Kaskadierung von Carry-Look-Ahead-Schaltungen

Größe: px
Ab Seite anzeigen:

Download "Kaskadierung von Carry-Look-Ahead-Schaltungen"

Transkript

1 35 Crr-Look-Ahed 15 Kkdierung von Crr-Look-Ahed-Schltungen Mit einer Kkdierung knn der mit großer Wortreite einhergehenden großen Anzhl n Gttern entgegengewirkt werden Dzu werden Crr-Look-Ahed-Schltungen hoher Wortreite u mehreren Crr-Look-Ahed-Schltungen niedrigerer Wortreite zummengeetzt Nchfolgende Aildung zeigt eine Erweiterung der eknnten Bit Crr-Look-Ahed-Schltung zur Auge von Generte- und Propgte-Signlen x G inv Zur Zummenfung mehrerer Crr-Look-Ahed-Schltungen werden die Generte- /Propgte-Signle mit einer og Crr-Look-Ahed-Einheit verunden 1 x inv g 3 p 3 g 2 p 2 g 1 p 1 g 0 p 0 x 3 3 c 2 x 2 2 c 1 x 1 1 c 0 x 0 0 c -1 P c 3 3 c 2 2 c 1 1 c 0 0 C : G 3 P 3 G 0 C 3 G 2 P 2 C 2 G 1 P 1 C 1 P 0 Crr-Look-Ahed-Einheit GG 0 PP 0 C 0 CC 0

2 16 3 Arithmetiche Schltungen Die Crr-Look-Ahed-Einheit erechnet u den Eingngignlen CC 0, P 0, P 1, P 2, P 3, G 0, G 1, G 2 und G 3 die Üerträge C 0, C 1, C 2 und C 3 und leitet diee n die jeweiligen Crr-Look-Ahed-Schltungen weiter D Generte-/Propgte-Signle uf zwei unterchiedlichen Hierrchie-Eenen erechnet werden, pricht mn von einer zweitufigen Crr-Look-Ahed-Schltung Üer die Ein-/Augänge CC 0, PP 0 und GG 0 können mehrere 16 Bit Crr-Look-Ahed-Schltungen zu einer Crr-Look-Ahed-Schltung mit noch größerer Wortreite, zb 6 Bit, zummengeetzt werden ) Wie mu die zweitufigen Crr-Look-Ahed-Schltung zur Sutrktion echltet werden? in + Cco uf 1 etzen ) Hängen die Signle G und P von Crr-In-Signl C? Wrum? Nein, von C ein G und P ollen, d ont wieder unhängig " durch rippe lu " c) Betimmen Sie die Anzhl der Gtterlufzeiten für die eintufige Bit Crr- Look-Ahed-Schltung ei einer Sutrktion für den Fll Fn-In = Mp Inverter tcllnltipkxf 37 : ttläz Mpu o üer Inverter / Mux nch :3 g 2T = 5g nch m nch G 3T : +3T = 6T nch P : 3kt 7T m C nch S : 3T

3 35 Crr-Look-Ahed 17 d) Betimmen Sie die Anzhl der Gtterlufzeiten fll Fn-In = QF TEE - : F - Ezct Em mu 9T o : P : 6T ( 1 mehr ei - fch UND e m o J G : 8T m cri : 5T

4 18 3 Arithmetiche Schltungen Im Folgenden wird die Crr-Look-Ahed-Einheit etrchtet 1 x inv G 3 P 3 G 0 C 3 G 2 P 2 C 2 G 1 P 1 C 1 P 0 Crr-Look-Ahed-Einheit GG 0 PP 0 C 0 CC 0 e) Betimmen Sie die Signle C 0, C 1, C 2 und C 3 in Ahängigkeit der Signle CC 0, P 0, P 1, P 2, P 3, G 0, G 1, G 2 und G 3 Co F C Co cn = Go V ( Po ^ C Co ) Cz = Gn V ( P ^ Go ) v ( Pn n Po 1 CCD = Gzv ( Pz ^ Gn ) v ( Pz ^ Pen Go ) V ( pz n Pen Po n C Co ) f) Betimmen Sie die Signle GG 0 und PP 0 in Ahängigkeit der Signle P 0, P 1, P 2, P 3, G 0, G 1, G 2 und G 3 Ppo = P, n Pz n Pn n Po GG o = G v ( Bn Gz ) v ( B n Pz n Gr ) V ( B ~ Pz n R 1 Go )

5 35 Crr-Look-Ahed 19 g) Betimmen Sie für Fn-In = die Anzhl der Gtterlufzeiten der Crr-Look- Ahed-Einheit von den Eingängen zu den Augängen C 3, GG 0 und PP 0, dh Ko / GIP : 2T Ptt, dh P Ppoi : 1 f GGO, dhmg GGO : h) Skizzieren Sie für Fn-In = 2 eine Gtterchltung zur Betimmung von PP 0 Betimmen Sie die mximle Anzhl n Gtterlufzeiten - CE 2 - Fn, - : 3 i) Skizzieren Sie für Fn-In = 2 eine Gtterchltung zur Betimmung von GG 0 Zeichnen Sie den kritichen Pfd ein und etimmen Sie die mximle Anzhl n Gtterlufzeiten iii IÄTEE -1=1 Eu ICEI :

6 150 3 Arithmetiche Schltungen T j) Skizzieren Sie für Fn-In = 2 eine Gtterchltung zur Betimmung von C 3 Zeichnen Sie den kritichen Pfd ein und etimmen Sie die mximle Anzhl n Gtterlufzeiten Nehmen Sie die für Fn-In = etimmten Gtterlufzeiten n, vgl c), f), g) k) Betimmen Sie die mximle Gtterlufzeit der zweitufigen 16 Bit Crr-Look- Ahed-Schltung zur korrekten Betimmung von T = MAX ( Txtnp 1 THING, = mx (7,6+2+3) = TG AS ) 11T P t TGP - pct l) Betimmen Sie die mximle Gtterlufzeit der zweitufigen 16 Bit Crr-Look- Ahed-Schltung zur korrekten Betimmung von PP 0 Tppo = Tx, p ftpxppo ~ um C flg = 5T + T = 6T

7 35 Crr-Look-Ahed 151 m) Betimmen Sie die mximle Gtterlufzeit der zweitufigen 16 Bit Crr-Look- Ahed-Schltung zur korrekten Betimmung von GG 0 TGGO = mx ( Tx, p 1 Tg G) t TG PAGETT, fl 9) = 6T t zu = Nchfolgende Aildung zeigt eine dreitufige Crr-Look-Ahed-Schltung zur Verreitung von 6 Bit reiten Zhlen x -Einheit d : 6 6 dd/u -Einheit c -Einheit -Einheit GG 3 PP 3 CC 3 GG 2 PP 2 CC 2 GG 1 PP 1 CC 1 GG 0 PP 0 CC 0 -Einheit e CC Üerluf- Erkennung 6 n) Betimmen Sie die mx Gtterlufzeit zur Berechnung von CC 3 für Fn-In =

8 152 3 Arithmetiche Schltungen o) Betimmen Sie die mximle Gtterlufzeit zur korrekten Betimmung von für Fn-In = p) Betimmen Sie die mximle Gtterlufzeit zur korrekten Betimmung de Crr- Out CC für Fn-In =

9 37 Komintoricher Multiplizierer Addition und Sutrktion von Gleitkommzhlen Zur Addition von Gleitkommzhlen wird uf Fetkomm-Addierer und -Sutrhierer zurückgegriffen Zwei poitive Gleitkommzhlen können wie folgt ddiert werden: Al Exponent de Ergenie wird der größere Exponent verwendet Bilden der Differenz der eiden Exponenten Mntie der Zhl mit dem kleineren Exponenten zummen mit der führenden 1, um die zuvor erechnete Differenz nch recht chieen Beide Mntien ddieren Fll Ergeni nicht in Form 1, it, Mntie um 1 Stelle nch recht chieen und 1 zum Ergeni-Exponenten ddieren (= Re-Normliieren) Um Gleitkommzhlen zu utrhieren, knn wie oen vorgegngen werden, wenn der Sutrhend negiert wird D gleiche gilt für die Addition von Zhlen unterchiedlichen Vorzeichen 37 Komintoricher Multiplizierer Bei der Multipliktion gilt llgemein: Multipliktor Multipliknd = Produkt Mit Multipliktor x und Multipliknd erechnet ich ei vorzeichenloen Zhlen d Produkt z zu: x 3 x 2 x 1 x x 0 3 x 0 2 x 0 1 x x 1 3 x 1 2 x 1 1 x x 2 3 x 2 2 x 2 1 x x 3 3 x 3 2 x 3 1 x 3 0 = z 7 z 6 z 5 z z 3 z 2 z 1 z 0 Die Multipliktion zweier n Ziffern reiter Zhlen ergit ein 2n reite Produkt D Produkt erechnet ich l Summe von n Teilprodukten Die Multipliktion der Einzel-Terme x i j entpricht einer logichen UND-Verknüpfung Die Addition der Teilprodukte x i j werden knn mit Hl- und Vollddierern durchgeführt

10 15 3 Arithmetiche Schltungen ) Trgen Sie in nchfolgende Aildung Verindungen zur Reliierung der vorzeichenloen Multipliktion ein Eigene Löung: x 3 x 2 x 1 x x 0 3 x 0 2 x 0 1 x 0 O 0 + x 1 3 x 1 2 x 1 1 x x 2 3 x 2 2 x 2 1 x x 3 3 x 3 2 x 3 1 x 3 0 = z 7 z 6 z 5 z z 3 z 2 z 1 z 0 I V x 3 x 2 x 1 x ? tgl?t? 9 g)? IY q )?, HA HA µ, ) p g) ' Do dz/: HA ;) HA z 7 z 6 z 5 z z 3 z 2 z 1 z 0

11 37 Komintoricher Multiplizierer 155 Zur Mitchrift: x 3 x 2 x 1 x x 0 3 x 0 2 x 0 1 x x 1 3 x 1 2 x 1 1 x x 2 3 x 2 2 x 2 1 x x 3 3 x 3 2 x 3 1 x 3 0 = z 7 z 6 z 5 z z 3 z 2 z 1 z 0 x 3 x 2 x 1 x HA HA HA HA z 7 z 6 z 5 z z 3 z 2 z 1 z 0

12 156 3 Arithmetiche Schltungen ) Trgen Sie in die Multiplizierer-Schltung den längten Pfd ein Wie lnge (in Gtterlufzeiten ) duert die Auführung? Der Hrdwreufwnd der gezeigten Schltung it ehr hoch: Mit teigender Wortreite n teigt der notwendige Hrdwreufwnd mit c n 2

13 38 Sequentieller Multiplizierer Sequentieller Multiplizierer Mit einer equentiellen Schltung knn der Hrdwreufwnd reduziert werden Die nächte Aildung kizziert eine equentielle Schltung, die zur Multipliktion vorzeichenloer Zhlen der Wortreite n =verwendet werden knn MR Add PR 0 PR x 3 x 2 x 1 x 0 dmhipühud git Nv g 0 de Produkt reg Multipliktor D Multipliknd-Regiter MR it n =Bit reit, d Produkt-Regiter PR it 2n +1=9 Bit reit PR 0 it d niederwertigte Bit de im Produktregiter gepeicherten Wert Der equentielle Aluf it wie folgt: Zunächt wird der Multipliknd im Multipliknd-Regiter MR und der Multipliktor in den unteren n Bit de Produkt-Regiter gelegt Die retlichen Bit de Produktregiter werden mit 0 initiliiert Anchließend wird itertiv n =ml folgende ugeführt: Wenn PR 0 =1, dnn wird der in MR tehende Wert zu den Bit PR 7 PR de Produktregiter ddiert; ein ggf uftretender Üerluf wird in PR 8 gelegt; nchließend wird d gemte Produktregiter um eine Stelle nch recht gechoen; dei wird von link mit Nullen ufgefüllt Wenn PR 0 =0, dnn wird keine Addition durchgeführt, ondern lediglich d gemte Produktregiter um eine Stelle nch recht gechoen; dei wird wieder von link mit Nullen ufgefüllt Nch n =Itertionen (=Runden) teht im Produktregiter d Ergeni

14 158 3 Arithmetiche Schltungen ) Trgen Sie in folgende Aildung für n =die Regiterinhlte ein, die ich für die Multipliktion 13 5 = 65 ergeen Add Nch Addition: Nch Schieen: Nch Addition: Nch Schieen: Nch Addition: Nch Schieen: Nch Addition: Nch Schieen: tttttint öööxeiöö im io#uofovn öü Initiliierung Erte Runde, Erte Runde Zweite Runde Zweite Runde Dritte Runde Dritte Runde Vierte Runde Vierte Runde

3.7 Kombinatorischer Multiplizierer Addition und Subtraktion von Gleitkommazahlen

3.7 Kombinatorischer Multiplizierer Addition und Subtraktion von Gleitkommazahlen . 3.7 Komintoricher Multiplizierer 137 Bethnl : 1. 321 1+2.10+3.100=6 3.6 Addition und Sutrktion von Gleitkommzhlen Zur Addition von Gleitkommzhlen wird uf Fetkomm-Addierer und -Sutrhierer zurückgegriffen.

Mehr

2010 Burkhard Stiller M5 2

2010 Burkhard Stiller M5 2 Hertemeter 2, Intitut fr Informtik IFI, UZH, Schweiz Modul 5: Rechnerrithmetik (2) Informtik I Modul 5: Rechnerrithmetik (2) Grundrechenrten - Einheit 2 Burkhrd Stiller M5 2 Burkhrd Stiller M5 2 Addition

Mehr

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze

Schaltnetze. Inhaltsübersicht. Aufbau von Schaltnetzen anhand wichtiger Beispiele. Codierer, Decodierer und Codekonverter. Additionsschaltnetze Schltnetze Aufu von Schltnetzen nhnd wichtiger Beipiele Inhltericht Codierer, Decodierer und Codekonverter Additionchltnetze Hlddierer Vollddierer Mehrtellige Addierer Multiplexer und Demultiplexer Techniche

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik

>1 z. a b. a b. a b. log. 0. a b. Übung 3: Schaltnetze. VU Technische Grundlagen der Informatik VU Technische Grundlgen der Informtik Üung 3: Schltnetze 83.579, 205W Üungsgruppen: Mo., 6.. Mi., 8..205 Allgemeiner Hinweis: Die Üungsgruppennmeldung in TISS läuft von Montg, 09.., 20:00 Uhr is Sonntg,

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

4.1 Vom zu lösenden Problem abhängige Schaltung Vom zu lösenden Problem abhängige Schaltung

4.1 Vom zu lösenden Problem abhängige Schaltung Vom zu lösenden Problem abhängige Schaltung 4 Vom zu lösenden Prolem hängige Schltung 9 4 ProzessorDtenpfd 4 Vom zu lösenden Prolem hängige Schltung Mit den isher kennengelernten Schltungen können ereits viele Prolemstellungen gelöst werden Nchfolgende

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfghj klzxcvbnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwerty

qwertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfghj klzxcvbnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwerty qwertyuiopdfghjklzxcvnmqwertyui opdfghjklzxcvnmqwertyuiopdfghj klzxcvnmqwertyuiopdfghjklzxcvn mqwertyuiopdfghjklzxcvnmqwerty ufgen M-eipielen Vorereitung uf die 1. Schulreit uiopdfghjklzxcvnmqwertyuiopdfg

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenurg/Ostfrieslnd/Wilhelmshven Fch. Technik, At. Elektrotechnik u. Informtik Prof. Dr. J. Wiee www.et-inf.fho-emden.de/~wiee Mthemtik, Teil B Inhlt:.) Grundegriffe der Mengenlehre.) Mtrizen, Determinnten

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders.

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders. Arno Fehringer, Gymnsillehrer für Mthemtik und Physik 1 Erweiterung der Euklidischen Flächensätze uf ds llgemeine Dreieck nest Anwendung zur Volumenestimmung des llgemeinen Tetreders. Arno Fehringer Juni

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

2. Klausur in K2 am

2. Klausur in K2 am Nme: Punkte: Note: Ø: Profilfch Physik Azüge für Drstellung: Rundung:. Klusur in K m.. 04 Achte uf die Drstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Aufge ) (8 Punkte) In drei

Mehr

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden.

x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden. Termnlyse Mthemtik. Klsse Ivo Blöhliger Terme Ein wihtiger Teil es mthemtishen Hnwerks esteht rin, Terme umzuformen. Dzu müssen einerseits ie Rehengesetze er reellen Zhlen verinnerliht sein, un nererseits

Mehr

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache!

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache! 1 2 Reguläre Audrücke und reguläre Sprchen Grundlgen der Theoretichen Inormtik Till Mokowki Fkultät ür Inormtik Otto-von-Guericke Univerität Mgdeurg Winteremeter 2014/15 Stz: [Kleene] Die Kle der durch

Mehr

Analytische Geometrie

Analytische Geometrie Anlytiche eometie Intention: Eeitung eine Vefhen, mit deen Hilfe mn jede geometiche Aufge duch echnung löen knn. I Vektoen und Vektoäume Pfeile und Vektoen Vektoen ind geichtete ößen. Phyik: Kft, echwindigkeit,

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c))

i)((a + b) + (ā b)) + c ii ) (a c) + ((b + 0) c) iii) (a c) (ā + c) (b + c + b) iv ) (ā + (b c)) + (c (b + c)) Boolsche Alger In dieser Aufge soll noch einml der Umgng mit der Boolschen Alger geuet werden. Zur Erinnerung deshl hier zunechst noch einml die grundlegenden Regeln (Nummerierung entsprechenend den GTI-Folien):

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

Berechnung der inversen Matrix.

Berechnung der inversen Matrix. Inverse Mtrix Berechnung der inversen Mtrix. Es ist ds LGS A X = E zu lösen. X = A 1 ist eine Mtrix. Verwendung des Guss-Algorithmus: Trnsformiere (A E in (E X. Steffen Voigtmnn Beuth Hochschule für Technik

Mehr

Aufgabe 1 - Lagerreaktionen

Aufgabe 1 - Lagerreaktionen KLAUSUR Technische Mechnik (. Semester 19.07.011 Prof. Volker Ulricht Duer: 10 min. Aufge 1 3 4 5 Σ Punkte 5 1 6 8 5 36 Aufge 1 - Lgerrektionen D F D Gegeen: Längen, =, Streckenlst, Krft F D, Moment Lgerrektionen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen.

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen. Inhltsüersicht Kpitel 5: evil forces: Vektorrechnung Vektorrechnung in der Eene Ungleichungen in zwei Vrilen Der Vektorrum R n, Vektoropertionen Eenen im Rum Linere Gleichungssysteme Gußsche Elimintion

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3

TECHNISCHER BERICHT. 2. Übungsprogramm: Sphärische Geometrie 1. AUFGABENSTELLUNG:...3 Gnder Dniel 00099 GEOMATHEMATIK SS 00 TECHISCHER BERICHT. Üungprogrmm: Sphärihe Geometrie. AUFGABESTELLUG:.... LÖSUGSWEG:.... Skizze:.... Umrehnung der phärihen Ditnzen in Winkel:.... Berehnung ller fehlerfreien

Mehr

Kapitel 4. Minimierung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 4. Minimierung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kpitel 4 Minimierung Prof. Dr. Dirk W. Hoffmnn Hochschule Krlsruhe w University of Applied Sciences w Fkultät für Informtik Minimierung Motivtion Jede Boolesche Funktion lässt sich uf verschiedene Weise

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

WIPF SCHE FORMELSAMMLUNG

WIPF SCHE FORMELSAMMLUNG WIPF SCHE FORELSALG Verfer: Wipf rio Fchbereich: chinen-ingenieurween Fch: Antriebtechnik mfng: Hupttudium Fung vom: 4..3 Antriebtechnik Antriebtechnik Grundlgen Formelmmlung:.Wipf Drehmomentberechnung

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Um das Volumen (V) eines Prismas zu erhalten, multipliziert man den Inhalt der Grundfläche (G) mit der Körperhöhe (h). Für alle Prismen gilt:

Um das Volumen (V) eines Prismas zu erhalten, multipliziert man den Inhalt der Grundfläche (G) mit der Körperhöhe (h). Für alle Prismen gilt: gnz klr: Mtemtik - D Ferieneft mit Erfolgnzeiger Rettungring Volumen von Primen Um d Volumen (V) eine Prim zu erlten, multipliziert mn den Inlt der Grundfläce (G) mit der öe (). Für lle Primen gilt: V

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt

4 Hyperbel. 4.1 Die Hyperbel als Kegelschnitt 1 4 Hperel 4.1 Die Hperel ls Kegelschnitt Wird ein Kreiskegel mit dem hlen Öffnungswinkel α von einer Eene σ geschnitten, die mit der Kegelchse einen Wink β < α einschliesst, so entsteht ls Schnittkurve

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Auswertung zum Praktikum Grundlagen der Meßtechnik Versuch Nr.: 4 Kapazitätsmessung in der Wechselstrombrücke

Auswertung zum Praktikum Grundlagen der Meßtechnik Versuch Nr.: 4 Kapazitätsmessung in der Wechselstrombrücke Auswertung zum Prktikum Grundgen der Meßtechnik Versuch Nr.: 4 Kpzitätsmessung in der Wechsestromrücke Theoretische Grundgen Die Kpzitätsmessung n einem Kondenstor knn sehr kompiziert sein. Dies iegt nicht

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Es berechnet die Fläche zwischen Kurve und x-achse.

Es berechnet die Fläche zwischen Kurve und x-achse. 1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik

Versuchsvorbereitung: P1-31, 40, 41: Geometrische Optik Prktikum Klssische Physik I Versuchsvorereitung: P-3, 40, 4: Geometrische Optik Christin Buntin Gruppe Mo- Krlsruhe, 09. Novemer 2009 Inhltsverzeichnis Brennweiten-Bestimmungen 2. Einfche Bestimmung der

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

Aus Kapitel 39. Regelungstechnik. Aufgaben Ein Übertragungsglied sei beschrieben durch die Differenzialgleichung

Aus Kapitel 39. Regelungstechnik. Aufgaben Ein Übertragungsglied sei beschrieben durch die Differenzialgleichung Aufgaen Kap 39 229 Au Kapitel 39 Aufgaen 39 Ein Üertragungglied ei echrieen durch die Differenzialgleichung 3ÿt) +2ẏt) +2yt) ut) +2ut) Da Eingangignal ei ut) e 2t, alle Anfangwerte eien null Eritteln Sie

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Einfache Formeln als Gleichungen sehen und entsprechend umformen.

Einfache Formeln als Gleichungen sehen und entsprechend umformen. orereitung uf die (6.Juni 01) NME: 6. Sculreit: MTHEMTIK KL.: M/I. - S.1 leicungen umformen: Wgemodell und Umkeropertion. Wgemodell: Umformungregeln Durc jede ktion mu d leicgewict erlten leien! - = 8

Mehr

Subtraktion in Addition überführen

Subtraktion in Addition überführen Fkultät Elektrotechnik/ Wirtschftsingenieurwesen Sutrktion in Addition üerführen Beispiel: 267 9-87 9 Methode: (B-) und B-Komplement Erster Schritt: Stellenzhl festlegen => hier 5 relevnte Stellen (dvor

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Automation-Letter Nr Prof. Dr. S. Zacher. Formelsammlung

Automation-Letter Nr Prof. Dr. S. Zacher. Formelsammlung Automtion-Letter Nr. 5..5 Prof. Dr. S. Zcher Formelmmlung Eine weitere wichtige Größe de Regelkreie it Dämfung S. Zcher, M. Reuter: Regelungtechnik für Ingenieure, Seite 65, Sringer Vieweg Verlg, 4. Auflge,

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

3. Seminar Statistik

3. Seminar Statistik Sndr Schlick Seite.Seminr05.doc. Seminr Sttistik 0 Kurztest 5 Präsenttion diskrete Verteilungen Puse 0 Üungen diskrete Verteilungen 5 Präsenttion stetige Verteilungen 0 Üungen stetige Verteilungen Husufgen:

Mehr

F R =μ F G =m g. F R =μ 0.5 F G

F R =μ F G =m g. F R =μ 0.5 F G Kpit 6 Ü 6. Bechleunigung eine Fhrzeug Ein Fhrzeug it einer Me 750 wird t 6.9 lng it 0.8 g echleunigt. Der Rollwidertnd wird it μ 0.04 gechätzt, der erodyniche idertnd wird vernchläigt. che Areit wird

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

6. Spezielle Wahrscheinlichkeitsverteilungen

6. Spezielle Wahrscheinlichkeitsverteilungen 6. Sezielle Whrscheinlichkeitsverteilungen Bisher wurden Whrscheinlichkeitsverteilungen in einer llgemeinen Form drgestellt. In der Pris treten häufig gnz estimmte Whrscheinlichkeitsverteilungen uf, die

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Vorbereitung auf die 4. Schularbeit aus MATHEMATIK KL.: M2/I. - S

Vorbereitung auf die 4. Schularbeit aus MATHEMATIK KL.: M2/I. - S Vorereitun uf die. Sulreit u MTHEMTIK KL.: M/I. - S..0.0 In einem Dreiek mit dem Geodreiek Höen einzeinen. Merktz: Die drei Höenlinien eine Dreiek neiden einnder in einem Punkt, dem Höennittpunkt H. )

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Krlsruher Institut für Technologie Institut für Alger und Geometrie PD Dr. Stefn Kühnlein Dipl.-Mth. Jochen Schröder Einführung in Alger und Zhlentheorie Üungsltt 7 Aufge 1 (4 Punkte) Sei R ein kommuttiver

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Eine weitere wichtige Größe ist Dämpfung

Eine weitere wichtige Größe ist Dämpfung Automtion-Letter Nr. Prof. Dr. S. Zcher Eine weitere wichtige Größe it Dämfung S. Zcher, M. Reuter: Regelungtechnik für Ingenieure, Seite 65, Sringer Vieweg Verlg, 4. Auflge, 4 www.zcher-utomtion.de -5

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Analysis I. Vorlesung 3

Analysis I. Vorlesung 3 Prof. Dr. H. Brenner Osnrüc WS 2013/2014 Anlysis I Vorlesung 3 Körper Wir werden nun die Eigenschften der reellen Zhlen esprechen. Grundlegende Eigenschften von mthemtischen Struuren werden ls Axiome ezeichnet.

Mehr

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2.

Durch die Umformung ergibt sich eine Schaltfunktion mit einer minimalen Anzahl von Verknüpfungsoperationen, nämlich 2. 2 Die shltlgerishe Umformung von Shltfunktionen in Normlform soll m Beispiel er Umformung einer Mxterm-Normlform in eine Minterm-Normlform gezeigt weren. Beispiel: y = ) ( ) ( ) ( Es ietet sih ie Anwenung

Mehr

1 Zeiger als Funktionsargumente. U3-1 einfache swap_double Funktion. 1 Zeiger als Funktionsargumente. 1 Zeiger als Funktionsargumente.

1 Zeiger als Funktionsargumente. U3-1 einfache swap_double Funktion. 1 Zeiger als Funktionsargumente. 1 Zeiger als Funktionsargumente. U3 3. Üung U3 3. Üung 1 Zeiger l Funktionrgumente U3-1 einfche wp_doule Funktion Aufge 2 U3-1 einfche wp_doule Funktion Prmeter werden in C y-vlue üergeen die ufgerufene Funktion knn den ktuellen Prmeter

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr