3 Flächen und Flächenintegrale

Größe: px
Ab Seite anzeigen:

Download "3 Flächen und Flächenintegrale"

Transkript

1 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen als Ränder on Körpern af 3 Flächenstücke ie mathematische efinition on Flächen geht as on einer offenen Menge R 2 Af dieser Menge sei eine stetig differenzierbare Abbildng F : R 3 on af eine Teilmenge R 3 definiert: = F,,, In Komponenten latet die Abbildng [ =[ F, y F y, z F z, =[ ie Ableitngen werden in der Matri F F F F ' y F y F z F z F z = F() y mit den paltenektoren =[ F = F F y nd F z =[ F = F F F y F z zsammengefasst Von der Abbildng F wird gefordert, dass sie die folgenden Eigenschaften besitzt: ie Abbildng ist mkehrbar, dh sie besitzt eine stetige inerse Abbildng F :, die jedem Pnkt as sein Urbild in zordnet 2 ie Abbildng ist reglär, dh die Vektoren nd F sind für alle, linear nabhängig As der Reglaritätsbedingng folgt: F für alle, FH Landsht 3- Prof r Wandinger

2 efinition: er Wertebereich einer stetig differenzierbaren mkehrbaren reglären Abbildng F : R 3 wird als Flächenstück bezeichnet 2 ie Abbildng = F, heißt Parameterdarstellng des Flächenstückes 3 Eine Fläche ist die Vereinigng endlich ieler Flächenstücke Beispiel : Hyperbolisches Paraboloid ie Abbildng F, =[,, ={, } beschreibt ein hyperbolisches Paraboloid rch die Umkehrabbildng F, y, z =[ y = [ wird jedem Pnkt des hyperbolischen Paraboloids eindetig ein Pnkt, zgewiesen ie Vektoren nd F berechnen sich z =[ =[ nd F Für das Vektorprodkt folgt =[ F, Beispiel 2: Graph einer Fnktion Ist f : R eine stetig differenzierbare Fnktion af einer offenen Menge R 2, so ist der Graph ={, y, z, y z= f, y } R 3 ein Flächenstück ie Parameterdarstellng ist F, =[ f, ie Vektoren nd F =[ berechnen sich z nd f f F =[ FH Landsht 3-2 Prof r Wandinger

3 Für das Vektorprodkt gilt f F =[ f, as hyperbolische Paraboloid ist ein Beispiel für eine Fläche, die drch den Graphen einer Fnktion beschrieben wird 32 Tangentialebene nd Normale ei r :[a,b R 2 ein glatter Weg nd das drch die Abbildng F : R 3 erzegte Flächenstück ann wird drch den Weg = F r :[a, b R 3 eine Kre C af dem Flächenstück t =F r t erzegt, deren Parameterdarstellng drch gegeben ist In Komponenten latet die Parameterdarstellng der Kre: t = F t, t y t = F y t, t z t = F z t, t er Tangentenektor an die Kre C berechnet sich z d dt = F d dt F d dt =F d dt F d dt er Tangentenektor liegt in der on den Vektoren nd F afgespannten Ebene a b R z n F r F C y efinition: ei = { = F,,, } ein Flächenstück nd =F, ein Pnkt daraf ie on den Vektoren, nd F, afgespannte Ebene heißt Tangentialebene on in FH Landsht 3-3 Prof r Wandinger

4 ie Tangentialebene besteht as allen Vektoren der Form =, F,,, R ie Tangentenebene an in besteht as den Pnkten, =, F,,, R 2 ie Tangentenebene definiert ein Flächenstück T, das im Pnkt tangential zr Fläche ist ie Vektoren nd F werden als Tangentenektoren der Ebene bezeichnet efinition: ei = { = F,,, } ein Flächenstück nd =F, ein Pnkt daraf er Vektor n, :=, F,, F, heißt Normalenektor oder Flächennormale on im Pnkt er Normalenektor steht senkrecht af der Tangentialebene on in Mithilfe der Flächennormalen lässt sich eine Oberseite nd eine Unterseite des Flächenstückes definieren ie Oberseite ist die eite der Fläche, on der die Flächennormale weg zeigt ie Unterseite ist die gegenüberliegende eite adrch wird eine Orientierng des Flächenstückes definiert n Oberseite Beispiel : Gegeben ist das Flächenstück mit : = F,, F, =[ 2 e ie Tangentialebene wird drch die Vektoren, =[ nd F, 2 e =[ afgespannt Im Pnkt, =, gilt e Unterseite FH Landsht 3-4 Prof r Wandinger

5 , =[ 2 as Vektorprodkt ist nd F, =[ 2, F, =[ amit berechnet sich der Normalenektor z Beispiel 2: [ 2 n, = = [ Für ein Flächenstück, das drch einen Fnktionsgraphen definiert wird, ist die Parameterdarstellng F, =[ f, er Normalenektor berechnet sich z (gl Abschnitt 3, Beispiel 2) f [ n= 2 f 2 f f 33 Parametertransformation ei F : eine Parameterdarstellng der Fläche sowie G : eine mkehrbar eindetige Abbildng der Menge R 2 af die Menge R 2 es Weiteren wird orasgesetzt, dass die Abbildng G stetig differenzierbar ist ann ist F= F G : ebenfalls eine Parameterdarstellng der Fläche ie hat die Form F= F G, mit, In Komponenten lässt sich die Abbildng in der Form = G, = G, schreiben ie Jacobi-eterminante der Abbildng G ist FH Landsht 3-5 Prof r Wandinger

6 J G = G G G G Es lässt sich zeigen, dass der Normalenektor für beide Parameterdarstellngen gleich ist, wenn J G gilt Für J G ändert der Normalenektor seine Richtng Welche eite einer Fläche die Oberseite ist, hängt also on der Parameterdarstellng der Fläche ab Beispiel: Eine Parameterdarstellng des hyperbolischen Paraboloids ist F, =[,, R2 er Normalenektor berechnet sich z [ n= 2 2 rch die Parametertransformation G, =[,, R2 geht die Parameterdarstellng über in F, =[ 2 2 ie Jacobi-eterminante der Abbildng G ist J G = =2 Für die transformierte Parameterdarstellng gilt F = F [ = nd F 2 = F [ = 2 aras berechnet sich der Normalenektor z [ 2 [ n= 2 = FH Landsht 3-6 Prof r Wandinger

7 32 Flächenintegrale Flächenintegrale treten zb af, wenn die Masse einer gekrümmten chale z berechnen ist, wenn die resltierende Kraft des af eine Fläche wirkenden rcks gescht ist oder wenn die Flüssigkeitsmenge z ermitteln ist, die pro Zeiteinheit drch eine orgegebene Fläche strömt Flächenintegrale lassen sich af Integrale über Gebiete im R 2 zrückführen 32 Flächenintegrale erster Art ei ={ = F,,, R 2 } R 3 ein Flächenstück In jedem Pnkt = F, spannen die Vektoren, d nd F, d ein infinitesimales Parallelogramm af, dessen Flächeninhalt d = F d d ist er Flächeninhalt d wird als skalares Flächenelement bezeichnet er Flächeninhalt A des gesamten Flächenstückes lässt sich drch mmation über alle skalaren Flächenelemente berechnen efinition: er Flächeninhalt A eines Flächenstückes ={ = F,,, R 2 } R 3 ist die Zahl A = d :=, F, d d er Flächeninhalt entspricht dem Integral der Fnktion, =, F, über das Gebiet R 2 Beispiel : Flächeninhalt der Kgeloberfläche Eine Parameterdarstellng der Oberfläche einer Kgel mit Radis des Koordinatensystems ist R sin cos F R sin sin, =[,, 2 R cos as Flächenelement berechnet sich z R m den Ursprng R cos cos d = F F d d R cos sin = [ [ R sin sin R sin cos d R sin d =R 2 [sin 2 cos sin 2 sin sin cos d d =R 2 sin 4 sin 2 cos 2 d d = R 2 sin d d FH Landsht 3-7 Prof r Wandinger

8 amit folgt für den Flächeninhalt: efinition: 2 A =R 2 [ 2 sin d d =R2 [ cos = 2 = d =2 R 2 d =4 R 2 ei :G R ein af einem Gebiet G R 3 definiertes kalarfeld nd ={ = F,,, R 2 } G ein ganz im Gebiet G enthaltenes Flächenstück as Flächenintegral erster Art des kalarfeldes über das Flächenstück ist definiert drch d := F,, F, d d er Flächeninhalt ist ein spezielles Flächenintegral erster Art mit der Fnktion = Beispiel 2: Masse einer chale Eine chale wird drch ihre Mittelfläche nd ihre icke h beschrieben ie icke kann sich im Allgemeinen über die Fläche ändern, dh h=h Ist die Massendichte, so ist =h die Masse pro Fläche Ist F : eine Parameterdarstellng der Mittelfläche, so berechnet sich die Masse der chale z M = d= F,, F, d d 322 Flächenintegrale zweiter Art ie Kraft, die der hydrostatische rck p in einer Flüssigkeit af ein Flächenelement der Berandng asübt, wirkt immer senkrecht af die Wand Ist ein Flächenstück der Berandng, so wirkt die Kraft pro Flächenelement entlang der Flächennormalen Wenn die Parameterdarstellng so gewählt wird, dass die Flächennormale in die Flüssigkeit zeigt, dann gilt für das Kraftelement: d K = p n d = p d n dk er infinitesimale Vektor d =n d= F F F d d= F d d wird als ektorielles Flächenelement bezeichnet ie gesamte af das Flächenstück wirkende rckkraft lässt sich drch mmation über alle Kraftelemente berechnen FH Landsht 3-8 Prof r Wandinger

9 efinition: ei :G R ein af einem Gebiet G R 3 definiertes kalarfeld nd ={ = F,,, R 2 } G ein ganz im Gebiet G enthaltenes Flächenstück as Flächenintegral zweiter Art des kalarfeldes über das Flächenstück ist definiert drch d := n d = F,, F, dd as Flächenintegral zweiter Art eines kalarfeldes ist ein Vektor Beispiel : Af das Flächenstück, das drch die Parametrisierng F, =[ 2,, ={, 2 } beschrieben wird, wirkt der rck p, y, z = p 3 z (siehe Abbildng) Wie groß ist die resltierende Kraft af die Fläche? z Lösng: Für die Tangentenektoren gilt: =[ 2 =[, F, F =[ 2 er Normalenektor zeigt in das mit Flüssigkeit gefüllte Gebiet amit gilt für die resltierende rckkraft: K = = p 2 p d = p 2 2 = p [ e e z d d 3 = 3 3= e z d 3 z e [ 3 2 = 2 4= e [ 5 2 e 8 3 z e d= p 5 e 6 y efinition: ei V :G R 3 ein af einem Gebiet G R 3 definiertes Vektorfeld nd ={ = F,,, R 2 } G ein ganz im Gebiet G enthaltenes Flächenstück as Flächenintegral zweiter Art des Vektorfeldes V über das Flächenstück ist definiert drch V d := V n d = V F,, F, d d FH Landsht 3-9 Prof r Wandinger

10 as Flächenintegral zweiter Art eines Vektorfeldes ist ein kalar Es wird ach als Flss des Vektorfeldes drch die Fläche bezeichnet Wenn die Orientierng des Flächenstückes geändert wird, dh wenn der Normalenektor bei Übergang af eine andere Parameterdarstellng seine Richtng mkehrt, dann ändert das Flächenintegral zweiter Art eines Vektorfeldes sein Vorzeichen Wird das Flächenstück mit der mgekehrten Orientierng mit bezeichnet, dann gilt also: Beispiel 2: V d = V d Wenn das Vektorfeld V das Geschwindigkeitsfeld einer stationären trömng ist, dann gibt das Flächenintegral zweiter Art über ein Flächenstück das Flüssigkeitsolmen an, das pro Zeiteinheit in Richtng der Flächennormalen, dh on nten nach oben, drch das Flächenstück strömt Für das drch F, =[, gegebene Flächenstück nd ist =e e z, F =e y e z F = e e z e y e z =e z e e y Für das Geschwindigkeitsfeld V = z 4 e z 4 e y 2 y 2 e z berechnet sich das pro Zeiteinheit drch das Flächenstück strömende Flüssigkeitsolmen z Q= = [ = [ = V d = [ [ 4 4 e 4 4 e y 2 2 e z e e y e z d d [ d d d 4 d= [ d= [ = 5 6 = =4 4 9 = 4 9 = 6 4= d FH Landsht 3- Prof r Wandinger

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale Vorlesng: Analsis II für Ingeniere Wintersemester 9/ Michael Karow Themen: lächen nd lächenintegrale Parametrisierte lächen I Sei 2 eine kompakte Menge mit stückweise glattem and (d.h. der and ist as glatten

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

16 Oberflächenintegrale

16 Oberflächenintegrale 16 Oberflächenintegrale Nachdem wir im vergangenen Abschnitt gesehen haben, wie man das Volumen eines dreidimensionalen Körpers z.b. das Volumen einer Kugel) mit Hilfe der Integralrechnung bestimmen kann,

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

Quellen und Senken als Feldursachen

Quellen und Senken als Feldursachen Kapitel 2 Qellen nd Senken als Feldrsachen Wir sprechen von Qellenfeldern nd Wirbelfeldern. Beide nterscheiden sich grndlegend voneinander. Wir wollen deswegen beide Feldarten getrennt besprechen, m deren

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

Ferienkurs Analysis 3 für Physiker. Integralsätze

Ferienkurs Analysis 3 für Physiker. Integralsätze Ferienkrs Analysis 3 für Physiker Integralsätze Ator: Benjamin Rüth Stand: 17. März 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Differentialoperatoren 3 2 Integralsatz von Gaß 4 2.1

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr D Castrigiano Dr M Prähofer Zentralübung 85 Oberfläche des Torus im R 4 TECHNICHE UNIVERITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis http://wwwmatumde/hm/ma924 2W/ Gegeben

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Höhere Mathematik 3. Prof. Dr. Norbert Knarr. Wintersemester 2013/14. FB Mathematik

Höhere Mathematik 3. Prof. Dr. Norbert Knarr. Wintersemester 2013/14. FB Mathematik Höhere Mathematik 3 Prof. Dr. Norbert Knarr F Mathematik Wintersemester 23/4 2. Integration von Funktionen in drei Variablen 2.. Integration über Flächenstücke im Raum 2... Denition. Es sei D R 2 eine

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

72 Grundlagen der konstruktiven Geometrie

72 Grundlagen der konstruktiven Geometrie 7 Grndlagen der konstrktiven Geometrie die Parameter nd v zgleich ein lokales kartesisches Koordinatensstem af der Eene. Flächen. Ordnng Für die implizite Darstellng eines Zlinders gilt in homogenen Koordinaten

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

Technische Mechanik I. Vektorrechnung Eine Einführung

Technische Mechanik I. Vektorrechnung Eine Einführung Uniersität Stttgart Institt für Mechanik Prof. Dr.-Ing. W. Ehlers www. mechba. ni-stttgart. de Ergänzng zr Vorlesng Technische Mechanik I Vektorrechnng Eine Einführng WS 2015/16 Lehrsthl für Kontinmsmechanik,

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Achsen eines Parallelogramms. Eckart Schmidt

Achsen eines Parallelogramms. Eckart Schmidt Achsen eines Parallelogramms Eckart Schmidt Eine Achsenkonstrktion für Ellipsen dürfte hete kam Thema der Schlgeometrie sein Betrachtet man statt der Ellipse ein einbeschriebenes Parallelogramm z konjgierten

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

Höhere Mathematik Vorlesung 4

Höhere Mathematik Vorlesung 4 Höhere Mathematik Vorlesung 4 März 217 ii In der Mathematik versteht man die inge nicht. Man gewöhnt sich nur an sie. John von Neumann 4 as oppelintegral Flächen, Volumen, Integrale Ob f für a x b definiert

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

6.2 Extremwertaufgaben mit Nebenbedingung

6.2 Extremwertaufgaben mit Nebenbedingung 6.. Extremwertaufgaben mit Nebenbedingung 87 6. Extremwertaufgaben mit Nebenbedingung Betrachten wir jetzt eine differenzierbare Funktion f:u R n R U offen in R n. Ist n = 3 und U eine glatte Fläche, dann

Mehr

Die 2. Fundamentalform - Gauß-Abbildung

Die 2. Fundamentalform - Gauß-Abbildung Skrit: Die. Fndmentlform Gß-Abbildng Die. Fndmentlform - Gß-Abbildng Vortrg im Proseminr Kren nd Flächen bei Prof. Thoms Schick m 14. Jnr 004 on Alender Mnn e-mil: fenfndchtzig@gm.de 1. Gß-Abbildng nd

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1 D-BAUG Analsis II FS 5 Dr. Meike Akveld Serie 8. Berechnen Sie für das Vektorfeld (siehe Abbildung ) 3 - -3 3 3 Abbildung : Aufgabe F : (, ) ( +, ) die Arbeit entlang der folgenden Wege C, wobei P = (,

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 76 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 12.11.28 2 / 76 Wiederholung Glatte Flächen Wiederholung Vektorprodukt Definition Flächeninhalt

Mehr

Überlegen Sie, ob es weitere Verfahren zur Berechnung des Abstandes eines Punktes von einer Geraden gibt, die ggf. einfacher durchzuführen sind.

Überlegen Sie, ob es weitere Verfahren zur Berechnung des Abstandes eines Punktes von einer Geraden gibt, die ggf. einfacher durchzuführen sind. Abstan Pnkt / Gerae Afabe: Entwickeln Sie ein Verfahren zr Berechnn es Abstanes eines Pnktes von einer Geraen n führen Sie ieses Verfahren am Beispiel von (3 0-8) n : x ; t I; rch. Überleen Sie, ob es

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in komplexer Darstellung.

Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in komplexer Darstellung. 0. Übung zur Höheren Mathematik 3 Abgabe: KW 41 Aufgabe 3-0a: Berechnen Sie für die folgenden Funktionen die Fourier-Reihe in kompleer Darstellung. c) Aufgabe 3-0b: Berechnen Sie die Fourier-ransformierte

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

Das lineare Gleichungssystem

Das lineare Gleichungssystem 26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

10.5. Räumliche Krümmung und Torsion

10.5. Räumliche Krümmung und Torsion 10.5. Räumliche Krümmung und Torsion Gegeben sei eine zweimal differenzierbare Parameterdarstellung w einer Raumkure. Wir lassen im Folgenden meist den Parameter t weg, um etwas bequemere Formeln zu bekommen.

Mehr

Analysis II. Mehrdimensionale Differenzialund Integralrechnung

Analysis II. Mehrdimensionale Differenzialund Integralrechnung Übungen zur Vorlesung Analysis II Aufgaben Mehrdimensionale Differenzialund Integralrechnung gelesen von Prof. Dr. Heinrich Freistühler Martin Gubisch Konstanz, Sommersemester 28 Übungsaufgaben. Aufgabe

Mehr

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1

Satz von Stokes. Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt. Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares Vektorfeld F auf einer regulären Fläche S mit orientiertem Rand C gilt rot F ds = F d r. S C Satz von Stokes 1-1 Satz von Stokes Für ein stetig differenzierbares

Mehr

Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall

Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall Spannungszustand 2 Dietmar Gross, Werner Hauger, Jörg Schröder und Wolfgang A. Wall Springer-Verlag GmbH Deutschland 2017 D. Gross et al., Technische Mechanik 2, DOI 10.1007/978-3-662-53679-7_2 35 36 2

Mehr

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya

Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt. 1-E Ma 1 Lubov Vassilevskaya Ilja Repin Die Wolgatreidler (1873) Das Skalarprodukt 1-E Ma 1 Lubov Vassilevskaya Treideln http://www.rheinschifffahrtsgeschichte.de/mainzer%20pano%20dateien/tierer%20treideln.jpg Treideln heißt eine

Mehr

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

3 Kurven und Kurvenintegrale

3 Kurven und Kurvenintegrale HM III = MATH III FT 2013 35 3 urven und urvenintegrale 3.1 urven 3.1.1 Definition von Wegen und urven; Jordankurven Definition: Eine stetige Abbildung γ : [a, b] IR n heißt ein Weg im IR n. Den zugehörigen

Mehr

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre

Einführung in die Meteorologie (met211) - Teil VI: Dynamik der Atmosphäre Einführng in die Meteorologie (met211) - Teil VI: Dnamik der Atmosphäre Clemens Simmer VI Dnamik der Atmosphäre Dnamische Meteorologie ist die Lehre on der Natr nd den Ursachen der Bewegng in der Atmosphäre.

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung II

Abitur 2015 Mathematik Infinitesimalrechnung II Seite 1 Abitur 2015 Mathematik Infinitesimalrechnung II Gegeben ist die Funktion g : x ln(2x + 3) mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit G g bezeichnet. Teilaufgabe

Mehr

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch Tangentialebene Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch implizit definierten Fläche. f (x 1,..., x n ) = c Tangentialebene 1-1

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Termine. Höhere Mathematik III. Literatur. Übungen

Termine. Höhere Mathematik III. Literatur. Übungen Termine Höhere Mathematik III für aer, autip, verf, wewi, geod Christof Eck Wintersemester 28/9 Vorlesung: Mo 9.45 11.15 V 47.1 Mi 8. 9.3 V 47.1 Vortragsübungen: Fr 8. 9.3 V 47.1 Gruppenübungen: o 9.45

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 11: e Prof. Dr. Erich Walter Farkas Mathematik I+II, 11. Linienintegrale 1 / 39 1 Ein einführendes Beispiel 2 3 Prof. Dr. Erich

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr