Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet."

Transkript

1 Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben ist dem Lese-Schreib-Kopf der Übergangstabelle In jedem Verarbeitungsschritt: wird das Zeichen unter dem Lese-Schreib-Kopf gelesen wird in der Übergangstabelle nach dem Eintrag gesucht, der dieses Zeichen und den aktuellen Zustand der Steuereinheit enthält, werden Zeichen und Zustand entsprechend der Angaben in der Übergangstabelle geändert und wird der Lese-Schreib-Kopf um eine Position nach links (L) oder rechts (R) weiterbewegt. Auch dies wird in der Übergangstabelle festgelegt. Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet. 257

2 Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit 1 belegt. vorher nachher Zustand Zeichen Zustand Zeichen Bewegung z 0 z 1 R z 1 1 z 1 1 R z 1 z 2 1 H Überlegen Sie, weshalb man sagt, diese Übergangstabelle realisiere Addition von 1 bei Unärdarstellung. Interaktive Simulation der Turingmaschine: Modul Turingmaschine 258

3 7.1.2 Grenzen der Berechenbarkeit Es gibt Funktionen, die nicht berechenbar sind. Wegen der Church schen These heißt dies: die nicht mit einer Turingmaschine berechnet werden können. 1 Beispiel: Halteproblem Menge der Eingaben: alle möglichen Übergangstabellen U von Turingmaschinen Funktion f: f(u) = 8 >< >: 1 falls die Turingmaschine mit Übergangstabelle U für jede Bandbelegung anhält, 0 sonst Es gibt keine Übergangstabelle für eine Turingmaschine, die f berechnet. Den Nachweis zu dieser Aussage können wir hier nicht führen. Die Berechnung von Funktionen, die nur die Werte 0 und 1 annehmen, nennt man auch (ja/nein)-entscheidungen. Man sagt deshalb: Das Halteproblem ist nicht entscheidbar. 259

4 2 Beispiel: Unentscheidbarkeit der Prädikatenlogik Die Prädikatenlogik baut auf der Aussagenlogik auf. Prädikate enthalten Variablen; für jede Belegung der Variablen nehmen sie den Wert wahr oder falsch an. Prädikate können wie Aussagen verknüpft werden, zusätzlich auch mit den Quantoren und. Genaueres wird hier nicht erläutert. Die Frage, ob eine prädikatenlogische Formel für jede Belegung der Variablen den Wert wahr annimmt, ist nicht entscheidbar. 3 Beispiel: Unentscheidbarkeit der Korrektheit Die Frage, ob ein Programm semantisch korrekt ist (d.h. es berechnet tatsächlich die spezifizierte Funktion), ist unentscheidbar. Auch für diese Beispiele ist ein Beweis weit jenseits von dem, was wir hier machen können. 260

5 7.2 Komplexitätstheorie Komplexität von Algorithmen Wie genau kann man die Laufzeit T eines Algorithmus vorhersagen? T hängt ab von der jeweiligen Implementierung vom verwendeten Rechner von der jeweiligen Eingabe... Folgerung: T hängt insbesondere von der Größe n der Eingabe ab: T = T(n) Für festes n kann T(n) immer noch unterschiedlich sein. Wir verwenden für T(n) hier stets den worst case, also die längste Laufzeit bei festem n. Es ist nicht sinnvoll, T(n) zu genau bestimmen zu wollen. Es genügt, die Zahl der elementaren Schritte eines Algorithmus zu bestimmen. 261

6 4 Beispiele: a) Euklidischer Algorithmus berechnet ggt(a, b) für a, b N. r := a mod b solange r 0 a := b b := r r := a mod b ggt := b Eingabegröße: n = max{a, b}. Elementare Schritte: Zuweisung, Division mit Rest, Vergleich Laufzeit: solange-schleife wird höchstens log Θ n + 1 mal durchlaufen (Θ = ( 5 + 1)/2). Pro Durchlauf 3 Zuweisungen, 1 Vergleich und 1 Division mit Rest. Also T(n) C (2 + 5 (log Θ n + 1)). 262

7 b) Sieb des Eratosthenes bestimmt alle Primzahlen n. p := 2 solange p 2 n s := 2 p {Aussieben mit Zahl p} solange s n streiche s {markieren} s := s + p setze p auf nächste, nicht gestrichene Zahl Eingabegröße: n Elementare Schritte: Streichen (= Zugriff auf ein Feld und Markieren), Zuweisung, Addition, Multiplikation, Nächstes finden Laufzeit: die innere solange-schleife wird n/p-mal durchlaufen, die äußere für Primzahlen n. T(n) C + n X p=1, p Primzahl 1 n A. p 263

8 Die t(n)-ausdrücke will man noch vereinfachen: 5 Definition: Wir schreiben T(n) = O(g(n)) mit einer Funktion g : N R +, falls eine Konstante C > 0 und ein n 0 existieren, so dass gilt T(n) C g(n) für alle n n 0. 6 Beispiele: a) Euklidischer Algorithmus: ergibt T(n) C (2 + 5 (log Θ n + 1)). T(n) = O(log n). (Wegen log a n = log b n log a b braucht man die Basis des log in O-Termen nicht anzugeben!) 264

9 b) Sieb des Eratosthenes: 0 T(n) + n X p=1, p Primzahl 1 n A. p Es gibt höchstens n Primzahlen n, und n p n für alle solchen Primzahlen p. Also T(n) = O(n n). (O-Terme können sehr grob nach oben abschätzen.) 265

10 7.2.2 Probleme und Instanzen 7 Definition: Ein Problem ist eine zu berechnende Funktion P : D W mit zugehörigem Definitionsbereich D und Werten in W. Eine Instanz eines Problems P : D W ist ein Paar (P, S) mit S D. 8 Beispiele: a) Problem größter gemeinsamer Teiler : P : N N N Instanz: (a, b) = (144, 54). b) Problem Primzahlen n : P : N Potenzmenge von N Instanz: n =

11 c) Problem des Handlungsreisenden : P : {L : L ist Liste von Städten mit Entfernungen} R + P(L) ist die Länge der kürzesten Rundtour, die alle Städte einmal besucht. Instanz: L = W RS SG K E DO W RS SG K E DO d) Teilsummenproblem : P : {M : M ist eine Menge reeller Zahlen} R {0, 1}. P(M, s) gibt an, ob es eine Teilmenge T von M gibt, bei der die Summe der Elemente gerade s ergibt. Instanz: M = { 0.2, 1, 2.3, 4.5}, s =

12 7.2.3 Komplexität von Problemen Wir werden jetzt Probleme in einfache und schwierige einteilen. Ein tragfähiges Konzept hierzu ist überraschend komplex. Ab jetzt schränken wir uns auf Entscheidungsprobleme ein, also P : D {0, 1}. Als Größe n einer Eingabe S D verwenden wir die Anzahl der bits bei geeigneter Binärcodierung. 9 Beispiel: Die Größe einer natürlichen Zahl k ist damit (Codierung als Binärzahl) n = O(log k). Folge: Die Größe der Eingabe beim Euklidischen Algorithmus ist n = O(log a + log b). Die Komplexität des Euklidischen Algorithmus wird O(n) statt O(log(max{a, b})). 10 Definition: Für ein (Entscheidungs-) Problem P : D W, ist die Komplexität t(n) des Problems P definiert als die Laufzeit des besten Algorithmus, welcher P berechnet. Hier genügt uns noch weniger als die Größenordnung O: 11 Definition: Die Klasse P ist die Menge aller Entscheidungsprobleme, für welche es eine Zahl k N gibt, so dass die Komplexität des Problems O(n k ) ist. 268

13 P steht für polynomiale Komplexität. Probleme aus P nennt man auch effizient berechenbar. Warum ist P eine vernünftige Problemklasse? P ist weitestgehend unabhängig vom Maschinenmodell, also davon, was man als elemtare Schritte auffasst. Wir hatten auf den letzten Seiten ohne es explizit zu sagen das Random Access Memory (RAM) Modell verwendet. Verwendet man stattdessen z.b. das Modell der Turingmaschine, so ändert sich P nicht. P ist weitestgehend unabhängig von der gewählten Binärcodierung für die Eingabe. Für Probleme, die nicht in P liegen, wächst die Komplexität superpolynomial mit n. Für die Praxis sind solche Laufzeiten definitiv viel zu lang. 12 Beispiel: Das Problem Entscheide, ob k der ggt von a und b ist, liegt in P. Begründung: Es ist n = Länge einer Binärcodierung von k, a und b. Berechne ggt(a, b) mit dem Euklidischen Algorithmus (Laufzeit O(n)) und vergleiche das Ergebnis mit k (Laufzeit O(log(n)). Gesamtlaufzeit t(n) = O(n) + O(log(n)) = O(n). 269

14 Eine fundamentale Schwierigkeit: Zugehörigkeit eines Problems zu P kann man durch Angabe eines geeigneten Algorithmus nachweisen. Will man zeigen, dass ein Problem nicht zu P gehört, muss man zeigen, dass keine Algorithmen mit polynomialer Komplexität existieren. Dies ist sehr schwierig. Es ist noch für kein praktisch relevantes Problem gelungen zu zeigen, dass es nicht effizient berechenbar ist. Nicht effizient berechenbar ist deshalb keine günstige Art, schwierige Probleme zu charakterisieren. Alternative: Aus der eigenen Erfahrung wissen wir: Es ist in der Regel wesentlich schwieriger, eine Lösung zu bestimmen als nachzuprüfen, ob ein Lösungsvorschlag tatsächlich eine Lösung ist. Dies geht in die beiden nächsten Definitionen ein. 13 Definition: Gegeben ist ein Entscheidungsproblem P : D {0, 1} und eine Menge von Zertifikaten Z. Eine Funktion V : D Z {0, 1} verifiziert P, wenn es für jede Instanz (S, P) von P mit P(S) = 1 ein Zertifikat z = z(s) gibt mit V (S, z) = 1, und umgekehrt aus V (S, z) = 1 stets P(S) = 1 folgt. Die Größen n bzw. m von S bzw. z(s) müssen dabei m = O(n k ) erfüllen. (z darf höchstens polynomial in S wachsen.) 270

15 14 Beispiel: Das Problem Entscheide, ob p N keine Primzahl ist, wird verifiziert durch die Funktion V, welche jedem Paar (p, a) mit a {2,..., p} den Wert 1 zuordnet, wenn p durch a teilbar ist und 0 sonst. Es ist also Z = {2,..., p}. Ein Algorithmus für V ist die Division mit Rest mit anschließendem Test, ob der Rest 0 ist. Für p = 5529 ist z(p) = 57 ein Zertifikat mit V (5529, 57) = 1. Es ist leichter auszurechnen, dass 57 die Zahl 5529 teilt, als zu zeigen, dass 5529 keine Primzahl ist. 271

16 15 Definition: Die Klasse NP besteht aus all den (Entscheidungs-) Problemen, welche von einer Funktion verifiziert werden, für die es einen Algorithmus mit polynomialer Laufzeit gibt. Die Bezeichnung NP kommt daher, weil man die Klasse äquivalent charakterisieren kann als die Probleme, welche mit einem nichtdeterministischen Algorithmus in polynomialer Zeit berechnet werden können. 16 Satz: P NP Beweis Sei P : D {0, 1} aus P. Nehme eine beliebige Menge als Zertifikatmenge Z und setze V : D Z {0, 1} als V (S, v) = P(S). Der polynomiale Algorithmus, welcher P berechnet, berechnet auch V. Die Eingabe z wird dabei einfach ignoriert. Und die größte offene Frage der Theoretischen Informatik ist nun: Gilt P = NP? Die Frage ist ungeklärt, aber fast alle glauben dass die richtige Antwort Nein heißt, u.a. wegen des folgenden Resultates. 272

17 17 Satz: Die Klasse der NP-vollständigen Probleme ist nicht leer. Diese Klasse besteht aus all den Problemen aus NP, für die gilt: Liegt P in P, so ist P = NP. Hat man für ein NP-vollständiges Problem P gezeigt P P, so ist P = NP. Das hat bis jetzt noch niemand geschafft. Glaubt man P NP, so liegen NP-vollständige Probleme also nicht in P, sind also nicht effizient berechenbar. Merke: NP-vollständig bedeutet höchstwahrscheinlich in der Praxis nicht mit einem Algorithmus berechenbar 273

18 7.2.4 NP-vollständige Probleme Die folgenden Probleme sind alle als NP-vollständig nachgewiesen. Die Beweise können wir im Rahmen dieser Vorlesung nicht bringen. 18 Beispiel: a) Das Problem des Handlungsreisenden b) Das Teilsummenproblem 19 Beispiel: Das Erfüllbarkeitsproblem: Gegeben ist eine aussagenlogische Formel mit n Aussageveriabeln. Gibt es eine Belegung der Variabeln, so dass die Formel den Wert true annimmt? Viele andere NP-vollständige Probleme beziehen sich auf Graphen. 20 Definition: Ein Graph ist eine Menge von Knoten, von denen einige durch Kanten verbunden sind. 274

19 Beispiel: Haus vom Nikolaus 21 Beispiel: Das Hamilton-Kreis-Problem: Existiert in einem Graph ein Hamilton-Kreis, d.h. ein Rundweg über die Kanten, der jeden Knoten genau einmal besucht? 22 Beispiel: Das Cliquen-Problem: Gibt es eine Clique der Größe k in einem Graphen? Eine Clique ist eine Teilmenge von Knoten, von denen zwei verschiedene stets auf einer gemeinsamen Kante liegen. Die Größe der Clique ist die Anzahl ihrer Knoten. Mehr zu Komplexität und Rechnermodellen: Automaten, Sprachen, Berechenbarkeit (Master) 275

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt.

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Praktische Grenzen der Berechenbarkeit

Praktische Grenzen der Berechenbarkeit Arno Schwarz Praktische Grenzen der Berechenbarkeit Während es im ersten Abschnitt um prinzipiell unlösbare Probleme ging, wenden wir uns nun Aufgaben zu, deren Lösbarkeit praktische Grenzen gesetzt sind.

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 3 [Bildquellen: Wikipedia User David Madore, Inductiveload ] Grundlagen 2: Funktionen, Berechenbarkeit und emergente Komplexität Michael Wand

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen

1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen Gliederung 1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen 1/1, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Effiziente

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

3.3 Laufzeit von Programmen

3.3 Laufzeit von Programmen 3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

1.Klausur Diskrete Mathematik Seite 1 von 22

1.Klausur Diskrete Mathematik Seite 1 von 22 1.Klausur Diskrete Mathematik Seite 1 von 22 1. Welche der folgenden Aussagen zum Halteproblem ist richtig? A. Jedes Problem ist auf das Halteproblem reduzierbar. B. HP ist die einzige Sprache, die rekursiv

Mehr

2.5 Halteproblem und Unentscheidbarkeit

2.5 Halteproblem und Unentscheidbarkeit 38 25 Halteproblem und Unentscheidbarkeit Der Berechenbarkeitsbegriff ist auf Funktionen zugeschnitten Wir wollen nun einen entsprechenden Begriff für Mengen einführen Definition 255 Eine Menge A Σ heißt

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Überlegungen zum P-NP-Problem

Überlegungen zum P-NP-Problem Überlegungen zum P-NP-Problem In meinem Informatikstudium hat mich das P-NP-Problem ungemein fasziniert, weil es sich augenscheinlich um ein sehr schwieriges Problem handelt, an dem sich schon viele kluge

Mehr

Allgemeines Halteproblem Hilberts 10. Problem

Allgemeines Halteproblem Hilberts 10. Problem Allgemeines Halteproblem Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit

1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit 1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit 1.1 Korrektheit Mit dem Kalkül der Prädikatenlogik, z.b. dem Resolutionskalkül, können wir allgemeingültige Sätze beweisen. Diese Sätze

Mehr

Unentscheidbare Probleme: Diagonalisierung

Unentscheidbare Probleme: Diagonalisierung Unentscheidbare Probleme: Diagonalisierung Prof Dr Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Theoretische Informatik. Berechenbarkeit

Theoretische Informatik. Berechenbarkeit Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP12 Slide 1 Grundlagen der Programmierung Vorlesung 12 Sebastian Iwanowski FH Wedel GdP12 Slide 2 Entwurf von Algorithmen Wie klassifiziert man Algorithmen? offensichtlich nicht durch die Unterscheidung

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012

Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2012/2013 Teil

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik

Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik Logik, Berechenbarkeit und Komplexität Sommersemester 2008 Fachhochschule Wiesbaden Prof. Dr. Steffen Reith Auffrischung Einige (wenige) Grundlagen der Theoretischen Informatik 1 Turingmaschinen - Ein

Mehr

Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice

Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Holger Arnold Dieser Text befasst sich mit der Frage, unter welchen Bedingungen das Problem, zu bestimmen, ob die

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Kapitel 1.4 Exkurs: Entscheidbarkeit und Komplexität Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Algorithmen Ein Algorithmus oder eine Rechenvorschrift ist ein effektives

Mehr

8 Komplexitätstheorie

8 Komplexitätstheorie 8 Komplexitätstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundidee der Komplexitätstheorie

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Die Reduktion Hilberts 10. Problem

Die Reduktion Hilberts 10. Problem Die Reduktion Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 8. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.

Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

F3 Berechenbarkeit und Komplexität

F3 Berechenbarkeit und Komplexität F3 Berechenbarkeit und Komplexität Berndt Farwer Fachbereich Informatik AB Theoretische Grundlagen der Informatik (TGI) Universität Hamburg farwer@informatik.uni-hamburg.de F3 01/02 p.1/70 Zielgruppe 1.

Mehr

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar?

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? 3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? A. Gegeben eine kontextfreie Grammatik G. Gibt es ein

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

2. Schriftliche Leistungskontrolle (EK)

2. Schriftliche Leistungskontrolle (EK) TheGI 2: Berechenbarkeit und Komplexität Prof. Dr.-Ing. Uwe Nestmann - 13. Juli 2010 2. Schriftliche Leistungskontrolle EK Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte erreichbar.

Mehr

Unentscheidbarkeit von Problemen mittels Turingmaschinen

Unentscheidbarkeit von Problemen mittels Turingmaschinen Unentscheidbarkeit von Problemen mittels Turingmaschinen Daniel Roßberg 0356177 Roland Schatz 0355521 2. Juni 2004 Zusammenfassung In dieser Arbeit befassen wir uns mit der Unentscheidbarkeit von Problemen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

11. Übungsblatt. x y(top(push(x, y)) = y)

11. Übungsblatt. x y(top(push(x, y)) = y) Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

1.Klausur Diskrete Mathematik Seite 1 von 22

1.Klausur Diskrete Mathematik Seite 1 von 22 1.Klausur Diskrete Mathematik Seite 1 von 22 1. Welche der folgenden Aussagen zum Halteproblem ist falsch? A. Für jeden nichtdeterministischen Automaten N kann entschieden werden, ob N die Eingabe akzeptiert,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 11 1. August 2011 Einführung in die Theoretische Informatik

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

NP-Vollständigkeit. Anfang der 70er Jahre: Erfolg in der Lösung wichtiger algorithmischer Probleme. Aber viele Probleme widersetzen sich:

NP-Vollständigkeit. Anfang der 70er Jahre: Erfolg in der Lösung wichtiger algorithmischer Probleme. Aber viele Probleme widersetzen sich: NP-Vollständigkeit Anfang der 70er Jahre: Erfolg in der Lösung wichtiger algorithmischer Probleme. Aber viele Probleme widersetzen sich: Überraschende Erkenntnis, viele dieser Probleme, die NP-vollständigen

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Einführung in die Informatik Turing Machines

Einführung in die Informatik Turing Machines Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard 1 Motivation und Einleitung Bisher haben wir verschiedene Programmiersprachen

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 3, Donnerstag 6. November 2014 (O-Notation, Theta, Omega) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Algorithmentheorie 1. Vorlesung

Algorithmentheorie 1. Vorlesung Algorithmentheorie 1. Vorlesung Martin Dietzfelbinger 6. April 2006 FG KTuEA, TU Ilmenau AT 06.04.2006 Methode, Material Vorlesung Vorlesungsskript (Netz, Copyshop) Folien (im Netz) Vorlesung nachbereiten!

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D Studie zum Arbeitsverhalten von Studierenden unter Leitung

1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D Studie zum Arbeitsverhalten von Studierenden unter Leitung Organisatorisches Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie in P und NP Frank Heitmann heitmann@informatik.uni-hamburg.de 1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D-129.

Mehr