BAYES SCHE STATISTIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "BAYES SCHE STATISTIK"

Transkript

1 BAES SCHE STATISTIK FELIX RUBIN EINFÜHRUNG IN DIE STATISTIK, A.D. BARBOUR, HS Einführung Die Bayes sche Statistik gibt eine weitere Methode, um einen unbekannten Parameter θ zu schätzen. Bisher sind wir davon ausgegangen, dass der wahre Wert θ der zu schätzenden Grösse fix ist. Nun ist es aber möglich, dass θ eine Zufallsgrösse ist, deren Verteilung zum Beispiel unsere Unsicherheit über den wahren Wert θ des Parameters ausdrückt. Es ist auch denkbar, dass wir uns in einer Situation befinden, in der wir ein Experiment nicht unter denselben Umständen wiederholen können. In einem solchen Falle verlieren Charakterisierungen des Parameters wie Erwartungstreue oder Mean Square Error ihren Sinn. Hier ist die Bayes sche Statistik ebenfalls hilfreich. Das folgende Beispiel zeigt eine solche Situation. Beispiel 1.1. Man hat eine Münze und ist sich nicht sicher, ob die Münze fair ist, also auf der einen Seite Kopf und auf der anderen Zahl hat, oder ob sie auf beiden Seiten Zahl hat. Wir können jetzt aufgrund gewisser Einschätzungen a priori annehmen, dass π fair π unfair 1/2 gilt. Nun wird die Münze einmal geworfen, und man fragt sich, a posteriori, wie dieser Wurf die Wahrscheinlichkeit beeinflusst, dass die Münze gefälscht ist. Nun gilt: P [unfair Zahl] P [Zahl unfair]π unfair 0.5 P [Zahl unfair]π unfair + P [Zahl fair]π fair Wir ändern also unsere Einschätung aufgrund der Realisierung des Münzenwurfes. 2. A priori und a posteriori Verteilungen Wie schon einführend erwähnt, wollen wir einen Parameter θ schätzen mit Hilfe von y 1,..., y n unabhängig beobachteten Realisationen einer Zufallsvariable : Ω, F, P, E. Nun ist aber der Parameter θ nicht mehr fix, sondern besitzt eine Verteilung mit der Dichte πθ. Da dies bestimmt wird, bevor die Beobachtungen y i gemacht werden, nennt man diese a priori Verteilung. Die Zufallsvariable folgt wie schon früher für gegebenes θ der Modellverteilung F θ y auf, E. Diese Verteilung kann jetzt als eine bedingte Verteilung gegeben die Variable θ aufgefasst werden. Aus der a priori Verteilung und der Information aus den Realisationen y i, i 1,..., n, kann nun eine a posteriori Verteilung π θ für den Parameter konstruiert werden: π θ πθ p θ y, wobei f θ die Dichte von F θ ist und p θ y n i1 f θy i die Likelihood von θ ist. Dieser Ausdruck wird noch normalisiert und wir erhalten: 2.1 π θ πθp θ y πθ p θ ydθ. Date: December 17,

2 2 FELIX RUBIN EINFÜHRUNG IN DIE STATISTIK, A.D. BARBOUR, HS 2007 Bemerkung 2.1. π θ ist eine Funktion des Likelihoodquotienten p θy p θ y. Beispiel 2.2. folge einer N µ, 1-Verteilung, wobei der Parameter µ einer Normalverteilung N ν, τ 2 folgt. Dies entspricht einem Modell, in dem µ + ɛ ist, wobei hier sowohl der Fehler ɛ unbekannt normalverteilt ist, wie auch der Parameter µ, von dem wir nur die a priori Verteilung kennen. Je grösser τ ist, desto unsicherer sind wir uns, was der wahre Wert von µ ist. Die Likelihood für die Beobachtungen y 1,..., y n ist hier gegeben durch: n p µ y const exp y i µ 2 /2 const exp i1 nµ 2 2 n y i µ/2 i1 const exp n 2 µ2 + nyµ. Bemerke, dass die Konstante nicht in jeder Zeile gleich sein muss und auch zum Beispiel die y i s oder in der nächste Rechnung τ und ν enthalten kann. Nach der Formel 2.1 gilt nun: π µ const exp n 2 µ2 + nyµ const exp exp µ ν2 2τ µ2 n + 1/τ 2 + µny + ν/τ 2 const exp 12 n + 1/τ 2 µ 2 2 ny + ν/τ 2µ n + 1/τ 2. Die a posteriori Verteilung von µ ist also eine Normalverteilung mit Erwartungswert ny+ν/τ 2 1 n+1/τ und Varianz 2 n+1/τ. Man sieht hier sofort, dass falls τ klein ist, die Masse 2 der a posteriori Verteilung um ν konzentriert ist und die y i s fast keine Rolle spielen, während für grosse τ die a priori Verteilung fast keine Rolle mehr spielt und die a posteriori Verteilung ungefähr einer N y, 1/n-Verteilung entspricht. 3. Die Bayes sche Methode für die Punktschätzung Um den wahren Wert des Parameters θ zu schätzen, müssen wir aus der a posteriori Verteilung einen einzigen Wert ˆθ wählen. Dies geschieht wie üblich mit einer messbaren Entscheidungsfunktion d :, d D, welche wir in diesem Falle so wählen, dass das a priori Risiko minimiert wird: Definition 3.1. Die Verlustfunktion ist eine Funktion L : A R +, wobei in unserem Falle der Aktionsraum A ist. Typischerweise ist Lθ, ˆθ Lθ ˆθ. Die Risikofunktion is eine Funktion R : D R + definiert durch Rθ, d E θ [Lθ, d ] Lθ, dy 1,..., y n f θ y 1,..., y n dy 1...dy n, wobei f θ y 1,..., y n die gemeinsame bedingte Dichte der Beobachtungen ist. Für eine gegebene Verlustfunktion definieren wir also: Definition 3.2. Das Bayes sche Risiko einer Entscheidungsfunktion d D ist definiert als: r π d E π [Rθ, d] Rθ, dπθdθ. Der Bayes sche Schätzer ist diejenige Entscheidungsfunktion d, welche das Risiko r minimiert. Ω

3 BAES SCHE STATISTIK 3 Bemerkung 3.3. Wegen Bemerkung 2.1 respektiert dieser Schätzer das Likelihoodprinzip. Wir können diese Definition auch folgendermassen umschreiben: Nehmen wir an, ein Statistiker möchte die Güte eines Schätzers Entscheidungsfunktion bestimmen, bevor er die Daten y 1,..., y n seines Experimentes kennt. Er kann sein mittleres a priori Risiko wie folgt ausrechnen: Rθ, dπθdθ n Lθ, dy 1,..., y n f θ y i dy 1...dy n πθdθ i1 Lθ, dy 1,..., y n πθ m f θ y i dθ dy 1...dy n. Die letzte Gleichung zeigt, dass der Bayes sche Schätzer, der das a priori Risiko minimiert genau derselbe ist, wie der Schätzer, welcher den a posteriori Verlust minimiert. Wir können also die folgende Proposition schreiben: Proposition 3.4. Der Bayes sche Schätzer ist diejenige Entscheidungsfunktion d, welche den erwarteten a posteriori Verlust Lθ, dπ θdθ minimiert. Theorem 3.5. Im Falle, dass Lθ, ˆθ θ ˆθ 2, ist der Bayes sche Schätzer der Erwartungswert der a posteriori Verteilung. Im Falle, dass Lθ, ˆθ θ ˆθ, ist der Bayes sche Schätzer der Median der a posteriori Verteilung. Beweis: Uebung Beispiel 3.6. Unter den Voraussetzungen von Beispiel 2.2 folgen y 1,..., y n einer Normalverteilung N µ, 1 und µ N ν, τ 2. Die a posteriori Verteilung von µ ist ebenfalls eine Normalverteilung N i1 ny + ν/τ 2 n + 1/τ 2, 1 n + 1/τ 2. Der Bayes sche Schätzer ist in diesem Falle dy 1,..., y n ny + ν/τ 2 /n + 1/τ 2 für die beiden Verlustfunktionen θ ˆθ 2 und θ ˆθ, wobei ˆθ dy 1,..., y n ist. Beispiel 3.7. Seien y 1,..., y n unabhängige Beobachtungen einer Bernoulliθ verteilten Zufallsvariablen. Wir möchten den Parameter θ schätzen. Sei y n i1 y i. Die bedingte Verteilung von y 1,..., y n ist dann f θ y 1,..., y n θ y 1 θ n y. Die a priori Verteilung von θ sei gegeben als πθ Γα+β ΓαΓβ θα 1 1 θ β 1, für 0 < θ < 1 und 0 sonst Betaα, β-verteilung. Die Randverteilung von y 1,..., y n ist dann: my 1,..., y n 1 0 πθf θ y 1,..., y n dθ 1 Γα + β θ y+α 1 1 θ n y+β 1 dθ ΓαΓβ 0 Γα + βγα + yγn + β y. ΓαΓβΓn + α + β

4 4 FELIX RUBIN EINFÜHRUNG IN DIE STATISTIK, A.D. BARBOUR, HS 2007 Schlussendlich gilt für die a posteriori Verteilung von θ auf den Punkten y 0, 1, 2,..., n mit positiven Gewichten: π θ πθf θy 1,..., y n my 1,..., y n Γn + α + β Γα + yγn + β y θα+y 1 1 θ β+n y 1, 0 < θ < 1. Wir wählen nun die Verlustfunktion Lθ, ˆθ θ ˆθ 2. Der Bayes sche Schätzer dy 1,..., y n ist dann die Erwartung der a posteriori Verteilung: dy 1,..., y n 1 0 θπ θdθ 1 Γn + α + β θ α+y 1 θ β+n y 1 dθ Γα + yγn + β y 0 α + y, y 0, 1,..., n. α + β + n 4. Intervallschätzung Sei wie üblich : Ω, F, P, E eine Zufallsvariable, deren Verteilung auf von einem zufälligen Parameter θ abhängt. Wir betrachten wieder y 1,..., y n n unabhängige Realisationen der Zuvallsvariable und möchten anhand der a priori Verteilung πθ, der bedingten Verteilung f θ y 1,..., y n von y 1,..., y n und den beobachteten Realisationen ein Intervall in abschätzen, in dem sich der Parameter θ mit Wahrscheinlichkeit 1 α typischerweise ist α 0.05 oder 0.01 befindet. Die a posteriori Verteilung von θ ist gegeben durch: πθ n i1 π θ f θy i πθ n i1 f θy i dθ. Damit lassen sich zwei Funktionen uy 1,..., y n sowie vy 1,..., y n finden, so dass P [uy 1,..., y n < θ < vy 1,..., y n y 1,..., y n ] vy1,...,y n uy 1,...,y n ist. Bemerke, dass die Funktionen u und v nicht eindeutig sind. 5. Bayes sche Tests π θdθ 1 α Im Falle eines Tests möchten wir zwei Hypothesen bezüglich des uns unbekannten Parameters θ gegeneinander testen. Wir nehmen an, dass θ nur die zwei Werte θ 0 oder θ 1 annehmen kann, also {θ 0, θ 1 }. Die sogenannte 0-Hypothese H 0 ist dann: θ θ 0 und die Alternative dazu ist H 1 : θ θ 1. Wir brauchen eine Entscheidungsfunktion d D der beobachteten Werte y 1,..., y n, welche uns angibt, welche der zwei Hypothesen anzunehmen ist. Wir bezeichnen mit a 0 die Aktion H 0 ist anzunehmen und mit a 1 die Aktion H 1 ist anzunehmen, so dass A {a 0, a 1 } ist. Dann schreiben wir d a 0 falls H 0 anzunehmen ist und d a 1 sonst. Die Verlustfunktion sei definiert durch Lθ 0, a 0 0, Lθ 1, a 1 0 und Lθ 0, a 1 c 0, Lθ 1, a 0 c 1, wobei c 0, c 1 zwei positive Konstanten sind. Wir schreiben p θ y für die Likelihood der Daten y 1,..., y n. Die gemeinsame Verteilung der Daten y 1,..., y n und θ ist dann gebeben durch πθp θ y, wobei θ eine diskrete Zufallsvariable ist und deshalb πθ 0 + πθ 1 1. Die Randverteilung von y 1,..., y n ist πθ 0 p θ0 y + πθ 1 p θ1 y und damit gilt für die a posteriori Verteilung von θ: π θ πθp θ y πθ 0 p θ0 y + πθ 1 p θ1 y.

5 BAES SCHE STATISTIK 5 Die Bayes sche Lösung für die Entscheidungsfunktion dy 1,..., y n war gegeben als diejenige Funktion, die den erwarteten a posteriori Verlust minimiert siehe Proposition 3.4. Hier ist der erwartete a posteriori Verlust im Falle von d a 0 gegeben durch: 1 Lθ 1, a 0 πθ 1 p θ1 y Lθ i, a 0 π θ i πθ 0 p θ0 y + πθ 1 p θ1 y, i0 da Lθ 0, a 0 0 ist und entsprechend im Falle von d a 1, da dann Lθ 1, a 1 0 ist, 1 Lθ 0, a 1 πθ 0 p θ0 y Lθ i, a 1 π θ i πθ 0 p θ0 y + πθ 1 p θ1 y. i0 Daraus folgt, dass wir die Entscheidung d a 1 also die H 1 -Hypothese annehmen wählen, falls Lθ 0, a 1 πθ 0 p θ0 y πθ 0 p θ0 y + πθ 1 p θ1 y < Lθ 1, a 0 πθ 1 p θ1 y πθ 0 p θ0 y + πθ 1 p θ1 y, oder äquivalent dazu, falls für den Likelihoodquotienten gilt: p θ1 y p θ0 y > Lθ 0, a 1 πθ 0 Lθ 1, a 0 πθ 1. Falls die Ungleichung in die andere Richtung geht, wird die Entscheidung d a 0 gewählt. Bei Gleichheit kann eine zufällige Wahl getroffen werden. References [1] A. Craig, R. Hogg. Introduction to mathematical statistics. Collier Macmillan International Editions. Macmillan Publishing Co., New ork and Collier Macmillan Publishers, London, third edition, [2] A. Bérod, St. Morgenthaler. Introduction à la statistique mathématique. Polycopié. Ecole Polytechnique Fédérale de Lausanne, Chaire de statistique appliquée, 2004.

Das Bayes'sche Prinzip

Das Bayes'sche Prinzip Das Bayes'sche Prinzip Olivia Gradenwitz Patrik Kneubühler Seminar über Bayes Statistik FS8 26. Februar 28 1 Bayes'sches statistisches Modell 1.1 Statistische Probleme und statistische Modelle In diesem

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren

Kapitel 9. Schätzverfahren und Konfidenzintervalle. 9.1 Grundlagen zu Schätzverfahren Kapitel 9 Schätzverfahren und Konfidenzintervalle 9.1 Grundlagen zu Schätzverfahren Für eine Messreihe x 1,...,x n wird im Folgenden angenommen, dass sie durch n gleiche Zufallsexperimente unabhängig voneinander

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Einführung in die statistische Testtheorie II

Einführung in die statistische Testtheorie II 1 Seminar: Simulation und Bildanalyse mit Java Einführung in die statistische Testtheorie II Guntram Seitz Sommersemester 2004 1 WIEDERHOLUNG 2 1 Wiederholung Grundprinzip: Annahme: Beobachtungen bzw.

Mehr

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie

Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Einführung in die Statistik Kapitel 6: Crash-Course in Statistik: Testtheorie Jung Kyu Canci Universität Basel HS2015 1 / 15 Literatur Kapitel 6 Statistik in Cartoons : Kapitel 8 Krengel : 6 und 14 Storrer

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Suffizienz und Vollständigkeit

Suffizienz und Vollständigkeit KAPITEL 7 Suffizienz und Vollständigkeit 7.1. Definition der Suffizienz im diskreten Fall Beispiel 7.1.1. Betrachten wir eine unfaire Münze, wobei die Wahrscheinlichkeit θ, dass die Münze Kopf zeigt, geschätzt

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Bayes Inferenz Schätzen und Testen von Hypothesen. Helga Wagner Bayes Statistik WS 2010/11 301

Bayes Inferenz Schätzen und Testen von Hypothesen. Helga Wagner Bayes Statistik WS 2010/11 301 Bayes Inferenz Schätzen und Testen von Hypothesen Helga Wagner Bayes Statistik WS 2010/11 301 Bayes Punktschätzung Entscheidungstheoretischer Ansatz: Wahl des Punktschätzers ist eine Aktion, die möglicherweise

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

68 Abschätzungen für Abweichungen vom Erwartungswert

68 Abschätzungen für Abweichungen vom Erwartungswert 68 Abschätzungen für Abweichungen vom Erwartungswert 68.1 Motivation Mit der Varianz bzw. Standardabweichungen kennen wir bereits ein Maß für die Fluktuation einer Zufallsvariablen um ihren Erwartungswert.

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) n heisst für uns n gross Literatur Kapitel 7 * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Die partielle Likelihood-Funktion

Die partielle Likelihood-Funktion Die partielle Likelihood-Funktion Roger Züst 12. Juni 26 1 Repetition: Maximum-Likelihood-Methode Hat man n unabhängige Beobachtungen x 1, x 2,..., x n einer Zufallsvariablen X und eine Familie von möglichen

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen

Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen Einführung in die Induktive Statistik: Schätzen von Parametern und Verteilungen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Inhalt Stichproben

Mehr

4.2 Methoden um Tests zu finden: Likelihood Quotienten Tests (LRT) Falls X 1,..., X n iid aus f(x θ), so gilt für die Likelihood Funktion

4.2 Methoden um Tests zu finden: Likelihood Quotienten Tests (LRT) Falls X 1,..., X n iid aus f(x θ), so gilt für die Likelihood Funktion 4.2 Methoden um Tests zu finden: Likelihood Quotienten Tests (LRT) Falls X 1,..., X n iid aus f(x θ), so gilt für die Likelihood Funktion L(θ x) = f(x θ) = n f(x i θ). Falls L(θ x) > L(θ x), für θ, θ Θ,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen

Kapitel 6. Suffiziente Statistiken. 6.1 Vorbetrachtungen Kapitel 6 Suffiziente Statistiken In diesem Kapitel untersuchen wir einen weiteren statistischen Begriff, der eng mit Likelihoodfunktionen zusammenhängt und mit der Frage nach eventuell möglicher Datenreduktion

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11

D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin. Serie 11 D-ITET Wahrscheinlichkeitstheorie und Statistik FS 2017 Prof. P. Nolin Serie 11 1. Frau A und Herr B wollen sich treffen und verabreden sich für 16 Uhr in einem Café. Mit T A bzw. T B bezeichnen wir die

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

3 Statistische Schätzungen

3 Statistische Schätzungen 3 Statistische Schätzungen In der Wahrscheinlichkeitstheorie geht es darum, über Modelle Ereignisse zu bewerten bzw. Voraussagen über ihr Eintreten zu treffen. Sind nun umgekehrt Daten bekannt, und wollen

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare

Die Momentenmethode. Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare 17.1.3 Die Momentenmethode Vorteil: Oft einfach anwendbar. Nachteil: Güte kann nur schwer allgemein beurteilt werden; liefert zum Teil unbrauchbare Lösungen. Sei ϑ = (ϑ 1,...,ϑ s ) der unbekannte, s-dimensionale

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

Einführung in die statistische Testtheorie

Einführung in die statistische Testtheorie 1 Seminar Simulation und Bildanalyse mit Java von Benjamin Burr und Philipp Orth 2 Inhalt 1. Ein erstes Beispiel 2. 3. Die Gütefunktion 4. Gleichmäßig beste Tests (UMP-Tests) 1 Einführendes Beispiel 3

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie

Nachklausur zur Vorlesung. Statistik für Studierende der Biologie Institut für Mathematische Stochastik WS 1999/2000 Universität Karlsruhe 11. Mai 2000 Dr. Bernhard Klar Nachklausur zur Vorlesung Statistik für Studierende der Biologie Bearbeitungszeit: 90 Minuten Name:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Statistik. Andrej Depperschmidt. Sommersemester 2016

Statistik. Andrej Depperschmidt. Sommersemester 2016 Statistik Andrej Depperschmidt Sommersemester 2016 Schätzen der Varianz mit Stichprobenmittel Sei X = (X 1,..., X n ) eine Stichprobe u.i.v. ZV mit E[X i ] = µ R, Var[X i ] = σ 2 (0, ) und µ 4 = E[(X i

Mehr

Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1

Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1 Einführung in die Bayes-Statistik Helga Wagner Ludwig-Maximilians-Universität München WS 2010/11 Helga Wagner Bayes Statistik WS 2010/11 1 Organisatorisches Termine: Montag: 16.00-18.00 AU115 Dienstag:

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Bayes Prognose. Helga Wagner Bayes Statistik WS 2010/11 194

Bayes Prognose. Helga Wagner Bayes Statistik WS 2010/11 194 Bayes Prognose Helga Wagner Bayes Statistik WS 2010/11 194 Prognose einer weiteren Beobachtung Verkehrssicherheitsdaten Senioren: Wieviele Senioren werden in Linz im kommenden Monat getötet oder schwerverletzt?

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Dr. L. Meier Statistik und Wahrscheinlichkeitsrechnung Sommer 2015 Schriftliche Prüfung (2 Stunden) Bemerkungen: Erlaubte Hilfsmittel: 10 hand- oder maschinengeschriebene A4 Seiten (=5 Blätter). Taschenrechner

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr