Musterlösungen (ohne Gewähr)

Größe: px
Ab Seite anzeigen:

Download "Musterlösungen (ohne Gewähr)"

Transkript

1 Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet den Punkt P mit der Umgebung. Stab a) Zeichnen Sie den Kräfteplan für den Punkt P! b) Geben Sie den zeichnerisch ermittelten Betrag der Seilkraft S an! Balken Seil glatt 45 P Gegeben: l,. a) b) S = Herbst

2 Herbst 010 Seite /0 a) Kräfteplan: S Stab N P b) S = 1 Herbst

3 Herbst 010 Seite /0 rage ( Punkte) a a a a Bestimmen Sie alle offensichtlichen Nullstäbe des dargestellten achwerks! Gegeben: a,. a a Stabnummern: a) Stabnummern: 7, 1, 14, 15 Bei zwei Richtigen: Ein falscher Nullstab hebt einen richtigen Nullstab auf! Bei vier Richtigen: Herbst

4 Herbst 010 Seite 4/0 rage ( 1 Punkt) Geben Sie den Grad der statischen Bestimmtheit des dargestellten Systems an! Das System ist statisch bestimmt fach statisch unbestimmt a) Kräfteplan: Das System ist statisch bestimmt 1 fach statisch unbestimmt Herbst

5 Herbst 010 Seite 5/0 rage 4 ( Punkte) Im all I) stehen zwei gelenkig miteinander verbundene gleich lange, masselose Stäbe auf einer rauen Oberfläche und werden wie skizziert durch eine Kraft belastet. Im all II) ist der linke Stab durch ein estlager gelagert, und die Kraft wirkt nun horizontal. a) Wie groß muss der Haftreibkoeffizient µ 0 im all I) mindestens sein, damit kein Rutschen eintritt? b) Wie groß muss der Haftreibkoeffizient µ 0 im all II) mindestens sein, damit kein Rutschen eintritt? c) Wie groß ist die Normalkraft im rauen Kontakt für Haften im all II)? Gegeben:. I) II) 0 0 rau 0 0 rau a) µ 0 b) µ 0 c) N = Herbst

6 Herbst 010 Seite 6/0 a) µ 0 b) µ 0 c) N = Herbst

7 Herbst 010 Seite 7/0 rage 5 ( Punkte) Über einen fest gelagerten rauen Zylinder (Haftreibkoeffizient µ 0 ) wird eine Masse mit einem Seil festgehalten. d a) In welchem Bereich min max ist das System im Gleichgewicht? b) Wie groß ist der Betrag des maximalen Torsionsmoments, das infolge der Belastung im Gleichgewicht auf den Zylinder wirkt? g m Gegeben: d, m, µ 0, g, β = 60. a) min = max = b) M tmax = Herbst

8 Herbst 010 Seite 8/0 a) min = mg e µ 0 π max = mg e +µ 0 π c) M tmax = 1 dmg(e+µ 0 π 1) Herbst

9 Herbst 010 Seite 9/0 rage 6 ( Punkte) Bestimmen Sie die Schwerpunktkoordinaten für das skizzierte homogene Blech im eingezeichneten Koordinatensystem! Gegeben: a. a a x S = 4a a y a y S = x a a) x S = 56 π 40 π a c) y S = 64 π 40 π a Herbst

10 Herbst 010 Seite 10/0 rage 7 ( Punkte) ür den skizzierten Balken ergeben sich aufgrund äußerer Belastungen die dargestellten Querkraftund Biegemomentverläufe. Welche angreifenden Kräfte und Momente führen hierzu? a) Tragen Sie die Kräfte am Angriffspunkt mit ihrer Richtung in den Kasten a) ein! b) Tragen Sie die Momente am Angriffspunkt mit ihrer Richtung in den Kasten b) ein! Hinweis: Die Beträge der Kräfte und Momente sind nicht gefragt. a) b) Qx () 0 x Mb( x) 0 x Herbst

11 Herbst 010 Seite 11/0 a) 1 Beide Kräfte an richtiger Stelle und richtiger Richtung, oder beide Kräfte in genau die entgegengesetzte Richtung, wie in der Abbildung (Kräfte dürfen horizontale Anteile haben): b) M 1 M Beide Momente an richtiger Stelle und mit richtiger Richtung bezgl. der unter a) angenommenen Querkraftrichtungen: Herbst

12 Herbst 010 Seite 1/0 Aufgabe 8 ( 8 Punkte) Ein homogenes Dreieck (Massenbelegung ν) ist wie skizziert an drei masselosen Stäben befestigt. An der freien Ecke ist eine masselose raue Kreisscheibe fest mit dem Dreieck verschweißt. Die Kreisscheibe ist von einem Seil umschlungen, an dessen einem Ende ein Klotz (Masse m) hängt und an dessen anderem Ende eine Haltekraft S angreift. Es herrscht Gleichgewicht. a) Berechnen Sie die Höhe h und die Masse M des Dreiecks! b) Geben Sie die Schwerpunktkoordinaten des Dreiecks im gegebenen Koordinatensystem an! c) Zeichnen Sie das reikörperbild für das Dreieck und den Zylinder! d) Berechnen Sie alle von dem Zylinder auf das Dreieck übertragenen Kräfte und Momente! e) Berechnen Sie alle Stabkräfte! Gegeben: m, l, R = l, ν = m l, g, S = 4 mg. / g 1 y x 0 m rau R S h Herbst

13 Herbst 010 Seite 1/0 a) Berechnung der Höhe h: h = Berechnung der Masse M des Dreiecks: l cos(0 ) sin(0 ) = tan(0 )l = l (1) A = 1 M = A ν () l l = l ; ν = m l () M = m (4) b) Berechnung der Schwerpunktskoordinaten: x S = l = 4 l (5) y S = 1 l cos(0 ) sin(0 ) = l = l 9 (6) c) KB: x s = 4/ S M g S mg Res S / y A x 0 Mg S M S 1 Res Herbst

14 Herbst 010 Seite 14/0 d) Aufstellen der Gleichgewichtsbedingungen für den Zylinder: x = 0 (7) y = 0 = Res mg 4 mg Res = 10 mg (8) Mz = 0 = mg 1 l 4 mg 1 l M M = 1 mgl (9) e) Aufstellen der Gleichgewichtsbedingungen für das Dreieck: M A z = 0 = S 1 l Mg 4 l Res l + M (10) S 1 l = mg 4 l + 10 mg l 1 mgl (11) S = mg + mg 54 mg = mg (1) S = 18mg (1) x = 0 = S cos(0 ) S (14) S = S = 6 mg (15) S = 1 mg (16) y = 0 = S 1 Mg Res + S sin(0 ) (17) S 1 = mg 10 mg + 6 mg = ( )mg (18) S 1 = mg (18 16) (19) Herbst

15 Herbst 010 Seite 15/0 Aufgabe 9 ( 7 Punkte) Gegeben ist der dargestellte masselose Träger. Er ist wie skizziert mit einer dreieckförmigen Streckenlast (Maximalwert q 0 ) und dem Moment M belastet. q 0 a) Zeichnen Sie das reikörperbild! b) Bestimmen Sie die Ersatzkraft für die Streckenlast! c) Bestimmen Sie die Lagerreaktionen! Gegeben: l, M, q 0. y z x 45 M 45 a) (alternativ) z z q 0 Ersatz y y M z M z x M x A x M y x M x A x M y y z y z 45 M M 45 b) Ersatz = q 0 l = q 0 l Herbst

16 Herbst 010 Seite 16/0 c) Kräftesummen: Σ x : 0 = x Σ y : 0 = y Σ z : 0 = z + Ersatz z = Ersatz = q 0 l Momentensummen: ΣM x (A) : 0 = M x + M Ersatz l M x = q 0 l M ΣM y (A) : 0 = M y + M Ersatz l M y = q 0 l + M ΣM (A) z : 0 = M z Herbst

17 Herbst 010 Seite 17/0 Aufgabe 10 ( 6 Punkte) Das dargestellte ebene achwerk wird durch zwei Kräfte belastet. a) Erfüllt das skizzierte System die notwendige Bedingung für statische Bestimmtheit? Begründen Sie Ihre Antwort! b) Bestimmen Sie die offensichtlichen Nullstäbe! c) Geben Sie die Auflagerkräfte an! d) Bestimmen Sie die Kräfte in den Stäben 4, 9 und 14! Gegeben: l,. A B C Herbst

18 Herbst 010 Seite 18/0 a) k = s + f 10 = 17 + b) Nullstäbe: Stabnummern 1 und 6 c) A H = 0 = A + A = M (B) = 0 = C l + l + l C = B C V = 0 = B + C B = d) Aus Momenten und Kräftesummen folgt 4 = ; 9 = ; 14 = Herbst

19 Herbst 010 Seite 19/0 Aufgabe 11 ( 8 Punkte) Zwei masselose abgewinkelte Rahmen sind gelenkig miteinander verbunden und werden wie skizziert durch die Streckenlast q 0 und das Moment M belastet. a) Zeichnen Sie das reikörperbild beider Teilsysteme! b) Berechnen Sie die Auflagerreaktionen! c) Bestimmen Sie rechnerisch die Schnittgrößenverläufe für das Teilsystem I als unktion der angegebenen lokalen Koordinaten! d) Skizzieren Sie qualitativ die Schnittgrößenverläufe für das Teilsystem I! z I A q 0 x x 1 z 1 a a II B M a a Gegeben: a, q 0, M = q 0 a. a) KB: q 0 B V B H A H AV G H G V G V G H M b) I: M G = 0 : A V a q 0( a) GS: M B = 0 : A V a A H a M + GS: : = 0 A V = q 0 a q 0 a a A 0 H B H aq 0 = 0 B H = q 0 a GS: : A V + B V aq 0 = 0 B V = 0 q a 0 a = 0 A H = 0 Herbst

20 Herbst 010 Seite 0/0 c) Mx ( ) 1 ~ Nx ( 1 ) Vx ( 1 ) s z x q 0 A H y 1 AV z 1 A H A V s ~ Mx ( ) Vx ( ) Nx ( ) N-Verlauf 1) : N(x 1 ) + A V = 0 N(x 1 ) = q 0 a ) : N(x ) + A 0 H A V = 0 N(x ) = V -Verlauf 1) : V (x 1 ) + 0 A H = 0 V (x 1 ) = 0 ) : V (x ) + q 0 x A 0 H M-Verlauf q 0a A V = 0 V (x ) = 1) M S = 0 : M(x 1 ) + 0 A H x 1 = 0 M(x 1 ) = 0 ) M S x = 0 : M(x ) + q 0 A V x + A 0 H (a M(x ) = q x 0ax q 0 q 0a q 0 x ) x = 0 d) -qa qa qa 0 qa 4 -qa qa - qa N V M Herbst

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) ottfried Wilhelm Leibniz Universität Hnnover Seite 1/ rge 1 ( Punkte) Musterlösungen (ohne ewähr) Eine homogene Wlze (ewicht ) lehnt n einer gltten Wnd. Die Wlze wird, wie in der Zeichnung drgestellt von

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

2. Statisch bestimmte Systeme

2. Statisch bestimmte Systeme 1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

1 Fragestellungen der Statik... 1

1 Fragestellungen der Statik... 1 VII 1 Fragestellungen der Statik... 1 2 Kräfte und ihre Wirkungen... 5 2.1 Äußere Kräfte, wirkende Lasten... 5 2.2 Reaktionskräfte und innere Kräfte... 8 2.3 Kräfte am starren Körper... 10 2.3.1 Linienflüchtigkeitsaxiom...

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Prüfung in Technischer Mechanik 1

Prüfung in Technischer Mechanik 1 Prüfung in Technischer Mechanik 1 Sommersemester 015 4. August 015, 08:00-10:00 Uhr MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG Bitte beachten Sie die folgenden Punkte: Die Prüfung

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

Übung zu Mechanik 1 Seite 19

Übung zu Mechanik 1 Seite 19 Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes

Mehr

Kraftwinder S = a = a

Kraftwinder S = a = a Prof. Dr.-ng. Prof. E.h. P. Eberhard A Kraftwinder Der skizzierte Eckpfosten eines Gartenzaunes ist bei A fest im Boden verankert. Er wird in B durch die Kräfte, und belastet. Die Punkte B und C sind durch

Mehr

Fragen aus dem Repetitorium II

Fragen aus dem Repetitorium II Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

TECHNISCHE MECHANIK. Übungsaufgaben zur Stereostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr.

TECHNISCHE MECHANIK. Übungsaufgaben zur Stereostatik. Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. TECHNISCHE MECHANIK Übungsaufgaben zur Stereostatik Prof. Dr.-Ing. Andreas Ettemeyer Prof. Dr.-Ing. Oskar Wallrapp Dr. Bernd Schäfer Fachhochschule München Fakultät 06 - Feinwerk- und Mikrotechnik / Physikalische

Mehr

Musterlösungen (ohne Gewähr) knm

Musterlösungen (ohne Gewähr) knm rühjhr 2009 Seite 1/17 rge 1 ( 1 Punkt) Gegeben ist eine Krft, die n einem Punkt P mit dem Ortsvektor r ngreift. Berechnen Sie den Momentenvektor M bezogen uf den Koordintenursprung des krtesischen Koordintensystems.

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b, TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt

Mehr

Übersicht der ausführlich gelösten Beispiele und Aufgaben

Übersicht der ausführlich gelösten Beispiele und Aufgaben Inhalt / Übersicht der ausführlich gelösten Beispiele und Aufgaben XIII Übersicht der ausführlich gelösten Beispiele und Aufgaben Beispiele Dachbinder-Konstruktion aus Fachwerk und Vollwandträger; Auflagerkräfte

Mehr

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3

Mehr

Übung zu Mechanik 1 Seite 34

Übung zu Mechanik 1 Seite 34 Übung zu Mechanik 1 Seite 34 Aufgabe 58 Für das dargestellte System berechne man die Auflagerreaktionen und Schnittgrößen! [m, kn] Aufgabe 59 Bestimmen Sie für das dargestellte System die Auflagerreaktionen

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

11) EBENE FACHWERKE und DREIGELENKBOGEN

11) EBENE FACHWERKE und DREIGELENKBOGEN BAULEITER HOCHBAU S T A T I K / E S T I G K E I T S L E H R E 11) EBENE ACHWERKE und DREIGELENKBOGEN 1) Ebene achwerke a) Allgemeines b) achwerkformen c) Berechnungsverfahren d) Beispiele Stabkräfte im

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

Klausur Technische Mechanik I (Sommersemester 2011)

Klausur Technische Mechanik I (Sommersemester 2011) Prof. Dr.-Ing. Stefan artmann Clausthal-Zellerfeld, 9. Juli 011 Institut für Technische Mechanik Fachgebiet Festkörpermechanik TU Clausthal Nachname, Vorname (Druckbuchstaben) Punkte Matrikelnr. Klausur

Mehr

Stabwerkslehre - WS 11/12 Prof. Dr. Colling

Stabwerkslehre - WS 11/12 Prof. Dr. Colling Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches

Mehr

1.6 Nichtzentrale Kräftesysteme

1.6 Nichtzentrale Kräftesysteme 1.6 Nichtzentrale Kräftesysteme 1.6.1 Zusammensetzen von ebenen Kräften mit verschiedenen ngriffspunkten Je zwei Kräfte bilden ein zentrales Kräftesystem, wenn sie nicht gerade zueinander parallel verlaufen

Mehr

tgt HP 2008/09-5: Wagenheber

tgt HP 2008/09-5: Wagenheber tgt HP 2008/09-5: Wagenheber Das Eigengewicht des Wagenhebers ist im Vergleich zur Last F vernachlässigbar klein. l 1 500,mm I 2 220,mm I 3 200,mm I 4 50,mm F 15,kN α 1 10, α 2 55, β 90, 1 Bestimmen Sie

Mehr

Übung zu Mechanik 2 Seite 62

Übung zu Mechanik 2 Seite 62 Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift:

1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: Das Coulombsche Gesetz: Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: g m F rau Die Erfahrung zeigt: Solange die Kraft F einen bestimmten Betrag nicht

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix

Mehr

Übung 9: Ebene Schubfeldträger II

Übung 9: Ebene Schubfeldträger II Ausgabe: 25..25 Übung 9: Ebene Schubfeldträger II Einleitung und Lernziele Schubfeldträger sind zentrale Strukturelemente im Leichtbau. Sie bieten gegenüber den einfacheren achwerkkonstruktionen einige

Mehr

1 Schubstarrer Balken

1 Schubstarrer Balken Einsteinufer 5, 1587 Berlin PdvK Energiemethoden 7. Übungsblatt, WS 212/13, S. 1 1 Schubstarrer Balken Freischnitt und Schnittlasten für das reale System x läuft mit der Balkenachse, die strichlierte Linie

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

2. Eulersche Knickfälle

2. Eulersche Knickfälle Das Stabilitätsversagen von Balken unter Druckbelastung wird als Knicken bezeichnet. Linear-elastisches Knicken wurde bereits von Euler untersucht. Je nach Randbedingungen lassen sich verschiedene so genannte

Mehr

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. September 2016 Aufgabe 1 (12 Punkte) Ein Wanderer (Gewicht G ) benutzt in unebenem Gelände einen Wanderstab

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Kapitel 8. Haftung und Reibung

Kapitel 8. Haftung und Reibung Kapitel 8 Haftung und Reibung 8 192 Haftung Haftung (Haftreibung) ufgrund der Oberflächenrauhigkeit bleibt ein Körper im leichgewicht, solange die Haftkraft H kleiner ist als der renzwert H 0.Der Wert

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

Prüfung - Technische Mechanik II

Prüfung - Technische Mechanik II Prüfung - Technische Mechanik II SoSe 2013 2. August 2013 FB 13, Festkörpermechanik Prof. Dr.-Ing. F. Gruttmann Name: Matr.-Nr.: Studiengang: Platznummer Raumnummer Die Aufgaben sind nicht nach ihrem Schwierigkeitsgrad

Mehr

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele (Ein-) Gelenkrahmen Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines 2-fach

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Man zeige mit Hilfe der Vektorrechnung, dass die Mittelpunkte der Seiten eines beliebigen Vierecks Eckpunkte eines Parallelogramms sind.

Man zeige mit Hilfe der Vektorrechnung, dass die Mittelpunkte der Seiten eines beliebigen Vierecks Eckpunkte eines Parallelogramms sind. Ü 1 1. Mathematische Grundlagen und Vektorwinder Aufgabe 1.1 Man zeige mit Hilfe der Vektorrechnung, dass die Mittelpunkte der Seiten eines beliebigen Vierecks Eckpunkte eines Parallelogramms sind. Aufgabe

Mehr

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem

2.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem Ermittlung unbekannter Kräfte im zentralen Kräftesystem.4 Ermittlung unbekannter Kräfte im zentralen Kräftesystem ( Lehrbuch: Kapitel.3.) Gegebenenfalls auftretende Reibkräfte werden bei den folgenden

Mehr

Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig."

Kommt ein Vektor zur Drogenberatung: Hilfe ich bin linear abhängig. Stephan Peter Wirtschaftsingenieurwesen WS 15/16 Mathematik Serie 8 Vektorrechnung Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig." Aufgabe 1 Gegeben sind die Vektoren a = b = 1 graphisch

Mehr

tgt HP 1992/93-1: Mountainbike

tgt HP 1992/93-1: Mountainbike tgt HP 199/93-1: Mountainbike Eine Radfahrerin fährt mit angezogener Vorderradbremse eine Gefällstrecke hinunter. Ihre Gewichtskraft F G1 greift im Schwerpunkt S 1, die Gewichtskraft des Fahrrades F G

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999

Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999 . Musterlösung zum Grundlagenbeispiel Getriebewelle Klausur Maschinenelemente, 29. Oktober 1999 13. Januar 23 1 Riemenkräfte Abbildung 1 zeigt die Kräfte und Momente, die auf die freigeschnittene untere

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum BP I, S K5 Genehmigte Hilfsmittel: Fach Urteil Technische Mechanik Ergebnis: Punkte Taschenrechner Literatur

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013

TM 2 Übung, Aufgaben an der Tafel , Prof. Gerling, SS 2013 TM Übung, Aufgaben an der Tafel 9.4.3, Prof. Gerling, SS 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Wir erheben keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 13.0 Einfacher Lastabtrag für Vertikallasten 13.1 Konstruktionsbeispiele für Lastabträge Garage in Wandbauweise zugehöriger Lastabtrag

Mehr

Lösungen TM I Statik und Festigkeitslehre

Lösungen TM I Statik und Festigkeitslehre Technische Mechanik I L Lösungen TM I Statik und Festigkeitslehre Modellbildung in der Mechanik N Pa (Pascal). m.4536kg.38slug [a] m, [b] dimensionslos, [c] m, [d] m Dichte: kgm 3.94 3 slugft 3 Geschwindigkeit:

Mehr

Übungsaufgaben Statik zentrales Kräftesystem

Übungsaufgaben Statik zentrales Kräftesystem I zentralen Kräftesyste liegen alle Kräfte in derselben Ebene und wirken auf einen geeinsaen Punkt. Lösen Sie alle Aufgaben zeichnerisch und rechnerisch. Kräfte zusaensetzen c) Eierziehen Bei Eierziehen

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens

Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens . Aufgabe Lagerreaktionen und Schnittgrößen eines verzweigten Gelenkrahmens Geg.: Kräfte F, F = F, F Streckenlast q F a Moment M = Fa Maß a 5 F Ges.: a) Lagerreaktionen in B, C und Gelenkkräfte in G, b)

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Stereostatik Statik starrer Körper Grundlagen der Vektorrechnung

Stereostatik Statik starrer Körper Grundlagen der Vektorrechnung S Stereostatik Statik starrer Körper Grundlagen der Vektorrechnung Definition des Vektors und Koordinatendarstellung Ein Vektor beschreibt unabhängig vom Koordinatensstem eine gerichtete Strecke im Raum.

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

3. Seilhaftung und Seilreibung

3. Seilhaftung und Seilreibung 3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Übung zu Mechanik 2 Seite 16

Übung zu Mechanik 2 Seite 16 Übung zu Mechanik 2 Seite 16 Aufgabe 27 Ein Stab wird wie skizziert entlang der Stabachse durch eine konstante Streckenlast n beansprucht. Bestimmen Sie den Verlauf der Normalspannungen σ 11 (X 1 ) und

Mehr

Aufgaben zum Thema Kraft

Aufgaben zum Thema Kraft Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch

Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Freischneiden Was zeigt die Waage? Behandeln Sie die Person auf der Plattform auf der Waage als eindimensionales Problem. Freischneiden von Person

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Festigkeitslehre. Modulprüfung in Technischer Mechanik am 11. August Aufgaben. Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise:

Festigkeitslehre. Modulprüfung in Technischer Mechanik am 11. August Aufgaben. Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Modulrüfung in Technischer Mechanik am. August 205 Festigkeitslehre Aufgaben Name: Vorname: Matr.-Nr.: Fachrichtung: Hinweise: Bitte schreiben Sie deutlich lesbar. Zeichnungen müssen sauber und übersichtlich

Mehr

Technische Mechanik I

Technische Mechanik I Technische Mechanik I m.braun@uni-duisburg.de Wintersemester 2003/2004 Lehrveranstaltung Zeit Hörsaal Beginn Technische Mechanik I V 3 Mi 14:00 15:30 LB 104 15.10.2003 r 08:15 09:45 LB 104 17.10.2003 14tägig

Mehr