Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13"

Transkript

1 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara König BeKo/TI 1

2 Einführung: Nach der Betrachtung von Berechnungen, die beliebig viel Platz und Zeit beanspruchen dürfen, betrachten wir jetzt Turingmaschinen mit eingeschränkten Resourcen. Dabei interessiert uns vor allem die Anzahl der Schritte, die eine Turingmaschine braucht, um ein Problem zu lösen. Barbara König BeKo/TI 223

3 Einführung: Beispiel 1: Travelling Salesman Ist der kürzeste Weg, der alle Knoten besucht und wieder zum Ausgangsort zurückkehrt, maximal so lang wie d? , , ,5 5 1, Ist es wirklich nötig, alle kürzeren Touren auszuprobieren oder gibt es ein effizienteres Verfahren? 2, Barbara König BeKo/TI 224

4 Einführung: Beispiel 2: Tourenplanungsproblem Gegeben ist: Ein Graph (= Wegenetz) wie beim Travelling-Salesman-Problem. Jedem Knoten ist ein Gewicht (= abzuholende Ladung) zugeordnet. Eine Menge von Lastwagen mit Ladebeschränkung. Frage: Kann man den Lastwagen Touren zuordnen, so dass die Ladebeschränkungen eingehalten werden, und die Gesamtstrecke kleiner als d bleibt? Barbara König BeKo/TI 225

5 2500 kg kg 1 10 t 3 1,5 1 2 Depot 2 5 t 3000 kg 4 1,5 1 1, , kg t 2, kg 4000 kg 5 t kg kg Barbara König BeKo/TI 226

6 Einführung: Offensichtlich ist sowohl das Travelling-Salesman- als auch das Tourenplanungs-Problem entscheidbar (alle möglichen Touren durchprobieren!). Wir werden jedoch zeigen, dass sie mit zu den schwersten Problemen in der Klasse NP gehören: sie sind NP-vollständig. (NP = Klasse von Problemen, die von nicht-deterministischen Turingmaschinen mit polynomialer Laufzeitbeschränkung akzeptiert werden können) Eine der wichtigsten offenen Fragen in der theoretischen Informatik ist, ob diese Probleme auch von einer deterministischen Turingmaschine in polynomialer Laufzeit gelöst werden können (es wird allgemein erwartet, dass dies nicht möglich ist). Es handelt sich hierbei um das sogenannte P NP-Problem. Barbara König BeKo/TI 227

7 Wir definieren zunächst die Klasse aller Sprachen, die von einer deterministischen Turingmaschine mit Zeitbeschränkung akzeptiert werden können. Zeitbeschränkte det. TM und akz. Sprachen (Definition) Sei f : N 0 N 0 eine (totale) Funktion. Die Klasse TIME(f (n)) besteht aus allen Sprachen A, für die es eine deterministische Mehrband-Turingmaschine M gibt mit A = T (M) und time M (x) f ( x ) für alle Wörter x. Dabei gibt time M (x) die Anzahl der Rechenschritte von M bei Eingabe x an. Das heißt, die Anzahl der Schritte der Turingmaschine ist beschränkt und die Beschränkung ist abhängig von der Länge der Eingabe. Barbara König BeKo/TI 228

8 Bemerkung: Um die Anzahl der Rechenschritte time M (x) einer Turingmaschine M zu ermitteln, müssen wir noch festlegen, wann die Berechnung von M beendet ist: dies ist der Fall, wenn eine Konfiguration gleich ihrer Folgekonfiguration ist. (Bei deterministischen Turingmaschinen hat jede Konfiguration genau eine Folgekonfiguration.) Das Erreichen eines Endzustandes bedeutet damit auch das Ende einer Berechnung. Die Berechnung kann jedoch auch dann beendet sein, wenn kein Endzustand erreicht wurde. Barbara König BeKo/TI 229

9 Um polynomial beschränkte Laufzeitklassen definieren zu können, wiederholen wir zunächst die Definition eines Polynoms (in einer Variablen). Polynom (Definition) Ein Polynom ist eine Funktion p : N 0 N 0 mit der Abbildungsvorschrift p(n) = a k n k + a k 1 n k a 1 n + a 0 für Konstanten k, a k,..., a 0 N 0. Barbara König BeKo/TI 230

10 Damit ist es nun auch möglich, die Klasse aller Sprachen zu definieren, die von deterministischen Turingmaschinen mit polynomialer Laufzeitbeschränkung erkannt werden. Komplexitätsklasse P (Definition) P = {A es gibt eine det. Turingmaschine M und ein = Polynom p mit T (M) = A und time M (x) p( x )} TIME(p(n)) p Polynom Intuitiv umfasst P alle Probleme, für die effiziente Algorithmen existieren. Barbara König BeKo/TI 231

11 O-Notation Kontextsensitive und Typ-0-Sprachen Es gibt einen engen Zusammenhang zur sogenannten O-Notation: O-Notation Seien f, g : N 0 N 0 Funktionen. Wir sagen, dass f höchstens so schnell wächst wie g, falls folgendes gilt: Es gibt eine Konstante C N 0 und ein N N 0, so dass für jedes n N gilt: f (n) C g(n) Anschaulich: ab einem bestimmten Wert N ist f kleiner als g, multipliziert mit einem konstanten Faktor. (Nur das asymptotische Verhalten zählt, Konstanten werden vernachlässigt.) Barbara König BeKo/TI 232

12 O-Notation Kontextsensitive und Typ-0-Sprachen Schreibweisen: Eine Funktion f wird hier oft durch ihren definierenden Ausdruck beschrieben: n, n 3, 2 n,... Dabei wird im allgemeinen n als Funktionsparameter verwendet. O(g) bezeichnet die Menge aller Funktionen, die höchstens so schnell wachsen wie g. Man schreibt dann f O(g) (oder sogar f = O(g)). Beispiele: n O(n 2 ) 100n O(n) n 2 O(2 n ). n 3 O(2 n ). Bemerkung: Für das letzte Beispiel gilt n 3 < 2 n, falls n 10. Barbara König BeKo/TI 233

13 O-Notation Kontextsensitive und Typ-0-Sprachen Polynomiales vs. exponentielles Wachstum Seien l N 0, q R mit q > 1. Dann gilt n l O(q n ) Das bedeutet, dass jede Exponentialfunktion (mit Basis größer als 1) mindestens so stark wächst wie jedes Polynom. (Exponentialfunktionen wachsen sogar echt stärker als Polynome.) Barbara König BeKo/TI 234

14 O-Notation Kontextsensitive und Typ-0-Sprachen Die O-Notation wird häufig eingesetzt, um die Laufzeit von Algorithmen zu analysieren. Die Laufzeit eines Algorithmus ist dabei die Anzahl der Schritte, die das Verfahren ausführt. Beispiele: Es gibt Sortierverfahren mit Laufzeit O(n log n) (Mergesort) und Laufzeit O(n 2 ) (Bubblesort) Jedes bekannte Verfahren für das Travelling-Salesman-Problem hat exponentielle Laufzeit. Dabei bezeichnet der Parameter n immer die Größe der Eingabe. Barbara König BeKo/TI 235

15 O-Notation Kontextsensitive und Typ-0-Sprachen Man spricht von linearer Laufzeit: O(n) quadratischer Laufzeit: O(n 2 ) kubischer Laufzeit: O(n 3 ) polynomialer Laufzeit: O(n l ) für eine Konstante l bzw. O(p(n)) für ein Polynom p exponentieller Laufzeit: O(2 n ) bzw. O(q n ) für q > 1 Barbara König BeKo/TI 236

16 O-Notation Kontextsensitive und Typ-0-Sprachen Laufzeiten in Abhängigkeit von der Größe der Eingabe: Laufzeit Anzahl Schritte Behandelbare Größe der Eingabe bei Eingabegröße 100 bei Schritte O(n) O(n 2 ) O(n 3 ) O(2 n ) 1, ,9 Barbara König BeKo/TI 237

17 Zusammenhang zwischen P und der O-Notation Eine Problem liegt in P genau dann, wenn es von einer (deterministischen) Maschine gelöst werden kann, die polynomiell viele Schritte macht, d.h. O(n l ) Schritte für eine Konstante l, falls n die Eingabegröße ist. für andere Berechnungsmodelle Die Klasse P ist größtenteils unabhängig von dem betrachteten Maschinenmodell. Eine analoge Definition für While- bzw. Goto-Programme würde zur gleichen Klasse P führen. Die Voraussetzung hierfür ist jedoch, dass das logarithmische Kostenmaß (siehe nächste Folie) angewandt wird. Barbara König BeKo/TI 238

18 Uniformes Kostenmaß Die Zuweisung x i := x j wird als ein Schritt gewertet. Logarithmisches Kostenmaß Zuweisungen der Form x i := x j werden nicht als ein Schritt angesehen, sondern vielmehr wird für jedes Bit in der Binärdarstellung von x j ein Schritt gerechnet. Zum logarithmischen Kostenmaß gehört auch, dass die Länge einer Eingabe n N 0 nicht n selbst ist, sondern die Länge der Binärdarstellung, d.h., log n. Barbara König BeKo/TI 239

19 Ähnlich wie bei deterministischen Turingmaschinen kann man auch zeitbeschränkte nichtdeterministische Turingmaschinen und die dazugehörigen Sprachklassen definieren. Zeitbeschränkte nichtdet. TM und akz. Sprachen (Definition) Sei f : N 0 N 0 eine (totale) Funktion. Die Klasse NTIME(f (n)) besteht aus allen Sprachen A, für die es eine nichtdeterministische Mehrband-Turingmaschine M gibt mit A = T (M) und ntime M (x) f ( x ) für alle Wörter x. Dabei gilt min{länge akzeptierender ntime M (x) = Rechnungen von M auf x} falls x T (M) 0 falls x T (M) Barbara König BeKo/TI 240

20 Bemerkung: Falls eine Turingmaschine M gegeben ist, die ntime M (x) f ( x ) für alle Wörter x erfüllt, so kann man einen Zähler mitlaufen lassen und damit sicherstellen, dass die Maschine immer spätestens nach f ( x ) (ursprünglichen) Schritten anhält. Denn ab diesem Schritt sollte man einen akzeptierenden Zustand finden können. Daraus folgt, dass NTIME(f (n)) nur entscheidbare Sprachen enthält und man auch bei einer nicht-akzeptierenden Berechnung nicht mehr als f ( x ) Schritte machen muss (plus den im wesentlichen vernachlässigbarer Overhead für den Zähler). Barbara König BeKo/TI 241

21 Komplexitätsklasse NP (Definition) NP = NTIME(p(n)) p Polynom Offensichtlich gilt P NP. Aber gilt auch P NP? P NP-Problem (ungelöst) Barbara König BeKo/TI 242

22 Kurzwiederholung: Aussagenlogik Eine aussagenlogische Formel F besteht aus atomaren Aussagen bzw. Variablen x 1, x 2, x 3,... und Operatoren (NICHT), (ODER), (UND), (IMPLIKATION), (BIIMPLIKATION/ÄQUIVALENZ). Für eine Belegung der atomaren Aussagen mit 0, 1 ergibt sich ein Wahrheitswert einer Formel F. Dabei werden die Operatoren mittels folgender Wahrheitstafeln ausgewertet: Beispiel: Die Auswertung von (x 1 x 2 ) x 2 mit der Belegung x 1 0, x 2 1 ergibt den Wert 0. Barbara König BeKo/TI 243

23 Kurzwiederholung: Aussagenlogik Eine Formel der Form x i bzw. x i heißt Literal. Eine Klausel ist eine Disjunktion (ODER-Verknüpfung) von Literalen. (Beispiel: x 1 x 2 x 3 ) Eine Formel ist in konjunktiver Normalform, wenn sie eine Konjunktion (UND-Verknüpfung) von Klauseln ist. (Beispiel: (x 1 x 2 x 3 ) ( x 1 x 3 ) x 2 ) Barbara König BeKo/TI 244

24 Determinismus vs. Nichtdeterminismus Das nichtdeterministische Maschinenmodell erscheint stärker, weil es möglich ist, den Weg zum akzeptierenden Zustand zu raten. Anfangskonfiguration z 0 w Ein Pfad zu einem akzeptierenden Zustand Baum aller erreichbarer Konfigurationen polynomiale Laufzeit/Höhe z e w Baum kann exponentiell viele Konfigurationen enthalten. Barbara König BeKo/TI 245

25 Determinismus vs. Nichtdeterminismus Beispiel: Erfüllbarkeitsproblem SAT Eingabe: eine aussagenlogische Formel F Ausgabe: Hat F eine erfüllende Belegung? Das heißt, gibt es eine Belegung der atomaren Aussagen mit 0 bzw. 1, so dass F unter dieser Belegung den Wert 1 hat? In diesem Fall kann eine nichtdeterministische Maschine einfach eine beliebige Belegung erraten und überprüfen, ob sie F erfüllt. Ein akzeptierender Zustand kann erreicht werden, genau dann, wenn eine erfüllende Belegung existiert. Das Raten und die anschließende Berechnung benötigt nur polynomial viele Schritte. Daraus folgt: SAT NP. Barbara König BeKo/TI 246

26 Determinismus vs. Nichtdeterminismus Nichtdeterministische Turingmaschine, die für eine Konstante k eine k-stellige Binärzahl rät, wenn sie auf ein leeres Band angesetzt wird: M = ({z 0, z 1,..., z k }, {0, 1}, {0, 1, }, δ, z 0,, {z k }) mit δ(z 0, ) = {(z 1, 0, R), (z 1, 1, R)} δ(z 1, ) = {(z 2, 0, R), (z 2, 1, R)}... δ(z k 1, ) = {(z k, 0, R), (z k, 1, R)} Mit zusätzlicher Verwendung eines Zählers kann man auch leicht eine Turingmaschine angeben, die bei Eingabe von n eine n-stellige Binärzahl rät (d.h. die Länge der Zahl ist parametrisiert). Barbara König BeKo/TI 247

27 Determinismus vs. Nichtdeterminismus Es gibt eine alternative Charakterisierung von NP, die auf dieser Idee beruht: Alternative Charakterisierung von NP (informal) Die Klasse NP umfasst intuitiv alle Probleme, für die man eine mögliche Lösung (auch Zertifikat genannt) raten kann, um dann in Polynomialzeit zu überprüfen, ob die Lösung korrekt ist. Die Frage P NP wird dann zu: Gibt es Probleme, für die es schwieriger ist, eine Lösung zu bestimmen, als zu überprüfen, ob eine gegebene Lösung korrekt ist? Barbara König BeKo/TI 248

28 Neben zeitbeschränkten Turingmaschinen betrachtet man auch platzbeschränkte Turingmaschinen. Platzbeschränkte det. TM und akz. Sprachen (Definition) Sei f : N 0 N 0 eine (totale) Funktion. Die Klasse SPACE(f (n)) besteht aus allen Sprachen A, für die es eine deterministische Mehrband-Turingmaschine M gibt mit A = T (M) und space M (x) f ( x ) für alle Wörter x. Dabei gibt space M (x) die maximale Länge einer Konfiguration (ohne die äußeren Leerzeichen) an, die bei der Rechnung von M auf x vorkommt (= Maximalanzahl der benötigten Felder auf dem Band). Barbara König BeKo/TI 249

29 Analog definiert man für nichtdeterministische Turingmaschinen NSPACE(f (n)). Chomsky-1-Sprachen Die Chomsky-1-Sprachen (erzeugt durch monotone Grammatiken) sind genau die Sprachen, die durch eine nichtdeterministische Turingmaschine mit linearer Platzbeschränkung akzeptiert werden können. Das heißt, NSPACE(n) ist genau die Menge der Chomsky-1-Sprachen. Barbara König BeKo/TI 250

30 Wir definieren nun die Klasse aller Sprachen, die von einer deterministischen Turingmaschine mit polynomialer Platzbeschränkung akzeptiert werden können. Komplexitätsklasse PSPACE (Definition) PSPACE = SPACE(p(n)) p Polynom Es gilt NP PSPACE (Übungsaufgabe). Außerdem liegt jede Typ-1-Sprache in PSPACE. Barbara König BeKo/TI 251

31 Die P und NP können in die Chomsky-Hierarchie folgendermaßen eingeordnet werden: Menge aller Sprachen semi-entscheidbare Sprachen entscheidbare Sprachen LOOP-berechenbare bzw. -akzeptierbare Sprachen NP P Barbara König BeKo/TI 252

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier

Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier. Henning Fernau Universität Trier Grundlagen Theoretischer Informatik 2 WiSe 2011/12 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik 2 Gesamtübersicht Organisatorisches; Einführung Ersetzungsverfahren:

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0

Das große O. Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit. f(n) c g(n) für alle n n 0 1 Das große O Aufwandsklasse O(g) für g : N R + enthält alle Funktionen f : N R + mit f(n) c g(n) für alle n n 0 c, n 0 : konstant und größer als 0 O(g) beschreibt alle Probleme, die eine algorithmische

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP12 Slide 1 Grundlagen der Programmierung Vorlesung 12 Sebastian Iwanowski FH Wedel GdP12 Slide 2 Entwurf von Algorithmen Wie klassifiziert man Algorithmen? offensichtlich nicht durch die Unterscheidung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

NP-vollständige Probleme

NP-vollständige Probleme NP-vollständige Probleme Dr. Eva Richter 6. Juli 2012 1 / 13 NP-Vollständigkeit Definition Eine Sprache B heißt NP-vollständig, wenn sei zwei Bedingungen erfüllt: (i) B ist in NP (ii) Jedes Problem A in

Mehr

Teil III: Komplexitätstheorie

Teil III: Komplexitätstheorie Teil III: Komplexitätstheorie 1. Vorbemerkungen bisher: welche Probleme sind entscheidbar (lösbar) und welche nicht? jetzt: welche entscheidbaren Probleme sind effizient zu lösen. Beispiel: es gibt 40!

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009 Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

Theoretische Informatik. Berechenbarkeit

Theoretische Informatik. Berechenbarkeit Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

Klassische Informationstheorie: Berechenbarkeit und Komplexität

Klassische Informationstheorie: Berechenbarkeit und Komplexität Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen

Mehr

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009 Theoretische Informatik Rainer Schrader Probabilistische Turingmaschinen Institut für Informatik 10. Juni 009 1 / 30 / 30 Gliederung probabilistische Turingmaschinen Beziehungen zwischen und NDTM es stellt

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet.

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt.

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Unentscheidbarkeit. Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Unentscheidbarkeit. Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Prof. Barbara König Übungsleitung: Henning Kerstan & Jan Stückrath Worum geht

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

3.3 Laufzeit von Programmen

3.3 Laufzeit von Programmen 3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Konjunktive Normalform

Konjunktive Normalform Konjunktive Normalform Eine Formel α in konjunktiver Normalform hat die Form α k 1 k 2... k r. Die Klauseln k 1,..., k r sind Disjunktionen von Literalen, also Disjunktionen von Variablen oder negierten

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Musterlösung Informatik-III-Klausur

Musterlösung Informatik-III-Klausur Musterlösung Informatik-III-Klausur Aufgabe 1 (1+4+3+4 Punkte) (a) 01010 wird nicht akzeptiert: s q 0 q 1 q 2 f q 2 10101 wird akzeptiert: s q 2 q 2 f q 2 f (b) ε: {s, q 0, q 1, q 2 }, {f} 0: {s, q 0,

Mehr

Überlegungen zum P-NP-Problem

Überlegungen zum P-NP-Problem Überlegungen zum P-NP-Problem In meinem Informatikstudium hat mich das P-NP-Problem ungemein fasziniert, weil es sich augenscheinlich um ein sehr schwieriges Problem handelt, an dem sich schon viele kluge

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Kapitel 1.4 Exkurs: Entscheidbarkeit und Komplexität Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Algorithmen Ein Algorithmus oder eine Rechenvorschrift ist ein effektives

Mehr

FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 23. Januar 2017 Rückblick Markus Krötzsch, 23. Januar 2017 Formale Systeme Folie 2 von 32

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Übersicht Der Raum der formalen Sprachen (Wortprobleme) lässt sich wie foglt aufteilen: THEORETISCHE INFORMATIK UND LOGIK Unentscheidbare Probleme 7. Vorlesung: Einführung in die Komplexitätstheorie Markus

Mehr

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964) Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Theoretische Informatik. Komplexitätstheorie

Theoretische Informatik. Komplexitätstheorie Theoretische Informatik Komplexitätstheorie Inhalt Komplexität Nichtdeterministisch Polynomiale Probleme SAT ist NP-hart Polynomiale Reduzierbarkeit NP-Vollständige Probleme Effizienz von Lösungen Wir

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 7. Vorlesung: Einführung in die Komplexitätstheorie Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 28. April 2017 Übersicht Der Raum der formalen Sprachen

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin

Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Berechenbarkeit und Komplexität: Polynomielle Reduktion / NP-Vollständigkeit / Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 11. Januar 2008 Wiederholung

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr