Name Vorname Matrikelnummer Unterschrift

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Name Vorname Matrikelnummer Unterschrift"

Transkript

1 Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am Gruppe B Bitte ergänzen Sie deutlich lesbar die Angaben zu Ihrer Person: Name Vorname Matrikelnummer Unterschrift Bei den folgenden Fragen schreiben Sie, je nach Aufgabenstellung, entweder die Lösung in das vorgesehene Feld oder kreuzen Sie in den Kästchen die Antworten an, die Sie für richtig halten. Darüberhinaus gehende Eintragungen werden nicht gewertet. Aufgabe Summe: Punkte Note:

2 1. Von 2568 deutschen Schülern wurden die Mathekompetenz und die Lesekompetenz erfasst. Die Mathekompetenz wurde anschließend in 3 Bereiche eingeteilt (schlecht, mittel, gut) und die Lesekompetenz am Median dichotomisiert. Die Ergebnisse für die in Bereiche eingeteilten Variablen sind in nachstehender Kreuztabelle zusammengefasst. Lesekompetenz schlecht Lesekompetenz gut Gesamt Mathekompetenz schlecht Mathekompetenz mittel Mathekompetenz gut Gesamt Berechnen Sie den Anteil der Schüler mit guter Kompetenz in Mathematik unter allen Schülern (1 Nachkommastelle): Berechnen Sie den Anteil der Schüler mit guter Kompetenz in Mathematik unter den Schülern mit guter Lesekompetenz (1 Nachkommastelle): Wie groß ist der bei Unabhängigkeit der beiden Merkmale zu erwartende Anteil der Schüler mit guter Kompetenz in Mathematik unter den Schülern mit guter Lesekompetenz (1 Nachkommastellen): erwarteter Berechnen Sie für diese Kreuztabelle die Anzahl der konkordanten Paare: n c = Berechnen Sie für diese Kreuztabelle die Anzahl der diskonkordanten Paare: n d = Berechnen Sie für diese Kreuztabelle Goodman und Kruskals γ (3 Nachkommastellen): γ = Berechnen Sie als PRE-Maß für diese Kreuztabelle Goodman und Kruskals λ für die Vorhersage der Kompetenz in Mathematik aus der Lesekompetenz (3 Nachkommastellen): λ = 2

3 2. Im Zusammenhang mit der Durchführung eines Signifikanztest zur Prüfung einer Nullhypothese H 0 gegen eine Alternativhypothese H A werden aus den vorliegenden Daten der Wert der entsprechenden Testgröße und der zugehörige p-wert ermittelt. Welche der folgenden Aussagen sind richtig? A. Ein p-wert kleiner als das verwendete Signifikanzniveau spricht gegen H 0. B. Ein p-wert kleiner als das verwendete Signifikanzniveau spricht nicht gegen H 0. C. Ein p-wert größer als das verwendete Signifikanzniveau spricht gegen H 0. D. Ein p-wert größer als das verwendete Signifikanzniveau spricht nicht gegen H 0. E. p-werte sind stets größer oder gleich Null. F. p-werte sind stets kleiner oder gleich Eins. G. Ist der ermittelte p-wert Null, so wird H 0 bei einem Signifikanzniveau α = 0.05 abgelehnt H. Ist der ermittelte p-wert Null, so wird H A bei einem Signifikanzniveau α = 0.05 abgelehnt I. Ist der ermittelte p-wert Null, so wird H 0 bei jedem Signifikanzniveau α abgelehnt J. Ist der ermittelte p-wert Null, so wird H A bei jedem Signifikanzniveau α abgelehnt Es wurde ein p-wert von ermittelt und es soll mit einem Signifikanzniveau α = 0.01 gearbeitet werden. Wie lautet die richtige Entscheidung? Entscheidung: 3. Im Zusammenhang mit einer einfachen Varianzanalyse (ANOVA) zur Analyse des Einflusses einer kategorialen Größe (Gruppierungsvariable) auf eine metrische wird aus den erhobenen Daten ein η-koeffizient mit η 2 = 0.95 berechnet. Welche der folgenden Aussagen sind richtig? A. Die Kenntnis der Ausprägungen der Einflussgröße ist ohne Bedeutung für die Vorhersage der metrische Größe. B. 5% der Variabilität der metrischen Größe lässt sich bei Kenntnis der Ausprägungen der Einflussgröße erklären. C. 95% der Variabilität der metrischen Größe lässt sich bei Kenntnis der Ausprägungen der Einflussgröße erklären. D. 5% der Variabilität der metrischen Größe lässt sich bei Kenntnis der Ausprägungen der Einflussgröße mit Hilfe der Gruppenmittelwerte erklären. E. 95% der Variabilität der metrischen Größe lässt sich bei Kenntnis der Ausprägungen der Einflussgröße mit Hilfe der Gruppenmittelwerte erklären. G. Die Globalhypothese der ANOVA kann auf einem Signifikanzniveau von α = 5% nicht abgelehnt werden. H. Es besteht ein signifikanter Zusammenhang zwischen der Einflussgröße und der metrischen (abhängigen) Größe. I. η 2 ist ein sogen. PRE-Maß. 3

4 4. Mit Hilfe einer univariaten Varianzanalyse soll untersucht werden, ob das Einkommen von Mathematikern signifikant (α = 0.05) von der Erfahrung bzw. der Qualität der Arbeit abhängt. Dazu wurden beide potentiellen Einflussgrößen am Median dichotomisiert (QualitätDI bzw. ErfahrungDI). Siehe hierzu die zugehörige SPSS-Ausgabe Nummer 1! Welche der folgenden Aussagen, die sich aus dieser Analyse ergeben, sind dann richtig? A. Aus dem Profildiagramm ist ersichtlich, dass das mittlere Einkommen unabhängig von der Qualität der Arbei ist. B. Aus dem Profildiagramm ist ersichtlich, dass alle Mathematiker ein höheres Nettoeinkommen haben als alle Mathematikerinnen. C. Aus dem Profildiagramm ist ersichtlich, dass das mittlere Einkommen der Mathematiker mit größerer Erfahrung höher ist als das mittlere Einkommen der Mathematiker mit weniger Erfahrung. D. Aus dem Profildiagramm ist ersichtlich, dass unabhängig von der Qualität der Arbeit das mittlere Einkommen mit zunehmender Erfahrung ansteigt. E. Aus dem Profildiagramm ist ersichtlich, dass auf das Einkommen bezogen eine starke Wechselwirkung zwischen Qualität und Erfahrung besteht. F. Aus dem Profildiagramm ist ersichtlich, dass auf das Einkommen bezogen fast keine Wechselwirkung zwischen Qualität und Erfahrung besteht. G. Der Einfluss des Geschlechts auf das Einkommen ist signifikant. H. Der Einfluss der Erfahrung auf das Einkommen ist signifikant. I. Der Einfluss der Wechselwirkung zwischen Qualität und Erfahrung auf das Einkommen ist signifikant. J. Für das Einkommen hat die Erfahrung größere Bedeutung als die Qualität der Arbeit. K. Für das Einkommen hat die Qualität der Arbeit größere Bedeutung als die Erfahrung. L. Die Wechselwirkungen zwischen Erfahrung und Qualität haben mehr Einfluss auf das Einkommen als die Qualität der Arbeit. M. Die Abhängigkeit des Einkommens von Qualität und Erfahrung kann auch mittels multipler linearer Regression untersucht werden, indem für die dichotomisierte Qualität bzw. Erfahrung jeweils eine Dummyvariable erzeugt wird, die in das Regressionsmodell aufgenommen werden. P. Die Abhängigkeit des Einkommens von Qualität und Erfahrung kann auch mittels multipler linearer Regression untersucht werden, indem die ursprünglichen - nicht dichotomisierten - metrischen Merkmale in das Regressionsmodell aufgenommen werden. 4

5 5. Sieben intervallskalierte Variablen (Fragen zur Abtreibung) wurden einer Faktorenanalyse mit Extraktion von Hauptkomponenten unterzogen, wobei die Korrelationsmatrix benutzt wurde und damit standardisierte Messwerte zum Einsatz kamen. Anschließend wurden die extrahierten Hauptkomponenten rotiert (Varimax). Siehe hierzu die zugehörige SPSS-Ausgabe Nummer 2! Wie groß ist die Gesamtvarianz (1 Nachkommastelle)? Gesamtvarianz = Wie groß ist der prozentuale Anteil der Gesamtvarianz, der durch 5 Hauptkomponenten erklärt werden kann (3 Nachkommastellen)? Wie groß ist der prozentuale Anteil der Gesamtvarianz, der durch die ersten beiden Hauptkomponenten erklärt werden kann (3 Nachkommastellen)? Welche der 7 Ausgangsvariablen mit den Einstellungen zur Abtreibung wird von den extrahierten Hauptkomponenten am besten beschrieben? Variable: Wie groß ist der Korrelationskoeffizient nach Pearson zwischen der Variable Abtreib.: Wenn das Baby wahrscheinl. kank und der zweiten extrahierten und rotierten Hauptkomponente (3 Nachkommastellen)? r = Wie viel Prozent der Varianz der Variable Abtreib.: Wenn das Baby wahrscheinl. kank wird von dem Modell mit den ersten beiden extrahierten und rotierten Hauptkomponenten erklärt (1 Nachkommastelle)? Geben Sie eine kurze, einfache Interpretation der zweiten extrahierten und rotierten Hauptkomponente an. Hat die durchgeführte Rotation die Möglichkeit zur Interpretation der extrahierten (rotierten) Hauptkomponenten verbessert (ja oder nein)? 5

6 6. Es interessiert die Frage, ob ein linearer Zusammenhang zwischen der Variable persönliches Nettoeinkommen (Z) als abhängiger Größe und den Variablen Wohndauer (X 1 ) und Lebensalter (X 2 ) besteht. Siehe hierzu die zugehörige SPSS-Ausgabe Nummer 3! Geben Sie das geschätzte Regressionsmodell an (3 Nachkommastellen). Z = X 1 X 2 Welcher Anteil der Varianz von Z lässt sich mit Hilfe des geschätzten Modells erklären (1 Nachkommastelle)? Anteil= % Welcher Wert Z wird für X 1 = 10 und X 2 = 50 prognostiziert (3 Nachkommastellen)? Z = Welche der beiden Einflussgrößen hat eine größere Bedeutung für die Vorhersage von Z (X 1 oder X 2 )? Sind Z und X 2 korreliert (ja/nein)? Geben Sie den Korrelationskoeffizienten zwischen Z und X 1 an (3 Nachkommastellen). r(z, X 1 ) = Ist der Einfluss von X 1 auf dem Signifikanzniveau α = 0.05 signifikant (ja/nein)? Sind die Einflussgrößen untereinander korreliert (ja/nein)? Welcher Anteil der Varianz von Z lässt sich mit Hilfe eines Regressionsmodells erklären, welches nur X 2 als Einflussgröße verwendet? 6

7 7. Mit Hilfe von 4 Fragen wurde versucht, die Einstellung zu Ausländern zu erfassen. Mit Hilfe dieser Itembatterie wurde der Versuch unternommen, eine Skala zur Messung dieser Einstellung zu konstruieren. Siehe hierzu die zugehörige SPSS-Ausgabe Nummer 4! Welcher Anteil der Varianz des untersuchten theoretischen Konstruktes lässt sich maximal mit Hilfe der gebildeten Summenskala vorhersagen (1 Nachkommastelle)? Welchen Wert kann Cronbachs α im Allgemeinen maximal annehmen (1 Nachkommastelle)? Maximalwert = Ist ersichtlich, wie viele Items in eine optimale Summenskala integriert werden müssen (ja/nein)? Welches Item sollte man eventuell nicht in die Summenskala integrieren? Item: 7

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1 SPSS-Ausgabe : Univariate Varianzanalyse [DatenSet] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav Tests der Zwischensubjekteffekte Abhängige Variable: Einkommen Quelle Korrigiertes Modell Konstanter

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduktion. Interpretation des SPSS-Output s

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduktion. Interpretation des SPSS-Output s Explorative Faktorenanalyse als Instrument der Dimensionsreduktion Beispiel: Welche Dimensionen charakterisieren die Beurteilung des sozialen Klimas in der Nachbarschaft? Variablen: q27a bis q27g im Datensatz

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduzierung. Interpretation des SPSS-Output s

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduzierung. Interpretation des SPSS-Output s Explorative Faktorenanalyse als Instrument der Dimensionsreduzierung Beispiel: Welche Dimensionen charakterisieren die Beurteilung des sozialen Klimas in der Nachbarschaft? Variablen: q27a bis q27g im

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik Name, Vorname Matrikelnummer Teilklausur des Moduls 32741 Kurs 42221: Vertiefung der Statistik Datum Termin: 21. März 2014, 14.00-16.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Vertiefung der Statistik 21.3.2014

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 13 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen.

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Reliabilitäts- und Itemanalyse

Reliabilitäts- und Itemanalyse Reliabilitäts- und Itemanalyse In vielen Wissenschaftsdisziplinen stellt die möglichst exakte Messung von hypothetischen Prozessen oder Merkmalen sogenannter theoretischer Konstrukte ein wesentliches Problem

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Tutorial:Unabhängigkeitstest

Tutorial:Unabhängigkeitstest Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Explorative Faktorenanalyse

Explorative Faktorenanalyse Explorative Faktorenanalyse 1 Einsatz der Faktorenanalyse Verfahren zur Datenreduktion Analyse von Datenstrukturen 2 -Ich finde es langweilig, mich immer mit den selben Leuten zu treffen -In der Beziehung

Mehr

Zweifache Varianzanalyse

Zweifache Varianzanalyse Zweifache Varianzanalyse Man kann mittels VA auch den (gleichzeitigen) Einfluss mehrerer Faktoren (unabhängige Variablen) auf ein bestimmtes Merkmal (abhängige Variable) analysieren. Die Wirkungen werden

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Statistische Methoden in der Wirtschaftsund Sozialgeographie

Statistische Methoden in der Wirtschaftsund Sozialgeographie Statistische Methoden in der Wirtschaftsund Sozialgeographie Ort: Zeit: Multimediapool Rechenzentrum Mittwoch 0.5--45 Uhr Material: http://www.geomodellierung.de Thema: Beschreibung und Analyse Wirtschafts-

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Zusammenhangsmaße II

Zusammenhangsmaße II Sommersemester 2009 Wiederholung/ Eine nominale und eine intervallskalierte Variable χ 2 =?!? Übung von Simone Reutzel Heute im HS1, altes ReWi-Haus Zum Nachlesen Agresti/Finlay: Kapitel 8.5, 9.4 Gehring/Weins:

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen.

Wolf falsch eingeschätzt und deshalb falsche Werbemaßnahmen ergriffen. Aufgabenstellung Klausur Methoden der Marktforschung 0.08.004 Der Automobilhersteller People Car verkauft eine neue Variante seines Erfolgsmodells Wolf zunächst nur auf einem Testmarkt. Dabei muss das

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Es können von den Antwortmöglichkeiten alle, mehrere, eine oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller

» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller » SCHRITT-FÜR-SCHRITTANLEITUNG«MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Daniela Keller Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Impressum 2016 Statistik und Beratung Dipl.-Math. Daniela

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung. 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend?

Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung. 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend? Eigene MC-Fragen Kap. 4 Faktorenanalyse, Aggregation, Normierung 1. Welche Aussage zu den Prinzipien der Faktorenanalyse ist zutreffend? a) Die Faktorenanalyse hat ihren Ursprung in der theoretischen Intelligenzforschung.

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Grundzüge der Faktorenanalyse

Grundzüge der Faktorenanalyse SEITE Grundzüge der Faktorenanalyse Bei der Faktorenanalyse handelt es sich um ein Verfahren, mehrere Variablen durch möglichst wenige gemeinsame, hinter ihnen stehende Faktoren zu beschreiben. Beispiel:

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Statistik-Quiz Sommersemester

Statistik-Quiz Sommersemester Statistik-Quiz Sommersemester Seite 1 von 8 Statistik-Quiz Sommersemester Die richtigen Lösungen sind mit gekennzeichnet. 1 In einer Gruppe von 337 Probandinnen und Probanden wurden verschiedene Merkmale

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Faktorenanalyse Beispiel

Faktorenanalyse Beispiel Faktorenanalyse Zweck der Faktorenanalyse ist die Dimensionsreduktion einer gegebenen Variablenanzahl, d. h. also die Zusammenfassung vorhandener Variablen zu wenigen latenten, i. d. R. voneinander unabhängigen

Mehr

Aufgaben zur Multivariaten Statistik

Aufgaben zur Multivariaten Statistik Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Universität Kassel Aufgaben zur Multivariaten Statistik Teil : Aufgaben zur Einleitung. Was versteht man unter einer univariaten, bivariaten

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Statistische Methoden in der Geographie

Statistische Methoden in der Geographie Statistische Methoden in der Geographie Band 2.; Multivariate Statistik Von Dr. rer. nat. Gerhard Bahrenberg Professor an der Universität Bremen Dr. rer. nat. Ernst Giese Professor an der Universität Gießen

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 1. Aufgabe: Für 25 der größten Flughäfen wurde die Anzahl der abgefertigten Passagiere in den Jahren 2009 und 2012 erfasst. Aus den Daten (Anzahl

Mehr

1.1. Zusammenhänge und Vorhersagen

1.1. Zusammenhänge und Vorhersagen 1.1. Zusammenhänge und Vorhersagen In diesem Kapitel dreht sich alles um Zusammenhänge und Vorhersagen. Anstatt uns zu fragen Was ist größer / mehr / ausgeprägter?, versuchen wir Aussagen zu treffen wie

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT

FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte

Mehr

5 Beschreibung und Analyse empirischer Zusammenhänge

5 Beschreibung und Analyse empirischer Zusammenhänge 5 Beschreibung und Analyse empirischer Zusammenhänge 132 5 Beschreibung und Analyse empirischer Zusammenhänge 5.1 Zusammenhänge zwischen kategorialen Merkmalen 137 5.1.1 Kontingenztabellen 137 Verteilungen

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 27. März 2015 Aufgabe 1 Kennzeichnen Sie die folgenden Aussagen über die beiden Zufallsvektoren ([ ] [ ]) ([ ] [ ]) 2 1 0 1 25 2 x 1 N, x 3 0 1 2

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 120 Minuten netto Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Bivariate Statistik: Kreuztabelle

Bivariate Statistik: Kreuztabelle Bivariate Statistik: Kreuztabelle Beispiel 1: Im ALLBUS wurde u.a. nach dem Nationalstolz und nach dem Gefühl der Überfremdung gefragt: Würden Sie sagen, dass Sie sehr stolz, ziemlich stolz, nicht sehr

Mehr