konstruktion von Schätzern

Methoden zur Konstruktion von Schätzern KAPITEL 5 Methode zur Kostruktio vo Schätzer 5.1. Parametrisches Modell Sei (x 1,..., x ) eie Stichprobe. I der parametrische Statistik immt ma a, dass die Stichprobe (x 1,..., x ) eie Realisierug vo uabhägige

Mehr