Polynomiale Approximation. und. Taylor-Reihen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Polynomiale Approximation. und. Taylor-Reihen"

Transkript

1 Polynomiale Approximation und Taylor-Reihen

2 Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome vom Grad 2, sondern auch durch Polynome höheren Grades.

3 Approximation von sin(x) um x = 0 durch Polynome vom Grad 1, 3,..., 13 (Grafik aus : series)

4 Beispiel: Approximation von e x um dem Punkt 0: Lineare Approximation: e x = 1 + x+ Rest e x (1 + x) Cx 2 für x in der Nähe von x = 0

5 Beispiel: Approximation von e x um dem Punkt 0: Quadratische Approximation: e x = 1 + x x2 + Rest e x (1 + x + x2 2 ) Cx3 für x in der Nähe von x = 0

6 Wie sieht ein quadratisches Polynom p 2 (x) aus, das f(x) in der Nähe von x = a möglichst gut approximiert? p 2 (x) sollte in x = a den gleichen Funktionswert, die gleiche erste Ableitung, und die gleiche zweite Ableitung haben wie f(x): p 2 (a) = f(a), p 2 (a) = f (a), p 2 (a) = f (a).

7 Ansatz: p 2 (x) = f(a) + f (a)(x a) + q(x a) 2 p 2 (a) = f(a), p 2 (a) = f (a)... schon mal gut! p 2 (a) = 2q! = f (a), also q = 1 2 f (a) p 2 (x) = f(a) + f (a)(x a) f (a)(x a) 2

8 Auch für allgemeines n bleibt die Idee dieselbe: Nimm dasjenige Polynom n-ten Grades p n (x), das mit f(x) im Punkt x = a bis zur n-ten Ableitung übereinstimmt: f(a) = p n (a), f (a) = p n(a), f (a) = p n(a),..., f (n) (a) = p (n) n (a). Es ergibt sich: p n (x) := f(a) + f (a)(x a) + 1 2! f (a)(x a) n! f(n) (a)(x a) n p n heißt n-tes Taylorpolynom zu f im Entwicklungspunkt a.

9 Satz (Taylor-Approximation) Für glattes f und jedes jedes n = 1,2,... gibt es eine Konstante C, sodass für x in der Nähe von a gilt: f(x) p n (x) C x a n+1. Man schreibt dafür auch: f(x) = p n (x) + O((x a) n+1 ).

10 Notation: Für zwei Funktionen R(x) und g(x) schreibt man R(x) = O(g(x)) für x a, wenn es eine Konstante C gibt mit R(x) < C g(x) für alle x in der Nähe von a. Lies: Der Betrag von R(x) ist in der Nähe von x = a beschränkt durch ein Vielfaches von g(x) oder einfach R(x) ist groß O von g(x).

11 Beispiel: 2x 2 1 x = O(x2 ) für x 0. Denn das Verhältnis 2x2 1 x / x2 = 2 1 x bleibt beschränkt für x 0. Z. B. ist für x 1/2: 2 1 x 4.

12 Merke: R(x) = o(g(x)) für x a impliziert R(x) = O(g(x)) für x a.

13 Und: R(x) = O((x a) 2 ) für x a impliziert R(x) = o(x a) für x a.

14 Der Satz f(x) = p n (x) + O( (x a) n+1 ) für x a lautet im Spezialfall n = 1: f(x) = f(a) + f (a)(x a) + O((x a) 2 ) für x a. Für diesen Fall wollen wir den Satz beweisen:

15 Schritt 1: Es gibt ein ξ zwischen a und x mit f(x) f(a) = f (ξ)(x a). ( Mittelwertsatz der Diffferentialrechnung, a ξ x dafür reicht schon die Differenzierbarkeit von f.)

16 Schritt 2: f(x) f(a) f (a)(x a) = f (ξ)(x a) f (a)(x a) = (x a)(f (ξ) f (a)) = x a f (ζ)(ξ a) C x a 2 = O((x a) 2 ). (Dabei ist ζ eine geeignete Stelle zwischen a und ξ, vgl. Schritt 1)

17 Auch den Fall n = 2 wollen wir genauer betrachten: Behauptung: Für das quadratische Polynom p 2 (x) := f(a) + f (a)(x a) f (a)(x a) 2 gilt: f(x) = p 2 (x) + O( (x a) 3 ) für x a.

18 Beweis: Das Polynom p 2 (x) hat die Eigenschaft p 2 (a) = f(a), p 2 (a) = f (a), p 2 (a) = f (a). Die Funktion r(h) := f(a + h) p 2 (x + h) erfüllt somit : r(0) = r (0) = r (0) = 0, also wegen des Satzes mit n = 1 angewandt auf h r (h): r (h) C h 2 und damit r(h) = h 0 r (u) du C h 0 u2 du = (C/3) h 3

19 p Beispiel: f(x) = sin(x) a = a p 1 (x) p2 (x) f(x) x

20 f(x) p k (x) = O((x a) k+1 ) für x a Logarithmieren macht die Konvergenzordnung sichtbar: log10 f(x) p k (x) k = 1 k = log 10 (x a)

21 lacements f(x) = sin(x) a = a p 1 (x) p 2 (x). f(x) x log10 f(x) p k (x) k = 1 k = log 10 (x a)

22 Falls p k (x) f(x) für k (d.h. falls der Rest f(x) p k (x) für k gegen Null konvergiert) schreibt man f(x) = n=0 f (n) (a) (x a) n n! und nennt die rechte Seite die Taylor-Reihe für f(x) um den Punkt x = a.

23 Schreibweise: Statt z k z für k schreibt man auch lim z k = z k und liest: (Die Folge) z k konvergiert (für k gegen Unendlich) gegen z bzw.: Der Grenzwert ( Limes ) von z k (für k gegen Unendlich) ist z.

24 f(x) = n=0 f (n) (a) (x a) n n! Wir berechnen jetzt die Taylorkoeffizienten f (n) (a) n! für ein paar wichtige Beispiele:

25 Beispiel: Die Exponentialfunktion f(x) = e x, a = 0 f (n) (x) = e x f (n) (0) = 1. Wir finden die Reihendarstellung von e x wieder: e x = 1 + x x ! x ! x = n=0 1 n! xn

26 Beispiel: Die geometrische Reihe: Für x zwischen 1 und 1 gilt: 1 + x + x 2 + x = n=0 x n = 1 1 x Zur Erinnerung: 1 + x + x x n = 1 xn+1 1 x denn (1 + x + x x n )(1 x) = 1+x+x x n x x 2... x n x n+1 = 1 x n+1. Für x < 1 liefert der Grenzwert n die obige Summenformel.

27 1 + x + x 2 + x = 1 1 x Daraus sieht man: 1 1 x = 1 + x + O(x2 ) für x 0

28 Die geometrische Reihe ist die Taylor-Reihe für die Funktion f(x) := 1 1 x. In der Tat: f(x) = (1 x) 1, f (x) = (1 x) 2 f (x) = 2(1 x) 3... f (n) (x) = n!(1 x) n 1 f (n) (0) = n! f(n) (0) n! = 1

29 Beispiel: Sinus und Cosinus: Zur Erinnerung: sin (t) = cos(t) cos (t) = sin(t) sin(0) = 0 cos(0) = 1.

30 sin (t) = cos(t) cos (t) = sin(t) sin (0) = 1 cos (0) = 0 sin (t) = sin(t) cos (t) = cos(t) sin (0) = 0 cos (0) = 1 sin (t) = cos(t) cos (t) = sin(t) sin (0) = 1 cos (0) = 0

31 sin (2n) (0) = 0 sin (2n+1) (0) = ( 1) n. Also ist die Taylorreihe von sin um den Punkt 0: x 1 3! x ! x = n=0 ( 1) n (2n + 1)! x2n+1.

32 cos (2n) (0) = ( 1) n cos (2n+1) (0) = 0. Also ist die Taylorreihe von cos um den Punkt 0: x ! x = n=0 ( 1) n (2n)! x2n.

33 Aus Vorlesung 3a (Stichwort: komplexe Exponentialreihe und Eulerformel) wissen wir schon: sin(x) = x 1 3! x ! x cos(x) = x ! x4 +...

34 Wir erinnern an nützliche Approximationsformeln: sin(x) = x 1 3! x ! x sin(x) = x + O(x 3 ) für x 0 cos(x) = x ! x cos(x) = x2 + O(x 4 ) für x 0

35 Unsere Beispiele (Exponential-, Sinus-, Cosinus-, geometrische Reihe) waren allesamt von der Form n=0 b n x n Man spricht von einer Potenzreihe um den Entwicklungspunkt 0.

36 Für jede solche Potenzreihe n=0 b n x n gibt es eine Zahl r [0, ], so, dass n=0 n=0 b n x n < für x < r und b n x n = für x > r. Dieses r heißt Konvergenzradius der Potenzreihe.

37 Der Konvergenzradius der Exponentialreihe ist, ebenso der Konvergenzradius der Sinusreihe und der Cosinusreihe. Der Konvergenzradius der geometrischen Reihe ist 1. n=0 x n

38 Man kann zeigen: Auf dem Intervall ( r, r) ist die Funktion s(x) = n=0 b n x n differenzierbar, und man bekommt s (x) durch gliedweises Differenzieren, und eine Stammfunktion von s durch gliedweises Integrieren:

39 s(x) = n=0 b n x n, r < x < r s (x) = n=1 nb n x n 1, r < x < r s(x) dx = n=0 b n x n+1 n C, r < x < r.

40 Beispiel: Geometrische Reihe s(x) := 1 1 x = n=0 x n, 1 < x < 1. Abgeleitet: 1 (1 x) 2 = n=1 nx n 1 = 1 + 2x + 3x 2 + 4x

41 Beispiel: Geometrische Reihe s(x) := 1 1 x = n=0 x n, 1 < x < 1. ln(1 x) = n=0 Integriert: x n+1 n + 1 = x + x2 2 + x Also ln(1 + x) = x x2 2 + x3 3..., 1 < x < 1.

42 Noch einmal zurück zur Taylorentwicklung: Der folgende Satz liefert eine Darstellung des Restes bei der Taylorentwicklung und damit eine Möglichkeit, den Rest abzuschätzen. (Auch aus diesem Satz folgt übrigens, dass die Taylorpolynome von sin(x) und cos(x) für n gegen sin(x) und cos(x) konvergieren.)

43 Satz: Für n = 0,1,2,.. gibt es ein ξ zwischen a und x mit f(x) p n (x) = 1 (n + 1)! f(n+1) (ξ)(x a) n+1. Speziell für n = 0: f(x) f(a) = f (ξ)(x a). (Mittelwertsatz)

44 Speziell für n = 1: Es gibt ein ξ zwischen a und x mit f(x) p 1 (x) = 1 2 f (ξ)(x a) 2. Das wollen wir auf den nächsten beiden Folien beweisen:

45 Schritt 1: Wir zeigen, dass f(x) p 1 (x) = x 0 (x u)f (u) du. x 0 (x u)f (u) du = In der Tat ist mit partieller Integration x 0 (x u) f (u) du + (x u)f (x) u=x u=a = x a f (u) du (x a)f (a) = f(x) f(a) (x a)f (a) = f(x) p 1 (x).

46 Schritt 2: Es ist x0 (x u)f (u) du x0 (x u) du ein (mit x u gewichtetes) Mittel über die Werte f (u), a u x. Daher gibt es ein ξ zwischen a und x mit x0 f (x u)f (u) du x0 (x u)f (u) du (ξ) = x0 = (x u) du 1 2 (x, a)2 also x 0 (x u)f (u) du = 1 2 (x a)2 f (ξ). Zusammen mit Schritt 1: f(x) p 1 (x) = 1 2 (x a)2 f (ξ).

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Freie Universität Berlin Wintersemester / Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Musterlösung zum. Übungsblatt zur Vorlesung Mathematik für Physiker I Differenzierbarkeit,

Mehr

P n (1) P j (1) + ε 2, j=0. P(1) P j (1) + ε 2 < ε. log(1+x) =

P n (1) P j (1) + ε 2, j=0. P(1) P j (1) + ε 2 < ε. log(1+x) = Zu ε > 0 gibt es ein N N mit P n (1) P j (1) < ε/2 für j,n > N, also gilt Es folgt (1 x) n 1 j=n+1 und schließlich mit n x j P n (1) P j (1) (1 x) ε 2 P n (1) P n (x) (1 x) P(1) P(x) (1 x) für x hinreichend

Mehr

Die Exponentialfunktion. exp(x)

Die Exponentialfunktion. exp(x) Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Satz von Taylor Taylorreihen

Satz von Taylor Taylorreihen Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

8. 2A. Integration von Potenzreihen

8. 2A. Integration von Potenzreihen 8. 2A. Integration von Potenzreihen Wie wir schon mehrfach sahen, sind Potenzreihen ein unentbehrliches Werkzeug für viele Berechnungen in der Ingenieurmathematik. Glücklicherweise darf man Potenzreihen

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014

Tutorübung 5. Analysis 2 für Lehramt TU Dortmund, Sommersemester 2014 Tutorübung 5 Analysis 2 für Lehramt TU Dortmund, Sommersemester 24 Aufgabe T Bestimme die Taylorreihen von (a) cos(x) um a. (b) ln(x) um a. (c) um a 2. +x Bestimme in allen Fällen das Taylorpolynom T n,a

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

Höhere Mathematik 1 Übung 9

Höhere Mathematik 1 Übung 9 Aufgaben, die in der Präsenzübung nicht besprochen wurden, können in der darauf folgenden übung beim jeweiligen übungsleiter bzw. bei der jeweiligen übungsleiterin abgegeben werden. Diese Abgabe ist freiwillig

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I

Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Bachelor Informatik Mathematik Plus Titel Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Bachelor Informatik

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Lösen von Differentialgleichungen durch Reihenentwicklung

Lösen von Differentialgleichungen durch Reihenentwicklung Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen

Mehr

Funktionenfolgen, Potenzreihen, Exponentialfunktion

Funktionenfolgen, Potenzreihen, Exponentialfunktion Kapitel 8 Funktionenfolgen, Potenzreihen, Exponentialfunktion Der in Definition 7. eingeführte Begriff einer Folge ist nicht auf die Betrachtung reeller Zahlen eingeschränkt und das Beispiel {a n } = {x

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Mathematik I - Woche 10

Mathematik I - Woche 10 Mathematik I - Woche 0 Philip Müller Reihen. Was ist eine Reihe Wir hatten bis jetzt Folgen. Eine Folge (a n ) n N ist eine Vorschrift, die von den natürlichen Zahlen, in die reellen Zahlen abbildet. Ein

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Satz von Taylor, Taylor-Reihen

Satz von Taylor, Taylor-Reihen Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 7 4 DIFFERENZIERBARKEIT Sei dazu 0 < ρ < s < r. Dann gilt lim sup k k a k

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Beispielaufgaben rund um Taylor

Beispielaufgaben rund um Taylor Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.

Mehr

6 Weiterer Ausbau der Differentialrechnung

6 Weiterer Ausbau der Differentialrechnung 6 Weiterer Ausbau der Differentialrechnung 6.1 Mittelwertsätze, Extremwerte, Satz von Taylor Motivation: Wie wählt man Höhe und Durchmesser einer Konservendose, so dass bei festem Volumen V möglichst wenig

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Differenzierbarkeit und Taylor-Entwicklung Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet.. Jacobi-Matrix Man bestimme die Jacobi-Matrix

Mehr

10 Potenz- und Fourierreihen

10 Potenz- und Fourierreihen 10 Potenz- und Fourierreihen 10.1 Konvergenzbegriffe für Funktionenfolgen Im letzten Kapitel soll es noch einmal um eindimensionale Analysis gehen. Speziell werden wir uns mit Folgen und Reihen reeller

Mehr

Kapitel 5 Differential- und Integralrechnung in einer Variablen

Kapitel 5 Differential- und Integralrechnung in einer Variablen Kapitel 5 Differential- und Integralrechnung in einer Variablen Inhaltsverzeichnis DIE ABLEITUNG... 3 DEFINITIONEN... 3 EIGENSCHAFTEN UND ABLEITUNGSREGELN... 4 TAYLOR SCHE FORMEL UND MITTELWERTSATZ...

Mehr

6.1 Die Ableitung einer reellwertigen Funktion

6.1 Die Ableitung einer reellwertigen Funktion 6 Differenzierbarkeit In diesem Kapitel sind alle Funktionen, sofern nicht anders angegeben, reellwertige Funktionen, die auf Intervallen definiert sind. Es bezeichnet I in diesem Kapitel stets ein Intervall.

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Zwischenprüfung Winter 2016 Analysis I D-BAUG

Zwischenprüfung Winter 2016 Analysis I D-BAUG ETH Zürich Zwischenprüfung Winter 216 Analysis I D-BAUG Dr. Meike Akveld Wichtige Hinweise Prüfungsdauer: 9 Minuten. Zugelassene Hilfsmittel: Keine, ausser das verteilte Blatt mit Standardintegralen. Es

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Oft können wir bestimmte mathematische Funktionen nicht genau

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit W und falsche Aussagen mit F. Es sind keine Begründungen

Mehr

Anleitung zu Blatt 4, Analysis II

Anleitung zu Blatt 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

EDV für Chemiker: MAPLE - KURS

EDV für Chemiker: MAPLE - KURS EDV für Chemiker: MAPLE - KURS Vorlesung 4 Polynomenschar mit indizierten Koeffizienten > f:=x->a[0]+a[1]*x+a[2]*x^2+a[3]*x^3+a[4]*x^4; f := x a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 i) An der Stelle

Mehr

8. Übungsblatt zur Mathematik I für Chemiker

8. Übungsblatt zur Mathematik I für Chemiker Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )

Mehr

0.1 Formale Potenzreihen und Konvergenz

0.1 Formale Potenzreihen und Konvergenz 0. Formale Potenzreihen und Konvergenz Erinnerung: Ein Ausdruc der Form a x oder a (x a) mit a R heißt formale Potenzreihe oder unendlich langes Polynom. Seien a = a x und b = b x zwei Potenzreihen. Wir

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Integration. Kapitel Stammfunktionen

Integration. Kapitel Stammfunktionen Kapitel 5 Integration 5. Stammfunktionen Definition: Eine auf dem Intervall I differenzierbare Funktion F ist eine Stammfunktion der Funktion f : I R, wenn F (x) = f(x) für alle x I. Fakt : Sind F und

Mehr

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx.

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx. 86 5 Fouriertheorie Für gerades f ist f (x) sin nx ungerade, somit b n = f (x) sin nx dx =. Für ungerades f ist dagegen f cos nx ungerade, also a n = f (x) cos nx dx =..Ò Beispiel Die Sägezahnfunktion

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

ur Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk

ur Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk Mathematik f ur Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 1 Tutorium Hinweis:

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr