Granate und YAG:Ce. Prof. Dr. T. Jüstel. Prof. Dr. T. Jüstel. Granate und YAG:Ce. FH Münster, FB 01. Folie 1

Größe: px
Ab Seite anzeigen:

Download "Granate und YAG:Ce. Prof. Dr. T. Jüstel. Prof. Dr. T. Jüstel. Granate und YAG:Ce. FH Münster, FB 01. Folie 1"

Transkript

1 Folie 1

2 Gliederung 1. Zusammensetzung der Granate 2. Struktur des YAGs 3. Physikalische Eigenschaften des YAG:Ce 4. Leuchtstoffkonvertierte LEDs 5. LED Leuchtstoffe 6. Synthese von YAG:Ce Folie 2

3 Mineralogie 1. Zusammensetzung der Granate Silikate C II 3 AIII 2 (SiIV O 4 ) 3 Inselsilikate (Nesosilikate) mit [SiO 4 ] 4- bzw. [DO 4 ] 4- -Gruppen C = Mg 2+, Ca 2+, Mn 2+, Fe 2+ A = Al 3+, Cr 3+, Fe 3+ D = Si 4+, Ge 4+ Dodekaederplatz Oktaederplatz Tetraederplatz Natürlich vorkommende Granat-Mineralien (Auswahl) Pyrop Mg 3 Grossular Ca 3 Almandin Fe 3 Spessartin Mn 3 Knorringit Mg 3 Cr 2 Uwarowit Ca 3 Cr 2 Andradit Mg 3 Fe 2 Folie 3

4 Granat-Varianten 1. Zusammensetzung der Granate Ca 3 (Ca 1-a Y a ) 3 (Si 1-a Al a ) 3 Y 3 Al 3 Mischkristallbildung unter Ladungskompensation Ca 3 (Ca 1-a Sr a ) 3 (Al 1-b Y b ) 2 (Si 1-c Ge c ) 3 Sr 3 Y 2 Ge 3 Mischkristallbildung unter Kationengrößenkompensation Ca 3 (Ca 1-a Gd a ) 3 (Al 1-b Ga b ) 2 (Si 1-c Ga c ) 3 Gd 3 Ga 2 Ga 3 Mischkristallbildung unter Ladungs- und Kationengrößenkompensation Technische bedeutsame Granate Yttrium-Eisen-Granat YIG [Y 3 ] d [Fe 2 ] o [Fe 3 ] t Yttrium-Aluminium-Granat YAG [Y 3 ] d [ ] o [Al 3 ] t Gadolinium-Gallium-Granat GGG [Gd 3 ] d [Ga 2 ] o [Ga 3 ] t Folie 4

5 Kristallsystem: kubisch Raumgruppe: Ia3d (#230) 2. Struktur des YAGs Elementarzelle a = b = c = 12.0 Å α = β = γ = 90 Site Koordinationszahl Baugruppe Geeignete Dotierungen Y 3+ Al (1) 3+ Al (2) 3+ O [YO 8 ] [Al (1) O 6 ] [Al (2) O 4 ] [OY 2 ] Ln 3+, Ca 2+ Sc 3+, Ga 3+, Ti 4+ Si 4+, Ti 4+ N 3- Folie 5

6 2. Struktur des YAGs Dotierung von YAG: Vegard sche Regel beachten! r < ~15% Y 3+ Dodekaederplatz (r = 115 pm) Bi pm Y 3 :Bi UV-B Emitter Ce pm Y 3 :Ce Aktivator in LED Leuchtstoffen Pr pm Y 3 :Pr Co-Aktivator in LED Leuchtstoffen Nd pm Y 3 :Nd Aktivator in LASER-Kristallen Sm pm Y 3 :Sm Roter Linienleuchtstoff Eu pm Y 3 :Eu Roter Linienleuchtstoff Gd pm Y 3 :Gd Rotverschiebung der Ce 3+ Emission Tb pm Y 3 :Tb Grüner PTV-Leuchtstoff Rotverschiebung der Ce 3+ Emission Dy pm Y 3 :Dy Rotverschiebung der Ce 3+ Emission Tm pm Y 3 :Tm Blauer Linienleuchtstoff Yb pm Y 3 :Yb IR-A Emitter Lu pm Y 3 :Lu Blauverschiebung der Ce 3+ Emission Folie 6

7 2. Struktur des YAGs Dotierung von YAG: Vegard sche Regel beachten! r < ~15% Al 3+ Oktaederplatz (r = 68 pm) bzw. Tetraederplatz (r = 53 pm) KZ6 KZ4 Ga pm 61 pm Y 3 :Ga Blauverschiebung der Ce 3+ Emission In pm 76 pm Y 3 :In? Cr pm - Roter Linienleuchtstoff Fe pm 63 pm Y 3 :Fe IR-A Emitter O 2- Tetraederplatz (r = 124 pm) F pm Y 3 -x Mg x -x F x? N pm Y 3 -x Si x -x N x Rotverschiebung der Ce 3+ Emission Folie 7

8 3. Physikalische Eigenschaften des YAGs Dichte ρ = 4.55 g/cm 3 Thermischer Ausdehnungskoeff. α = 6.5*10-6 K -1 Schmelzpunkt T m = 1970 C Brechungsindex bei 589 nm n D = 1.82 Härte [Mohs] = 8.5 Thermische Leitfähigkeit 14 W/mK bei 20 C Optische Bandlücke E G = 6.5 ev 1.0 Körperfarbe weiß Exciton-Lumineszenz ~ 300 nm 0.8 (Elekron-Loch-Paar-Rekombination) Dotierung von YAG, z.b. mit Cr 3+, führen zur Änderung der optischen, magnetischen und thermischen Eigenschaften Relative Intensity (a.u.) Exciton-Lumineszenz von YAG 170 nm Wavelength (nm) Folie 8 Emission spectrum Excitation spectrum Reflection spectrum

9 3. Physikalische Eigenschaften des YAGs Dotiertes YAG Anregungs- und Emissionsspektren YAG:Pr 1,0 YAG:Nd 1,0 Emission intensity 0,8 0,6 0,4 0,2 Emission intensity 0,8 0,6 0,4 0,2 YAG:Eu 0, ,0 Wavelength [nm] 0, YAG:Tb Wavelength [nm] Emission intensity 0,8 0,6 0,4 0,2 Emission Intensity [counts] , Wavelength [nm] Wavelength [nm] Folie 9

10 4. Leuchtstoffkonvertierte LEDs 1,0 Absorption 1,0 Leuchtstoff Intensity [a.u.] 0,8 0,6 0,4 0,8 0,6 0,4 InGaN Halbleiter Blauer LED-Chip: nm emittierende InGaN LED Leuchtstoffschicht: (1) Gelb T c > 4000 K Cool white (2) Gelb + Rot T c < 4000 K Warm white (3) Grün + Rot 2000 K < T c < 8000 K (4) Rot Magentafarben Ag-Spiegel Silikon 0,2 Light Source Emission of phosphor converter 0,0 0, Wavelength [nm] Folie 10 0,2

11 5. LED Leuchtstoffe Allgemeine Anforderungen starke Absorption bei der Emissionswellenlänge des Halbleiter-LED spin- and paritätserlaubter Übergang, z.b. 4f n 4f n-1 5d 1 Quantenausbeute > 90% Stabilität gegenüber O 2, CO 2 und H 2 O Stabilität unter hoher Anregungsdichte ( W/cm 2 ) Kompatibilität mit dem LED-Herstellungsprozess Dichromatische LEDs (Blau + Gelb) breite Emissionsbande zwischen nm Ce 3+ -Leuchtstoffe (Aufspaltung des Grundzustandes 2 F 5/2 + 2 F 7/2 ) Trichromatische LEDs (Blau + Grün/Gelb + Rot) grüner/gelber Leuchtstoff Eu 2+ oder Ce nm roter Leuchtstoff Eu 2+ oder Mn nm Folie 11

12 5. LED Leuchtstoffe Vereinfachtes Termschema von Ce 3+ ([Xe]4f 1 ) Energie [cm -1 ] 5.0x x x x x10 4 5d 1 5d 1 Ce 3+ in der Gasphase ~ cm -1 ε c Nephelauxetischer Effekt Kristallfeldaufspaltung ε cfs Stokes Shift 0.0 Ce 3+ 2 F 7/2 2 F 5/2 4f 1 Folie 12

13 5. LED Leuchtstoffe Ce 3+ Leuchtstoffe: Absorptions- und Emissionsmaxima Wirtsgitter λ abs [nm] λ em [nm] ε cfs [cm -1 ] ε c [cm -1 ] SrAl 12 O , 235, 244, 252, , LaPO 4 203, 225, 238, 250, , LaMgAl 11 O , 232, 243, 255, YPO 4 203, 225, 238, 250, , LaMgB 5 O , 225, 239, 257, , YBO 3 219, 245, 338, , Lu 2 SiO 5 205, 215, 267, 296, , YAlO 3 219, 237, 275, 291, Y 3 205, 225, 261, 340, , Ce 3+ in YAG-Wirtsgittern Große centroide Verschiebung Außergewöhnlich große Kristallfeldaufspaltung Folie 13

14 Ce 3+ Leuchtstoffe: Y 3 :Ce 5. LED Leuchtstoffe 1,0 Free ion 4f5d E 1. Koordinationssphäre von Ce 3+ d x 2 -y 2 d z 2 d xy d xz d yz Emission intensity (a.u.) 0,8 0,6 0,4 0,2 Band gap 4f5d ε c ε cfs 0, Y-O Abstände 4x 2.30 Å Crystal-field splitting e cfs ~ cm 4x 2.44 Å -1 Centroide Verschiebung e c ~ cm -1 (P. Dorenbos, Phys. Rev. B, 65, 2002, 2351) small 4f-5d energy distance visible emission at 560 nm 4f5d Wavelength [nm] Folie 14

15 5. LED Leuchtstoffe Energieniveaus und Anregungsspektrum von Ce 3+ in Y 3 Y 3 :Ce 3+ (4f 1 ) 1,0 7.0 ev 6.2 ev 5d 1 (5s 2 5p 6 ) 8.6 ev 8.0 ev 7.0 ev CB 6.0 ev 2 D 5.1 ev Emission intensity [a.u.] 0,8 0,6 0,4 0,2 5.6 ev 4.8 ev 3.6eV 2.7 ev 2.4 ev (0/+) 4f 1 (5s 2 5p 6 ) F 7/2 2 F 5/2 monitored at 545 nm 0, Wavelength [nm] 0 ev VB Die Kristallfeldkomponenten sind im Anregungsspektrum sichtbar (M. Batenschuk et al., MRS Symp. Proc. 560 (1999) 215) Folie 15

16 5. LED Leuchtstoffe Ln 3 Me 5 :Ce Emissionsspektren und Farbpunkte Normalised emission intensity 1,0 YAG:Ce1% YAG:Ce2% (Gd,Y)AG:Ce2% 0,8 (Lu,Y)AG:Ce1% LuAG:Ce1% 0,6 0,4 0,2 0, Wavelength [nm] Substitution von Y durch Gd, Tb, Dy oder Erhöhung der Ce-Konzentration Rotverschiebung Substitution von Y durch Lu oder von Al durch Ga oder Sc Blauverschiebung Folie 16

17 Blauer InGaN Chip + (Y,Gd)AG:Ce LED Leuchtstoffe Emissionsintensität Tc = 5270 K: CRI = 82 Tc = 4490 K: CRI = 79 Tc = 4110 K: CRI = 76 Tc = 3860 K: CRI = 73 Tc = 3540 K: CRI = 70 Die ersten kommerziell erhältlichen LEDs folgten diesem Konzept Farbwiedergabe CRI = Kaltes weißes Licht Lichtausbeute lm/w Nachteil: Niedrige Farbwiedergabe für rote Farben, insbesondere bei niedrigen Farbtemperaturen Wellenlänge [nm] Folie 17

18 Keramische und Precursor-Methode 6. Synthese von YAG:Ce 1. Festkörpersynthese (keramische Methode) Mischung von Ln 2 O 3, CeO 2 und O 3 Zugabe eines Flussmittels, z.b. BaF 2, YF 3 oder AlF 3 1. Heizschritt 1300 C in CO-Atmosphäre 2. Heizschritt C in CO-Atmosphäre Typische Partikelgröße 5 20 µm YAG Precursor 2. Co-Präzipitation (Precursor Methode) Lösung der Me(NO 3 ) 3 -Salze in dest. H 2 O Fällung durch Zugabe von NH 4 HCO 3 3 Ln Al OH - + H 2 O + 3 CO 3 2- [3 LnOHCO 3 /5 AlOOH] Gel + 3 H 2 O Sintern bei 1300 C in CO-Atmosphäre [3 LnOHCO 3 / 5 AlOOH] Gel Ln CO H 2 O Typische Partikelgröße 1 2 µm Folie 18

9. Anorganische LEDs. Inhalt

9. Anorganische LEDs. Inhalt Inhalt 9. Anorganische LEDs 9.1 Klassifikation von LEDs 9.2 Evolution von LED-Lichtquellen 9.3 Lichterzeugung in Halbleiter LEDs 9.4 Chipstruktur von (Al,In,Ga)N/Al 2 O 3 LEDs 9.5 Spektren von LEDs 9.6

Mehr

Neuartige Leuchtstoffe für Hochleistungs-LEDs

Neuartige Leuchtstoffe für Hochleistungs-LEDs Neuartige Leuchtstoffe für Hochleistungs-LEDs Thomas Jüstel 21. November 2006 Prof. Dr. T. Jüstel, FB Chemieingenieurwesen, FH Münster, Abt. Steinfurt Folie 1 Nick Holonyak, jr. (2000) Es ist überlebenswichtig

Mehr

9. Anorganische LEDs. Inhalt

9. Anorganische LEDs. Inhalt Inhalt 9. Anorganische LEDs 9.1 Klassifikation von LEDs 9.2 Evolution von LED-Lichtquellen 9.3 Lichterzeugung in Halbleiter LEDs 9.4 Chipstruktur von (Al,In,Ga)N/Al 2 O 3 LEDs 9.5 Spektren von LEDs 9.6

Mehr

Fluoreszenzlampenl. René Riedel. Bettina Haves

Fluoreszenzlampenl. René Riedel. Bettina Haves Leuchtstoffe in Fluoreszenzlampenl René Riedel Bettina Haves Inhalt 1) Fluoreszenzlampen 2) Fluoreszenz 3) Geschichte der Leuchtstoffe 4) Leuchtstoffe in Fluoreszenzlampen 5) Weitere Anwendungsbereiche

Mehr

Farbpigmente. Prof. Dr. T. Jüstel. Prof. Dr. T. Jüstel. Farbpigmente. FH Münster, FB 01. Folie 1

Farbpigmente. Prof. Dr. T. Jüstel. Prof. Dr. T. Jüstel. Farbpigmente. FH Münster, FB 01. Folie 1 tj@fh-muenster.de Folie 1 Gliederung 1. Pigmente - Definition und Anwendungsgebiete - Partikelmorphologie - Physikalische Eigenschaften - Synthesemethoden 2. - Weißpigmente - Gelbpigmente - Rotpigmente

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

H Wasserstoff. O Sauerstoff

H Wasserstoff. O Sauerstoff He Helium Ordnungszahl 2 Atommasse 31,8 268,9 269,7 0,126 1,25 H Wasserstoff Ordnungszahl 1 Atommasse 14,1 252,7 259,2 2,1 7,14 1 3,45 1,38 Li Lithium Ordnungszahl 3 Atommasse 13,1 1330 180,5 1,0 0,53

Mehr

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5.

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. 5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. Atomradien 5.6. Atomvolumina 5.7. Dichte der Elemente 5.8. Schmelzpunkte

Mehr

Trace Analysis of Surfaces

Trace Analysis of Surfaces Trace Analysis of Surfaces Metall-Spurenanalyse auf Oberflächen mittels VPD- Verfahren Babett Viete-Wünsche 2 Das Unternehmen Unser Serviceportofolio Die VPD-Analyse 3 Das Unternehmen: 4 Einige unserer

Mehr

Übungsaufgaben zur Optischen Spektroskopie. 1) Nennen Sie drei Arten von elektronischen Übergängen und geben Sie jeweils ein Beispiel an!

Übungsaufgaben zur Optischen Spektroskopie. 1) Nennen Sie drei Arten von elektronischen Übergängen und geben Sie jeweils ein Beispiel an! Übungsaufgaben zur Optischen Spektroskopie 1) Nennen Sie drei Arten von elektronischen Übergängen und geben Sie jeweils ein Beispiel an! 2) Welche grundlegenden Arten der Wechselwirkung von Licht mit Materie

Mehr

8. Lumineszensmechanismen

8. Lumineszensmechanismen 8. Lumineszensmechanismen Inhalt 8.1 Lumineszenz Definition, Materialien und Prozesse 8.2 Absorptionsvorgänge 8.3 Anregungsmechanismen 8.4 Energietransfer 8.5 Cross-Relaxation 8.6 Verlustprozesse 8.7 Konfigurationskoordinatendiagramm

Mehr

8. Lumineszensmechanismen

8. Lumineszensmechanismen 8. Lumineszensmechanismen Inhalt 8.1 Lumineszenz Definition, Materialien und Prozesse 8.2 Absorptionsvorgänge 8.3 Anregungsmechanismen 8.4 Energietransfer 8.5 Cross-Relaxation 8.6 Verlustprozesse 8.7 Konfigurationskoordinatendiagramm

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 92 Grundlagen der Allgemeinen und Anorganischen Chemie 3. Das Periodensystem der Elemente 93

Mehr

Gläser als Fluoreszenzstandards für die Mikroskopie

Gläser als Fluoreszenzstandards für die Mikroskopie Gläser als Fluoreszenzstandards für die Mikroskopie D.Ehrt *, R. Atzrodt, W. Wintzer Otto-Schott-Institut, FSU Jena C. Rußmann, K-H. Geier, G. Nordt Carl Zeiss Jena U. Kolberg, M. Leister Schott Glas Mainz

Mehr

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln

Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System

Mehr

7. Leuchtstoffe. Inhalt

7. Leuchtstoffe. Inhalt Inhalt 7.1 Geschichte 7.2 Definition und Funktionsweise 7.3 Lumineszenzmechanismen 7.4 Chemische Zusammensetzung 7.5 Zusammensetzung und Funktion 7.6 Anwendungen 7.7 Breitbandleuchtstoffe 7.8 Linienleuchtstoffe

Mehr

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe

zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemeines Voraussetzungen

Mehr

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl 2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa

Mehr

12. UV-Strahlungsquellen

12. UV-Strahlungsquellen 12. UV-Strahlungsquellen Inhalt 12.1 Einteilung der UV-Strahlung 12.2 Photochemische Anwendungen 12.3 Biochemische Anwendungen 12.4 Natürliche UV-Strahlungsquellen 12.5 Künstliche UV-Strahlungsquellen

Mehr

10. OLEDs and PLEDs. Inhalt

10. OLEDs and PLEDs. Inhalt Inhalt 10. LEDs and PLEDs 10.1 Historische Entwicklung 10.2 Elektrolumineszente Moleküle 10.3 Aufbau von LEDs und PLEDs 10.4 Funktionsprinzip einer LED 10.5 Lumineszenz von Metallkomplexen 10.6 Iridiumkomplexe

Mehr

Seltene Erden Exoten in der medizinischen Diagnostik. 20 Jahre TGZ Bitterfeld-Wolfen, 15. November 2012

Seltene Erden Exoten in der medizinischen Diagnostik. 20 Jahre TGZ Bitterfeld-Wolfen, 15. November 2012 Seltene Erden Exoten in der medizinischen Diagnostik 20 Jahre TGZ Bitterfeld-Wolfen, 15. November 2012 Leopold Wolf 23. November 1896 6. November 1974 Nestor der Chemie der Seltenen Erden Wie selten sind

Mehr

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR LEDs und Laserdioden: die Lichtrevolution Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR Wie erhält man verschiedenfarbige LEDs? Warum ist die Farbe blau so wichtig? Wo werden HL-Laser Im Alltag

Mehr

Leuchtstoffe für Kathodenstrahlröhren. Lina Rustam

Leuchtstoffe für Kathodenstrahlröhren. Lina Rustam Leuchtstoffe für Kathodenstrahlröhren Lina Rustam Inhalt Geschichte Kathodenstrahlröhre Leuchtstoffe Anforderung Eingesetzte Leuchtstoffe Funktion Lumineszenzmechanismen Helligkeit & Kontrast Weiterentwicklung

Mehr

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier)

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) 1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55

Mehr

7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration)

7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration) 7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) (Radiometrische Titration) Der radioaktive Stoff dient als Indikator Fällungsreaktionen Komplexbildungsreaktionen Prinzip einer Fällungstitration:

Mehr

Leuchtstoffe für LED-Applikationen

Leuchtstoffe für LED-Applikationen Leuchtstoffe für LED-Applikationen Thomas Jüstel Institute for Optical Technologies Münster University of Applied Sciences tj@fh-muenster.de www.fh-muenster.de/juestel 10. Tagung: LED in der Lichttechnik

Mehr

Elektro- und Lichttechnik

Elektro- und Lichttechnik Einsatzbereiche seltener Erden in der Elektro- und Lichttechnik Prof. Dr. Thomas Jüstel University of Applied Sciences Münster Trend 2013 Hamburg, den 05. Februar 2013 Prof. Dr. T. Jüstel, University of

Mehr

Verhalten von Farbproben mit Hochleistungs-Leuchtdioden

Verhalten von Farbproben mit Hochleistungs-Leuchtdioden Verhalten von Farbproben mit Hochleistungs-Leuchtdioden 12. Workshop Farbbildverarbeitung M.Sc. Dipl.-Ing. Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen

Mehr

Leuchtstoffe für LEDs. Peter Schmidt, Lumileds Development Center Aachen

Leuchtstoffe für LEDs. Peter Schmidt, Lumileds Development Center Aachen Leuchtstoffe für LEDs Peter Schmidt, Lumileds Development Center Aachen Lumileds Development Center Aachen (LDCA) F&E-Zentrum von LUMILEDS seit 1. April eigenständiger Hersteller von LEDs und Automobil-Beleuchtungslösungen

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 284 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

2.3. Atome in äusseren Feldern

2.3. Atome in äusseren Feldern .3. Atome in äusseren Feldern.3.1. Der Zeeman-Effekt Nobelpreis für Physik 19 (...researches into the influence of magnetism upon radiation phenomena ) H. A. Lorentz P. Zeeman Die Wechselwirkung eines

Mehr

Periodensystem der Elemente

Periodensystem der Elemente Periodensystem der Elemente 1829: Döbereiner, Dreiergruppen von Elementen mit ähnlichen Eigenschaften & Zusammenhang bei Atomgewicht Gesetz der Triaden 1863: Newlands, Ordnung der Elemente nach steigender

Mehr

Aluminium. Eisen. Gold. Lithium. Platin. Neodym

Aluminium. Eisen. Gold. Lithium. Platin. Neodym Fe Eisen Al Aluminium Li Lithium Au Gold Pt Platin Nd Neodym Zn Zink Sn Zinn Ni Nickel Cr Chrom Mo Molybdän V Vanadium Co Cobalt In Indium Ta Tantal Mg Magnesium Ti Titan Os Osmium Pb Blei Ag Silber

Mehr

Technologien die unser Leben verändern - LED

Technologien die unser Leben verändern - LED Technologien die unser Leben verändern - LED Univ.Prof.Dr.Günther Leising Institut für Festkörperphysik Technische Universität Graz g.leising @tugraz.at www.leising.at Historisches: - 1980 Start der Forschungaktivitäten

Mehr

Aufgaben zum Umfeld: 7 Vergleichen Sie die Gitterenergien von NaF, NaCl und NaI bzw. MgO, CaO und BaO! Gitterenergien [kj/mol]

Aufgaben zum Umfeld: 7 Vergleichen Sie die Gitterenergien von NaF, NaCl und NaI bzw. MgO, CaO und BaO! Gitterenergien [kj/mol] Seite 22 22 Auflösung von Si in NaOH-Lösung Weiterführende Infos Quarzsand und Alkalicarbonate werden bei ca. 1300 C zusammengeschmolzen und das Produkt ((Na/K) 2 O* n SiO 2 ) bei 150 C und 5 bar in Wasser

Mehr

"Aufbau und Funktion von LEDs" Franziska Brückner und Dennis Winterstein

Aufbau und Funktion von LEDs Franziska Brückner und Dennis Winterstein 2 3 4 5 6 Dotierung einer LED Dotierung = Einbringen von Fremdstoffen (III oder V Elemente) in den Halbleiterkristall i ll 1. Technik: Dotierung durch Diffusion Dotiermaterial diffundiert aufgrund des

Mehr

Atombau, Periodensystem der Elemente

Atombau, Periodensystem der Elemente Seminar zum Brückenkurs Chemie 2015 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 21.09.2015 1. Aufbau des Atomkerns und radioaktiver Zerfall - Erläutern Sie den Aufbau der Atomkerne

Mehr

Kristallographische und spektroskopische Untersuchungen an Eu 3+ -dotierten Molybdaten als potentielle Konverter für LEDs

Kristallographische und spektroskopische Untersuchungen an Eu 3+ -dotierten Molybdaten als potentielle Konverter für LEDs Kristallographische und spektroskopische Untersuchungen an Eu 3+ -dotierten Molybdaten als potentielle Konverter für LEDs Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr.

Mehr

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.

4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches

Mehr

Keramische Materialien in ANDRE BLEISE

Keramische Materialien in ANDRE BLEISE Keramische Materialien in Lichtquellen 08.06.2009 ANDRE BLEISE Inhalt Was sind Keramiken? Einsatzbereiche in Lichtquellen Keramiken als Bauteile Beispiele & Herstellung Keramiken als Emitter Beispiele

Mehr

7 3= - 2 J G0(r) ~ a " I N dr

7 3= - 2 J G0(r) ~ a  I N dr Finally, for CH3C the collision frequency ratio 7mw was been determined from nonresonant microwave absorption 9. The comparison is given in Table 3. The agreement is reasonable, but far from 9 L. FRENKEL,

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

Anorganische Chemie II

Anorganische Chemie II Anorganische Chemie II B. Sc. Chemieingenieurwesen 29. Januar 2013 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Lösungsvorschlag 7: Grundlagen ICP-MS

Lösungsvorschlag 7: Grundlagen ICP-MS Lösungsvorschlag 7: Grundlagen ICP-MS 1. Was ist ein Plasma? Ein Plasma ist der sogenannte. Zustand der Materie, ein angeregtes, teilweise ionisiertes und nach Aussen neutrales Gas. In ihm liegen sowohl

Mehr

8 Anhang. Kristalldaten von 17b

8 Anhang. Kristalldaten von 17b 178 8 Anhang Kristalldaten von 17b Empirische Formel=C 42 H 36 N 2 ; M r =568.73; schwachgelbes Prisma, Kristallgröße=0.15 x 0.28 x 0.51 mm 3 ; monoklin; Raumgruppe C2/c (Nr. 15); a=16.2760(18) Å, b=15.1056(18)

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

Elektronenspektrum von [Ti(H 2 O) 6 ] 3+

Elektronenspektrum von [Ti(H 2 O) 6 ] 3+ Elektronenspektrum von [Ti(H 2 O) 6 ] 3+ 3 2 1 15 20 25 30 1000 cm -1 e g hv t 2g Deutung der Elektronenspektren Absorption bestimmter Frequenzen des eingestrahlten Lichts durch: Elektronenübergang zwischen

Mehr

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s

Mehr

LED. Licht- und Displaytechnik. Lichtquellen Teil 2. Karl Manz Karsten Klinger. Forschungs Universität Karlsruhe (TH)

LED. Licht- und Displaytechnik. Lichtquellen Teil 2. Karl Manz Karsten Klinger. Forschungs Universität Karlsruhe (TH) Licht- und Displaytechnik Lichtquellen Teil 2 LED Karl Manz Karsten Klinger Leuchtdioden Donator Acceptor - + Metallic Contact Electrons Depletion zone Substrate Holes Electrons recombine with holes Some

Mehr

Quarkorbitale und Quark Orbital Kombinationen

Quarkorbitale und Quark Orbital Kombinationen Naturwissenschaft Clemens Wett Quarkorbitale und Quark Orbital Kombinationen Quantenalgebra der Isotopen Tabelle Wissenschaftliche Studie Quark Orbitale und Quark Orbital Kombinationen Verwendete Literatur

Mehr

Rohstoffe für die Energiewende Verfügbarkeit knapper Ressourcen und der Beitrag des Recyclings

Rohstoffe für die Energiewende Verfügbarkeit knapper Ressourcen und der Beitrag des Recyclings Rohstoffe für die Energiewende Verfügbarkeit knapper Ressourcen und der Beitrag des Recyclings Prof. Dr.-Ing. Daniel Goldmann IFAD Rohstoffaufbereitung und Recycling TU Clausthal Veränderungen in Rohstoffauswahl

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

Färben und Entfärben von Glas Oxidationsmittel Sikkative für Farben und Lacke Cer-acetat Ce(CH 3 COO) 3 x 4 H 2 O Katalysatoren für verschiedenste

Färben und Entfärben von Glas Oxidationsmittel Sikkative für Farben und Lacke Cer-acetat Ce(CH 3 COO) 3 x 4 H 2 O Katalysatoren für verschiedenste Seltene Erden Seltenerdverbindungen, Zirkoniumverbindungen Produkte Cer Verbindungen Cer-oxid CeO 2 Leitende/nichtleitende Keramik, Trübungsmittel für Emails Oxidationsmittel Stabilisatoren für Pigmente

Mehr

(N)IR Strahlungsquellen

(N)IR Strahlungsquellen (N)IR Strahlungsquellen Fabian Immink 26.06.2016 Übersicht 1. Geschichte 2. Spektralbereich 3. Schwarzkörperstrahler 3.1 Wien sches Verschiebungsgesetz 3.2 Planck'sches Strahlungsgesetz 3.3 Schwarzkörper

Mehr

Lanthanoidoxiden. Seltene Erden

Lanthanoidoxiden. Seltene Erden Verwendung von Lanthanoidoxiden Seltene Erden Oxide Verbindungen Die Oxide (M 2 O 3 ) der Lanthanoiden ist eine chemische Verbindungen zwischen dem seltenen Erdmetallen und Sauerstoff und gehört der Gruppe

Mehr

Thomas Jüstel. Institute for Optical Technologies. Essen März 2013

Thomas Jüstel. Institute for Optical Technologies.  Essen März 2013 Optimale Leuchtstoffe für LED-Applikationen Thomas Jüstel Institute for Optical Technologies Münster University of Applied Sciences tj@fh-muenster.de www.fh-muenster.de/juestel 9. Tagung: LED in der Lichttechnik

Mehr

Chrom(VI)-Ersatz auf Zink

Chrom(VI)-Ersatz auf Zink Ulmer Gepräch 1 Chrom(VI)-Eratz auf Zink Nachbehandlungverfahren in der Praxi Dr. Rolf Janen und Patricia Preikchat,, D-64673 Zwingenberg Themen: l Wonach wird geucht? Eigenchaften echwertiger Paivierungen

Mehr

Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung

Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung Wiederholung der letzten Vorlesungsstunde: Thema: Metallbindung Chemische Bindungen in Metallen, Elektronengasmodell, elektronische Bänder, Bandstrukturmodell, Metalle, Halbleiter, Isolatoren, Bandlücke,

Mehr

K L A U S U R D E C K B L A T T Name der Prüfung: Klausur Chemie für Chemieingenieure und Physiker

K L A U S U R D E C K B L A T T Name der Prüfung: Klausur Chemie für Chemieingenieure und Physiker K L A U S U R D E C K B L A T T Name der Prüfung: Klausur Chemie für Chemieingenieure und Physiker Datum und Uhrzeit: 09.04.2015 10:00 Institut: Theoretische Chemie Vom Prüfungsteilnehmer LESERLICH auszufüllen:

Mehr

Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869)

Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869) 1.2 Periodensystem der Elemente Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869) Periode I a b 1 H 1,0 2 Li 6,9 3 Na 23,0 4 5 6 K 39,1

Mehr

Lage des Ferminiveaus beim intrinsischen HL

Lage des Ferminiveaus beim intrinsischen HL 9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F

Mehr

Entwicklungen für den Alltag und die Zukunft: Die LED

Entwicklungen für den Alltag und die Zukunft: Die LED Entwicklungen für den Alltag und die Zukunft: Die LED Thomas Jüstel Institute for Optical Technologies Abteilung Chemieingenieurwesen tj@fh-muenster.de www.fh-muenster.de/juestel FH Münster Campus Steinfurt

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter Halbleiterarten Halbleiter kristalline Halbleiter amorphe Halbleiter elektronische Halbleiter Ionenhalbleiter elektronische Halbleiter Ionenhalbleiter Element Halbleiter Verbindungshalbleiter Eigen Halbleiter

Mehr

Chemie der Elemente Scandium, Lars Gröger Jessica Peschel

Chemie der Elemente Scandium, Lars Gröger Jessica Peschel Chemie der Elemente Scandium, Yttrium und Lanthan Lars Gröger Jessica Peschel 05.11.2010 Inhaltsverzeichnis h i Chemische Eigenschaften Gewinnung von Sc, Y und La Scandium Yttrium Lanthan Quellen Gewinnung

Mehr

Das große. Halbleiterlaser. Clicker-Quiz

Das große. Halbleiterlaser. Clicker-Quiz Das große Halbleiterlaser Clicker-Quiz Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.

Mehr

1.4. Aufgaben zum Atombau

1.4. Aufgaben zum Atombau 1.4. Aufgaben zum Atombau Aufgabe 1: Elementarteilchen a) Nenne die drei klassischen Elementarteilchen und vergleiche ihre Massen und Ladungen. b) Wie kann man Elektronen nachweisen? c) Welche Rolle spielen

Mehr

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten?

Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten? 1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55

Mehr

Vorlesung Allgemeine Chemie: Chemische Bindung

Vorlesung Allgemeine Chemie: Chemische Bindung Vorlesung Allgemeine Chemie: Chemische Bindung Inhalte Gruppentendenzen: Alkalimetalle, Halogene, Reaktion mit H 2 und H 2 O, basische und saure Oxide, Ionenbindung, Gitterenergie, Tendenzen in Abhängigkeit

Mehr

Fluoreszenzstrahlung. Christoph Hoeschen, Helmut Schlattl. Institut für Strahlenschutz, AG Medizinphysik

Fluoreszenzstrahlung. Christoph Hoeschen, Helmut Schlattl. Institut für Strahlenschutz, AG Medizinphysik Fluoreszenzstrahlung Christoph Hoeschen, Helmut Schlattl Institut für Strahlenschutz, AG Medizinphysik Nürnberg, APT 21.06.2008 Was haben Polarlichter mit Strahlenschutz vor ionisierender Strahlung zu

Mehr

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02

Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02 Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie 07.07.2015 PC III Aufbau der Materie (1) 1 PC III Aufbau der Materie Kapitel 5 Das Periodensystem der Elemente Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen

Mehr

Weihnachtliche Experimentalvorlesung im Fachbereich Chemieingenieurwesen

Weihnachtliche Experimentalvorlesung im Fachbereich Chemieingenieurwesen Weihnachtliche Experimentalvorlesung im Fachbereich Chemieingenieurwesen Folie 1 Licht und Farbe zu Weihnachten - Dank Chemie! Folie 2 Was verstehen wir eigentlich unter Licht? Licht nehmen wir mit unseren

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

LED Energetische und qualitative Eigenschaften

LED Energetische und qualitative Eigenschaften LED Energetische und qualitative Eigenschaften Prof. M. Wambsganß / M. Schmidt - 1 Gliederung! Grundlagen " Technologie der (weißen) LED " (LED-) Licht und Gesundheit! Effizienz! Qualitätsmerkmale " Temperaturmanagement

Mehr

Die Bindung in Übergangsmetallkomplexenn. Klassische Koordinationschemie (Alfred Wernersche) Valenzstruktur-Theorie (Valenzbindungsth

Die Bindung in Übergangsmetallkomplexenn. Klassische Koordinationschemie (Alfred Wernersche) Valenzstruktur-Theorie (Valenzbindungsth Die Bindung in Übergangsmetallkomplexenn Klassische Koordinationschemie (Alfred Wernersche) Valenzstruktur-Theorie (Valenzbindungsth heorie) Ligandenfeld-Theorie H 3 3+ H 3 H 3 Cr H 3 H 3 H 3 Molekülorbital-Theorie

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Metalle www.webelements.com Eigenschaften

Mehr

Ramanspektroskopie an Kohlenstoffnanoröhren. von Hagen Telg

Ramanspektroskopie an Kohlenstoffnanoröhren. von Hagen Telg Ramanspektroskopie an von (5,5) (6,4) Atomare Struktur chirale Indices Herstellung keine bevorzugte Chiralität (n1,n2) Eigenschaften ähnlicher Durchmesser + verschiedene Windung unterschiedliche elektronische

Mehr

Polymer LEDs. Inkohärente Lichtquellen SS11. Oliver Thom

Polymer LEDs. Inkohärente Lichtquellen SS11. Oliver Thom Polymer LEDs Inkohärente Lichtquellen SS11 Oliver Thom Übersicht Einführung Materialien Funktionsweise der PLEDs Herstellung Vor- /Nachteile Anwendungen Übersicht Einführung Materialien Funktionsweise

Mehr

Neodym-Laser. Björn Gillich. Laserseminar Lehrstuhl Wolfgang Zinth

Neodym-Laser. Björn Gillich. Laserseminar Lehrstuhl Wolfgang Zinth Neodym-Laser 13.05.2015 Laserseminar Lehrstuhl Wolfgang Zinth National Ignition Facility National Ignition Facility - stärkste Laser der Welt zur Erforschung von Kernfusion - Neodym-Glas-Laser - Fokussierte

Mehr

Vom Standardmodell zur dunklen Materie

Vom Standardmodell zur dunklen Materie Vom Standardmodell zur dunklen Materie Atomismus, die Bausteine der Materie Wechselwirkungen und Kräfte Der heilige Gral der Teilchenphysik Offene Fragen Prof. Ch. Berger RWTH Aachen Teilchenphysik und

Mehr

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele

Festkörperlaser. Benedikt Konermann Kevin Thiele. Festkörperlaser Benedikt Konermann, Kevin Thiele Festkörperlaser Benedikt Konermann Festkörperlaser Gliederung Was heißt Laser? Was versteht man unter? t Was bedeutet stimulierte Emission? Entstehung des Laserlichtes Pumplichtquellen Welche gibt es?

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen

6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen 92 6 Lichtemittierende Dioden (LEDs) 6.5 LED-Technologie 6.5.1 Aufbau, Wirkungsgrad und Ankontaktierung von LED-Lampen Kommerziell verfügbare Halbleiter-Leuchtdioden bestehen aus einem Halbleiter-Chip,

Mehr

LED in der Beleuchtung. Rudolf Hornischer. Dipl.Ing.Dr.techn. MA39 - Prüf- Überwachungs- und Zertifizierungsstelle

LED in der Beleuchtung. Rudolf Hornischer. Dipl.Ing.Dr.techn. MA39 - Prüf- Überwachungs- und Zertifizierungsstelle LED in der Beleuchtung Rudolf Hornischer Dipl.Ing.Dr.techn. MA39 - Prüf- Überwachungs- und Zertifizierungsstelle Folie 1 Was ist eine LED Ein Licht emittierendes Halbleiterbauelement Elektrische Eigenschaften

Mehr

Klausuraufgaben Grundpraktikum Testat vom Seite- 1 - Punkte. Bitte eintragen: Bitte ankreuzen: Frage 1

Klausuraufgaben Grundpraktikum Testat vom Seite- 1 - Punkte. Bitte eintragen: Bitte ankreuzen: Frage 1 Klausuraufgaben Grundpraktikum Testat vom 6.6.02 Seite- 1 - Punkte Matrikelnummer: ame: Bitte eintragen: Vorname: Bitte ankreuzen: Fachrichtung: Chemie Biotechnologie Pharmazie Frage 1 Schreiben Sie die

Mehr

6. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002

6. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG 6. Seminar Prof. Dr. Christoph Janiak Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 Riedel, Anorganische Chemie, 5. Aufl., 2002

Mehr

Effiziente Beleuchtung

Effiziente Beleuchtung Effiziente Beleuchtung Vom Sinn und Unsinn beim Stromsparen mit Licht + LED - Erleuchtung oder Verblendung Energiekonferenz 15.11.2012, HWKLeipzig, BTZ 04451 Borsdorf, Steinweg 3 Dipl.-Ing. Gunter Winkler

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

PS3 - PL11. Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012

PS3 - PL11. Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012 PS3 - PL11 Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012 Inhaltsverzeichnis 1 Szintillationskristall NaJ(Tl) 1 1 1 Szintillationskristall NaJ(Tl) 1 Szintillationskristall

Mehr

Standard Optics Information

Standard Optics Information VF, VF-IR und VF-IR Plus 1. ALLGEMEINE PRODUKTBESCHREIBUNG Heraeus VF - Material ist ein aus natürlichem, kristallinem Rohstoff elektrisch erschmolzenes Quarzglas. Es vereint exzellente physikalische Eigenschaften

Mehr

Die Revolution in der Lichttechnik

Die Revolution in der Lichttechnik Leuchtstoff LEDs - Die Revolution in der Lichttechnik Thomas Jüstel FH Münster FB Chemieingenieurwesen i i bzw. Institut für Optische Technologien Münster Arkaden, 01. September 2009 Prof. Dr. T. Jüstel,

Mehr

3. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002

3. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG 3. Seminar Prof. Dr. Christoph Janiak Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 Riedel, Anorganische Chemie, 5. Aufl., 2002

Mehr

RÜCKGEWINNUNG WIRTSCHAFTS- STRATEGISCHER ROHSTOFFE

RÜCKGEWINNUNG WIRTSCHAFTS- STRATEGISCHER ROHSTOFFE RÜCKGEWINNUNG WIRTSCHAFTS- STRATEGISCHER ROHSTOFFE Recycling neuer Technologien IFAT, Neue Messe München 08. Mai 2014 In Kooperation mit Dr.-Ing. Matthias Franke Folie 1 Inhalt Hintergrund - Rohstoffknappheit

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr