Vergleich zweier Stichproben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vergleich zweier Stichproben"

Transkript

1 zurück zum Inhaltsverzeichnis Die Werte sind verbunden, abhängig oder korreliert. Beispiel: Eine Probe wird mit zwei Messgeräten bestimmt. Es gibt eine paarweise Zuordnung. Die Werte sind unabhängig also nicht verbunden, abhängig oder korreliert. Beispiel: Vergleich von zwei Werkstoffen zweier Hersteller vebundene Stichproben unabhängige Stichproben Compare Menü SnapStats!! 1. Verbundene Stichproben Es existiert eine eindeutige paarweise Zuordnung. Test der Differenzen zwischen den beiden Messgeräten. Datenstruktur für diese Analyse Zwei Varianten möglich: Snap Stats Paired Sample comparison Compare Two Samples Paired Sample

2 Testergebnis für verbundene Stichproben Ermittlung der Konfidenzintervalle für den Parameter d i: mean sigma Mittelwert Standardabweichung Der Lag 1 Autokorrelationskoeffizient beschreibt die Korrelation zwischen den benachbarten Werten in einer Stichprobe. Wenn der Nullpunkt durch das Konfidenzintervall eingeschlossen wird, besteht keine Autokorrelation. Testergebnis der Hypothese µ d =0 zwischen den Messgeräten vorhanden, sonst nicht. 99,9 % P-Wert < 0,1 % hoch signifikant 99% P-Wert < 1 % signifikant 95% P-Wert < 5 % bedingt signifikant P-Wert > 5 % zufälliger Zusammenhang Shapiro Wilks Test Wenn P-Wert kleiner 0,05 ist dann gibt es erhebliche Abweichungen von der Normalverteilung. 2. unabhängige Stichproben Es existiert keine eindeutige paarweise Zuordnung. Material Hersteller 1 Material Hersteller 2 Test der beiden Mittelwerte und der Sigmas! Variante 1: Datenstruktur für diese Analyse Zwei Spalten Two Data Colums Variante 2: Datenstruktur für diese Analyse eine Spalte und Code Data and Code colums

3 Auswertung: Zwei Varianten möglich: Snap Stats Two Sample comparison Compare Two Samples Independent Samples Testergebnis für unabhängige Stichproben Ermittlung der Konfidenzintervalle für die Differenz der Mittelwerte : Diff of mean Ratio of Variances Differenz der Mittelwert Verhältnis der Varianzen Testergebnis der Hypothese µ1=µ2 zwischen den Mittelwerten vorhanden, sonst nicht. Testergebnis der Hypothese 1 = 2 zwischen den Sigmas vorhanden, sonst nicht 99,9 % P-Wert < 0,1 % hoch signifikante Differenz 99% P-Wert < 1 % Signifikante Differenz 95% P-Wert < 5 % bedingt signifikante Differenz P-Wert > 5 % zufälliger Zusammenhang, keine statistisch gesicherte Differenz. Der Lag 1 Autokorrelationskoeffizient beschreibt die Korrelation zwischen den benachbarten Werten in einer Stichprobe. Wenn der Nullpunkt durch das Konfidenzintervall eingeschlossen wird, besteht keine Autokorrelation. Shapiro Wilks Test Wenn P-Wert kleiner 0,05 ist dann gibt es erhebliche Abweichungen von der Normalverteilung. Histogramm: Beachten Sie, die unterschiedlichen Möglichkeiten der Klasseneinteilung. Box- and Whisker Plot Siehe spezielle Kurzanleitung Darstellung im Wahrscheinlichkeitsnetz und Vergleich der Summenhäufigkeiten

4 Wichtige Ergänzung: Die Tests erfolgen mit folgenden Testverfahren: Vergleich zweier Mittelwerte mittels 1 Vergleich zweier Varianzen mittels: 1 t-test - Achtung Nur in der Funktion Snap Stats erfolgt die automatische Prüfung, ob der Test unter der Bedingung gleicher Varianzen erfolgt oder nicht! Dieser F-Test muss bei Nutzung der Standardfunktion im Vor dem Mittelwertvergleich durchgeführt werden.!!!! Ablauf: 1. Vergleich der Standardweichungen Comparison of Standard Deviations for.. F-test to Compare Standard Deviations Null hypothesis: sigma1 = sigma2 Alt. hypothesis: sigma1 NE sigma2 F = 0, P-value = 0, Do not reject the null hypothesis for alpha = 0,05. Wenn P-Wert > 0,05 Wenn P-Wert < 0,05 d.h. keine statistisch signifikanten Unterschiede der Varianzen der Stichproben Es bestehen eine statistisch signifikante Unterschiede der Varianzen der Stichproben Vor dem Test müssen die Pane-Options angepasst werden: Hier bleibt 0 Zweiseitiger Test: µ1=µ2 Zweiseitiger Test: µ1<µ2 bzw. µ1>µ2 Vorgabe α (Empfehlung 5%) Auswahl unter der Bedingung gleicher oder unterschiedlicher Varianzen 1 Den eigentlichen t-oder F-Test gibt es nicht. Es handelt sich hier um einen Hypothesentest mit t- verteilter Prüfgröße.

5 2. Vergleich der Mittelwerte mittels eines Hypothesentests Comparison of Means for Gewicht 95,0% confidence interval for mean of Line=D: 93,08 +/- 6,81601 [86,264; 99,896] 2 95,0% confidence interval for mean of Line=O: 104,545 +/- 9,08829 [95,4572; 113,634] 3 95,0% confidence interval for the difference between the means assuming equal variances: -11,4655 +/- 10,8803 [-22,3458; -0,58511] 4 t test to compare means Null hypothesis: mean1 = mean2 Alt. hypothesis: mean1 NE mean2 assuming equal variances: t = -2,12242 P-value = 0, Reject the null hypothesis for alpha = 0,05. In diesem Fall Test unter der Bedingung gleicher Varianzen Testergebnis der Hypothese µ1=µ2 zwischen den Mittelwerten vorhanden, sonst nicht. 99,9 % P-Wert < 0,1 % hoch signifikante Differenz 99% P-Wert < 1 % Signifikante Differenz 95% P-Wert < 5 % bedingt signifikante Differenz P-Wert > 5 % zufälliger Zusammenhang, keine statistisch gesicherte Differenz Konfidenzintervall für den Mittelwert der Ersten Stichprobe (hier mit 95% statistischer Sicherheit) Konfidenzintervall für den Mittelwert der Ersten Stichprobe (hier mit 95% statistischer Sicherheit) Konfidenzintervall für die Differenz der Mittelwerte der beiden Klassen (hier mit 95% statistischer Sicherheit) Allg. Informationen zu Tests in Statgraphics: Es wird der Grenzwert p für ermittelt, bei dem die Nullhypothese gerade noch nicht verworfen wird. Ein sehr kleiner p-value (kleiner als das Signifikanzniveau 0,5%) bedeutet ein Verwerfen der Nullhypothese.

Statistisches Testen

Statistisches Testen Statistisches Testen Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 7. Juni 2007 Statistisches Testen Inhaltsverzeichnis Schätzverfahren und Testverfahren sind Anwendungen der Stichprobentheorie.

Mehr

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

das Kleingedruckte...

das Kleingedruckte... Gepaarte t-tests das Kleingedruckte... Datenverteilung ~ Normalverteilung QQ-plot statistischer Test (Shapiro-Wilk, Kolmogorov-Smirnov) wenn nicht : nicht-parametrische Tests gleiche Varianz (2-Proben

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Teil VIII Hypothesentests für zwei Stichproben

Teil VIII Hypothesentests für zwei Stichproben Woche 9: Hypothesentests für zwei Stichproben Teil VIII Hypothesentests für zwei Stichproben WBL 15/17, 22.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner

Mehr

Biostatistik. Lösung

Biostatistik. Lösung Prof. Dr. Achim Klenke Fridolin Kielisch 13. Übung zur Vorlesung Biostatistik im Sommersemester 2015 Lösung Aufgabe 1: a) Ich führe einen zweiseitigen Welch-Test durch, weil ich annehme, dass die Daten

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Statistiktutorium (Kurs Frau Jacobsen)

Statistiktutorium (Kurs Frau Jacobsen) Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der

Mehr

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer

Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güteanalyse Prof. Walter F. Tichy Fakultät für Informatik 1 Fakultät für Informatik 2 Nochmal zur Erinnerung: Hypothesentest Am Beispiel

Mehr

Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1

Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Inhalt Programmiersprache R Syntax Umgang mit Dateien Tests t Test F Test Wilcoxon Test 2 Test Zusammenfassung 2 Programmiersprache R Programmiersprache

Mehr

t-tests Lösung: b) und c)

t-tests Lösung: b) und c) t-tests 2015 Assessmentmodul 1 - Frage B10: Ein Team von Gesundheitspsychologinnen hat ein Programm entwickelt, das die Studierenden der Universität Zürich dazu anregen soll, mehr Sport zu treiben. In

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,

Mehr

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft

3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft 3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Analyse 2: Hypothesentests

Analyse 2: Hypothesentests Analyse 2: Hypothesentests Ashkan Taassob Andreas Reisch Inhalt Motivation Statistischer Hintergrund Hypothese Nullhypothesen Alternativhypothesen Fehler beim Hypothesentesten Signifikanz-LEVEL und P-value

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Statistik und Wahrscheinlichkeitstheorie UE EDV Übung mit GNU R

Statistik und Wahrscheinlichkeitstheorie UE EDV Übung mit GNU R Statistik und Wahrscheinlichkeitstheorie UE EDV Übung mit GNU R Mathias Stephan Panzenböck e0427417 12. Juni 2006 Beispiel 1 library(e1071) library(car) load('0427417.rdata') a) min(bsp1$x) # = 2.435354

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

4. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

4. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 4. Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Eine sächsische Molkerei füllt Milch in Tetrapacks ab. Es wird vermutet, dass die Füllmenge normalverteilt ist mit einem Erwartungswert

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests

Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests Woche 8: Hypothesentests für eine Stichprobe Teil X Patric Müller Hypothesentests für eine Stichprobe ETHZ WBL 17/19, 19.06.2017 Wahrscheinlichkeit und Statistik Patric

Mehr

# Befehl für den Lilliefors-Test

# Befehl für den Lilliefors-Test 1/5 Matthias Rudolf & Diana Vogel R-Kurs Graduiertenakademie September 2017 Loesungsskript: Tests 1a library(nortest) 1b lillie.test Befehl für den Lilliefors-Test 2a, Datensatz "Schachbeispiel einlesen"

Mehr

Teil VII Hypothesentests für eine Stichprobe

Teil VII Hypothesentests für eine Stichprobe Woche 7: Hypothesentests für eine Stichprobe Teil VII Hypothesentests für eine Stichprobe WBL 15/17, 15.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner Fachhochschule

Mehr

Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung

Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung K. Molt Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 3. Juni 2007 K. Molt (Fachgeb. IAC) 3. Juni 2007 1 / 41

Mehr

8. Konfidenzintervalle und Hypothesentests

8. Konfidenzintervalle und Hypothesentests 8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

6. Übung (Hypothesenprüfung und einfache Tests)

6. Übung (Hypothesenprüfung und einfache Tests) 6. Übung (Hypothesenprüfung und einfache Tests) Es wird eine H0 Hypothese und eine Gegen- oder Arbeitshypothese aufgestellt. Sie schließen sich aus. Es wird von den betreffenden Populationen eine repräsentative

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 9

Übung zur Vorlesung Statistik I WS Übungsblatt 9 Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17

7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 7. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 1. Aufgabe: a) Grundgesamtheit sind alle Reifen aus der Produktion von Langstone aus dem Monat März der entsprechenden Reifentypen.

Mehr

Metrische und kategoriale Merkmale

Metrische und kategoriale Merkmale Kapitel 6 Metrische und kategoriale Merkmale 6.1 Wie kann man metrische und kategoriale Merkmale numerisch beschreiben? Typischerweise will man geeignete Maßzahlen (beispielsweise Lage- oder Streuungsmaße)

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010 Aufgabe 1 Die Porzellanmanufaktur

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird.

Aussagen hierzu sind mit einer unvermeidbaren Unsicherheit behaftet, die statistisch über eine Irrtumswahrscheinlichkeit bewertet wird. Stichprobenumfang Für die Fragestellung auf Gleichheit von ein oder zwei Stichproben wird auf Basis von Hypothesentests der notwendige Stichprobenumfang bestimmt. Deshalb werden zunächst die Grundlagen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese

e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese 9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

4 Testen von Hypothesen

4 Testen von Hypothesen 4 Testen von Hypothesen Oft müssen zweiwertige Entscheidungen ( Ja oder Nein ) gefällt werden. Denken wir an die elektronisch gesicherten Waren, wo am Ausgang eines Geschäftes durch eine Maschine geprüft

Mehr

Musterlösung zu Serie 8

Musterlösung zu Serie 8 Prof. Dr. W. Stahel, Dr. J. Ernest Regression HS 2017 Musterlösung zu Serie 8 1. Im Data Frame http://stat.ethz.ch/teaching/datasets/wbl/umwelt.dat sind die Ergebnisse einer Umfrage zum Umweltschutz gegeben.

Mehr

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 . Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Bei der Produktion eines Werkstückes wurde die Bearbeitungszeit untersucht. Für die als normalverteilt angesehene zufällige Bearbeitungszeit

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).

Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C). Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Fallzahlplanung bei unabhängigen Stichproben

Fallzahlplanung bei unabhängigen Stichproben Fallzahlplanung bei unabhängigen Stichproben Seminar Aktuelle biometrische Probleme Benjamin Hofner benjamin.hofner@stat.uni-muenchen.de 12. Januar 2005 Übersicht 1. Einführung und Grundlagen der Fallzahlplanung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Faktorielle Varianzanalyse

Wahrscheinlichkeitsrechnung und Statistik für Biologen Faktorielle Varianzanalyse Wahrscheinlichkeitsrechnung und Statistik für Biologen Faktorielle Varianzanalyse Dirk Metzler & Martin Hutzenthaler 15. Juni 2010 Inhaltsverzeichnis 1 Die einfaktorielle Varianzanalyse und der F -Test

Mehr

Methodenlehre II, SoSe 2015

Methodenlehre II, SoSe 2015 Ruhr-Universität Bochum 4. Juni 2015 1 / 282 Methodenlehre II Prof. Dr. NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: http://www.ruhr-uni-bochum.de/mathematik3/ http://www.ruhr-uni-bochum.de/mathematik3/dette.html

Mehr

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten

Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Gesamtcholesterin Region A Region B <170 (optimal) 80 >=170 (Risiko)

Gesamtcholesterin Region A Region B <170 (optimal) 80 >=170 (Risiko) AUFGABEN 1. In einer Studie wurde ein Blutparameter am Beginn und am Ende einer Therapie bestimmt. Es ergab sich, dass bei 35 Probanden eine Veränderung des Parameters eintrat, und zwar lag der Wert bei

Mehr

Aufgabe Σ erreichbare Punkte

Aufgabe Σ erreichbare Punkte TU Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut für Stochastik Matrikel-Nr. Modulprüfung Prüfungsfach: Stochastik und Statistik für Ingenieure Prüfer: Prof. Hans-Jörg Starkloff

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Statistische Messdatenauswertung

Statistische Messdatenauswertung Roland Looser Statistische Messdatenauswertung Praktische Einführung in die Auswertung von Messdaten mit Excel und spezifischer Statistik-Software für naturwissenschaftlich und technisch orientierte Anwender

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Lösungen zur Hausaufgabe Statistik für Hydrologen 2016

Lösungen zur Hausaufgabe Statistik für Hydrologen 2016 Dr. Wiltrud Kuhlisch SOS 2016 TU Dresden, Institut für Mathematische Stochastik Lösungen zur Hausaufgabe Statistik für Hydrologen 2016 Aufgabe 1: Das Merkmal Groesse hat metrisches Skalenniveau. Darstellung

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Martin Hutzenthaler & Dirk Metzler Inhaltsverzeichnis 1 t-test für gepaarte Stichproben 1 1.1 Beispiel: Orientierung bei Trauerschnäppern..........................

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 007/008 Aufgabe 1 (I) Herr

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Martin Hutzenthaler & Dirk Metzler 6./18. Mai 2010 Inhaltsverzeichnis 1 t-test für gepaarte Stichproben 1 1.1 Beispiel: Orientierung

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

8. Vergleich von zwei Gruppen

8. Vergleich von zwei Gruppen 8. Vergleich von zwei Gruppen Unabhängige und abhängige Gruppen Parametrische/Nichtparametrische Vergl. Für diskrete/qualitative Variablen 10 Binomialtest 10 Chiquadrat-Test 10 Fishers exakter Test Für

Mehr

7.2 Mittelwert einer Stichprobe

7.2 Mittelwert einer Stichprobe 66 7.2 Mittelwert einer Stichprobe Gegeben ist eine normalverteilte Grundgesamtheit. Mit Hilfe einer Stichprobe möchten wir Aussagen über den unbekannten Mittelwert µ dieser Grundgesamtheit machen. Wenn

Mehr

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder

Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Hypothesen über die Grundgesamtheit Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Behauptungen) über die unbekannte Grundgesamtheit anhand einer Stichprobe als richtig oder falsch

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen

Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIII - p-wert und Beziehung zwischen Tests und Konfidenzintervallen Induktive Statistik Prof. Dr. W.-D. Heller

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr