Stationenlernen Raumgeometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Stationenlernen Raumgeometrie"

Transkript

1 Station 1 Ecken und Kanten Materialien ein Umschlag mit Antworten a) Beantwortet die folgenden Fragen. Begründet jeweils eure Antwort. Frage 1: Hat jede Pyramide ebenso viele Ecken wie Flächen? Frage 2: Gibt es ein Prisma mit 28 Kanten? Frage 3: Wie verändert sich das Volumen einer Pyramide mit quadratischer Grundfläche, wenn man die Länge jeder ihrer Grundkanten halbiert und ihre Höhe verdoppelt? b) Im Umschlag zu dieser Station findet ihr zu jeder Frage aus Aufgabe a vier verschiedene Antworten von Schülerinnen und Schülern. Lest diese Antworten gemeinsam durch und vergleicht sie mit euren Antworten. Entscheidet dabei, welche der vorgegebenen Antworten ihr für gut haltet und welche für eher schlecht. Wählt zu jeder Frage zwei vorgegebene Antworten aus, in denen ihr Ungenauigkeiten oder Fehler entdeckt habt. Klebt die erste der sechs ausgewählten Antworten in eines eurer Hefte und verseht sie mit einem Kommentar, in dem ihr aufzeigt, was euch an der Antwort nicht gefällt oder wo Fehler gemacht wurden; dabei dürft ihr auch direkt in die Antwort hineinschreiben. Anschließend geht ihr mit den weiteren fünf ausgewählten Antworten ebenso vor. Den Umschlag mit den nicht ausgewählten Antworten gebt ihr bei eurer Lehrkraft ab.

2 Station 2 Prisma und Term Die Abbildungen zeigen jeweils ein gerades Prisma. 1 4 x 1 2 x a) Stellt Terme V1 x und V2 Prisma 1 Prisma 2 x auf, mit denen sich das Volumen des Prismas 1 bzw. das Volumen des Prismas 2 in Abhängigkeit von x beschreiben lässt. b) Zeichnet für 0 x V 2: x V2 x in ein gemeinsames Koordinatensystem ein. Erstellt dazu jeweils eine geeignete Wertetabelle. die Graphen der Funktionen V : x V x und c) Ermittelt mithilfe der Funktionsgraphen denjenigen Wert von x auf eine Dezimale genau, für den beide Prismen das gleiche Volumen haben. d) Bestimmt mithilfe des Taschenrechners denjenigen Wert von x auf drei Dezimalen genau, für den beide Prismen das gleiche Volumen besitzen.

3 Station 3 Kinder-Pool Materialien ein leeres - und Lösungsblatt ein Umschlag Schere Abbildung 1 zeigt ein Angebot aus einem Werbeprospekt, Abbildung 2 den Grundriss des angebotenen Kinderpools. Abbildung 1 Abbildung 2 Öffnet den zu dieser Station gehörenden Umschlag. Befindet sich darin eine Aufgabe zum Kinder-Pool, so beginnt mit Aufgabe a, ansonsten mit Aufgabe b. a) Klebt die im Umschlag enthaltene Aufgabe in eines eurer Hefte und bearbeitet diese. Vergleicht anschließend eure Ergebnisse mit der zugehörigen Lösung, die diejenige Gruppe für euch bereithält, die die Aufgabe erstellt hat. b) Erstellt selbst eine geometriebezogene Aufgabe zum Kinder-Pool. Verwendet dazu eines der noch leeren Blätter, die für die und Lösungen vorgesehen sind. Fertigt auf demselben Blatt eine Lösung zu eurer Aufgabe an. c) Trennt die Lösung sorgfältig von der stellung ab; legt die stellung in den Umschlag und diesen zu den Materialien zu Station 3 zurück. Die Lösung bewahrt ihr so lange auf, bis sie von derjenigen Gruppe, die eure Aufgabe bearbeitet, benötigt wird. (nach Bildungsstandards Mathematik: konkret, S. 224)

4 Station 4 Messbecher für Reis Materialien 500 g Reis zylinderförmiger Kaffeebecher Meterstab oder 30 cm-lineal dickes Papier im Format DIN A4 Klebstoff und Schere Zirkel und Geodreieck Im Klassenzimmer hängen Hinweise aus, die euch bei der Bearbeitung der folgenden unterstützen können. Diese Hinweise sollen jedoch nur dann genutzt werden, wenn ihr tatsächlich Unterstützung benötigt. Nutzt dann zunächst nur den zu Station 4 gehörenden ersten Hinweis auf dem Hinweisblatt 1; sollte euch dieser nicht ausreichend unterstützen, so nutzt den ersten Hinweis auf dem Hinweisblatt 2 und schließlich den ersten Hinweis auf dem Hinweisblatt 3. Benötigt ihr anschließend weitere Unterstützung, so verfahrt ebenso mit dem jeweils zweiten, dritten und vierten Hinweis. a) Stellt aus dem bereitliegenden festen Papier einen kegelförmigen Messbecher mit einer Höhe von 15 cm her, der genau 500 g Reis fasst (vgl. Abbildung). Beschreibt euer Vorgehen. b) Zeichnet im Inneren des Kegels Linien so ein, dass mit dem Messbecher auch 100 g, 200 g, 300 g und 400 g Gramm Reis abgemessen werden können. Geht dazu experimentell vor.

5 Station 5 Wasserturm Mithilfe des abgebildeten Wasserturms wird eine Klinik mit Wasser versorgt. In dem Turm 3 können 250m Wasser gespeichert werden. a) Schätzt das Volumen des gesamten Turms ab. b) Habt ihr das Volumen des Turms sinnvoll abgeschätzt, so weicht euer Ergebnis deutlich vom angegeben Volumen des gespeicherten Wassers ab. Stellt eine Vermutung dafür an, wie sich diese Abweichung erklären lässt; führt dazu auch eine weitere Abschätzung durch. (nach Fokus 9, S. 158, Aufgabe 18)

6 Station 6 Walmdach Materialien dickes Papier im Format DIN A4 Klebstoff und Schere Im Klassenzimmer hängen Hinweise aus, die euch bei der Bearbeitung der folgenden unterstützen können. Diese Hinweise sollen jedoch nur dann genutzt werden, wenn ihr tatsächlich Unterstützung benötigt. Nutzt dann zunächst nur den zu Station 6 gehörenden ersten Hinweis auf dem Hinweisblatt 1; sollte euch dieser nicht ausreichend unterstützen, so nutzt den ersten Hinweis auf dem Hinweisblatt 2 und schließlich den ersten Hinweis auf dem Hinweisblatt 3. Benötigt ihr anschließend weitere Unterstützung, so verfahrt ebenso mit dem jeweils zweiten, dritten und vierten Hinweis. Die Abbildung zeigt ein Walmdach. Für die trapezförmigen Dachflächen beträgt die Größe des Neigungswinkels gegen die rechteckige Bodenfläche des Dachraums 36, für die dreieckigen Dachflächen 50. Die Maße der Bodenfläche sind in der Abbildung angegeben. a) Stellt aus dem bereitliegenden festen Papier ein möglichst exaktes Modell des Dachs im Maßstab 1:100 her. b) Bestimmt für das Modell das Volumen, das von der rechteckigen Bodenfläche und den Dachflächen eingeschlossen wird. Wie oft passt dieses Volumen in das Volumen des realen Dachs? Begründet eure Antwort. (nach Lambacher Schweizer 9, S. 170, Aufgabe 25)

7 Station 7 Schiffstau Das abgebildete spiralförmig gewickelte Schiffstau hat einen Durchmesser von 4 cm, 3 1cm des Taus eine Masse von etwa 2 g. Schätzt die Masse des Schiffstaus ab. Beschreibt euer Vorgehen. (nach Bildungsstandards Mathematik: konkret, S. 225)

8 Station 8 Prismen, Pyramiden und ihre Netze a) Entscheidet für jede der folgenden Aussagen, ob sie wahr oder falsch ist. Notiert bei jeder falschen Aussage im Heft eine Begründung eurer Entscheidung. Hat ein Prisma zwölf Ecken, so besteht seine Oberfläche aus acht Vielecken. Hat ein Prisma 2n Ecken (n IN \ {1;2} ), so besteht seine Oberfläche aus genau n Rechtecken. Verdoppelt man die Höhe eines Prismas und behält die Grundfläche (und die Deckfläche) bei, so verdoppelt sich das Volumen des Prismas. wahr Es gibt Prismen mit 20 Flächen und 36 Kanten. b) Kreuzt diejenigen Netze an, die zu geraden Prismen gehören. falsch (nach delta 9, S. 168, Aufgabe 6) c) Kreuzt diejenigen Netze an, die zu Pyramiden gehören. (nach delta 9, S. 170, Aufgabe 15) (nach Freies Arbeiten am Gymnasium, Band 2, S. 141 ff.)

9 Station 9 Grab-Pyramide Aufgabe Die abgebildete Pyramide über dem Grab des Gründers der Stadt Karlsruhe, Markgraf Karl Wilhelm von Baden-Durlach, besteht aus Sandstein. Schätzt ab, welche Masse die Pyramide hat. Geht dabei davon aus, dass eine Masse von 2,4 kg hat. 3 1dm Sandstein (nach Lambacher Schweizer 9, S. 170, Aufgabe 29)

Stationenlernen Raumgeometrie

Stationenlernen Raumgeometrie Lösung zu Station 1 a) Beantwortet die folgenden Fragen. Begründet jeweils eure Antwort. Frage 1: Hat jede Pyramide ebenso viele Ecken wie Flächen? Antwort: Ja Begründung: Eine Pyramide mit einer n-eckigen

Mehr

Körper. Körper. Kompetenztest. Name: Klasse: Datum:

Körper. Körper. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges

Mehr

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges sechsseitiges Prisma regelmäßige vierseitige

Mehr

Gruppenarbeit Satzgruppe des Pythagoras

Gruppenarbeit Satzgruppe des Pythagoras Arbeitsauftrag 1 Glaspyramide des Louvre Lest zunächst die folgenden Ausführungen eines Touristenführers aufmerksam durch. Auch Freunde der Moderne kommen in Paris auf ihre Kosten. Es gibt hier viele moderne

Mehr

Mein Tipp: Das stimmt.

Mein Tipp: Das stimmt. Station P: Prismen aus Netzen bauen 1 a) Gib einen Tipp ab. Ergeben die folgenden Netze ein Prisma? Trage deine Meinung in die folgende Liste ein. Stelle dir gedanklich vor, wie die Netze geklappt werden

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie

Mehr

Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche.

Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche. 1 Das Prisma Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche. Grund- und Deckfläche sind deckungsgleich und zueinander parallele Vielecke. Die Höhe des Prismas ist der

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Oberflächenberechnung bei Prisma und Pyramide

Oberflächenberechnung bei Prisma und Pyramide Lösungscoach Oberflächenberechnung bei Prisma und Pyramide Aufgabe Ein Schokoladenhersteller bekommt zwei Vorschläge für eine neue Verpackung: 5,9 cm 3 cm 2 cm 3 cm 3 cm Das linke Modell ist ein gerades

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

2.10. Aufgaben zu Körperberechnungen

2.10. Aufgaben zu Körperberechnungen Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Oberflächen- und Volumenformeln

Oberflächen- und Volumenformeln 3.4 Körperberechnungen Körper unterteilt man in zwei Gruppen, zum einen in die der Prismen und zum anderen in die der Spitzkörper. Prismen sind Körper mit zwei identischen Grundflächen (Boden und Deckel),

Mehr

1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k.

1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k. Zweijährige zur Prüfung der Fachschulreife führende Berufsfachschule (BFS) Mathematik (9) Hauptprüfung 007 Aufgaben Aufgabe A. Die Geraden g, h und k schneiden sich im Punkt P(,). Der Punkt Q(,) liegt

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Übungsserie 1: Würfel und Quader

Übungsserie 1: Würfel und Quader Kantonsschule Solothurn Stereometrie RYS Übungsserie 1: Würfel und Quader 1. Berechne die fehlenden Quadergrössen: a b c V O a) 7 cm 11 cm 3 cm b) 8 mm 12.5 cm 45 cm 3 c) 3 cm 4 cm 108 cm 2 d) 54 cm 16.4

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe I) So berechnet man das Volumen einer Säule. Körper Strukturbild geometrische Bedeutung Formel Säule Volumen Volumen einer Schicht mal h s Anzahl der Schichten V s A h s Volumen Säule Grundfläche Höhe

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten S 1 Ein Quiz zur Wiederholung geometrischer Grundbegriffe Ilse Gretenkord, Ahaus M 1 So geht s Körper und ihre Eigenschaften Quizkarten Bildet Gruppen zu vier bis fünf Schülerinnen bzw. Schülern. Eine

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:

Mehr

Aufgaben aus den zugelassenen Lehrbüchern

Aufgaben aus den zugelassenen Lehrbüchern Ausgewählte Aufgaben zur Aufgaben aus den zugelassenen Lehrbüchern Lehrplanabschnitt M 9.2.1 Graphen quadratischer Funktionen und deren Nullstellen Für jede Aufgabe werden diejenige Kompetenz, die bei

Mehr

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse 9 Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse 9 Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Schule. Station Baustelle Schule Teil 1. Klasse. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Station Baustelle Schule Teil 1. Klasse. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Baustelle Schule Teil 1 Klasse Arbeitsheft Tischnummer Teilnehmercode Mathematik-Labor Station Baustelle Schule Liebe Schülerinnen und Schüler! Ihr könnt sicher leicht den Umfang des folgenden

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Mathematik II Prüfung für den Übertritt aus der 8. Klasse Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:

Mehr

Station 1: Mein Weltbild

Station 1: Mein Weltbild Station 1: Mein Weltbild Wie stellst du dir unser Universum vor? Stell dir vor, du fliegst mit einem Raumschiff weit von der Erde weg. Zeichne auf, was du alles siehst, wenn du von dort Richtung Erde zurückschaust!

Mehr

UE Extremwertaufgaben 01

UE Extremwertaufgaben 01 1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst

Mehr

Station 1. In mir werden oft Eiskugeln versteckt. Eine Tischplatte hat meine Form. In Ägypten stehen ganz große Verwandte von mir. Viele Becher haben

Station 1. In mir werden oft Eiskugeln versteckt. Eine Tischplatte hat meine Form. In Ägypten stehen ganz große Verwandte von mir. Viele Becher haben Station 1 Ordne die Eigenschaften und Beschreibungen den einzelnen Bildern auf dem Arbeitsblatt zu. Vergleiche mit dem Lösungsblatt auf dem Lehrertisch und stelle richtig, wenn nötig. In Ägypten stehen

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 3

Station Von Zuckerwürfeln und Schwimmbecken Teil 3 Station Von Zuckerwürfeln und Teil 3 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und In diesem dritten Teil wollen wir nun zum einen

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Bastelvorlage Prisma. Station 1. Aufgabe. Name:

Bastelvorlage Prisma. Station 1. Aufgabe. Name: Station 1 Bastelvorlage Schneide die Bastelvorlage aus und baue daraus ein. Markiere im Anschluss die Flächen mit den gleichen Flächeninhalten farbig. 22 Station 2 Eigenschaften Prismen I Ergänze die angefangene

Mehr

Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Mathematik II Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 2017 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 3. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 3 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

A Sie ist weniger als 1 kg/dm 3. B E F D A G C. Zusammengesetzte Grössen 15

A Sie ist weniger als 1 kg/dm 3. B E F D A G C. Zusammengesetzte Grössen 15 1. Richtig oder falsch? A Stoffe mit einer Dichte unter 1 kg/dm 3 schwimmen in Wasser. Richtig B Die Dichte von kleinen Körpern ist immer kleiner als die Dichte von grossen Körpern. Falsch C Schwere Körper

Mehr

Schule. Klasse. Station Von Zuckerwürfeln und Schwimmbecken Teil 2. Tischnummer. Arbeitsheft. Teilnehmercode

Schule. Klasse. Station Von Zuckerwürfeln und Schwimmbecken Teil 2. Tischnummer. Arbeitsheft. Teilnehmercode Schule Station Von Zuckerwürfeln und Teil 2 Klasse Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Im ersten Teil habt ihr bereits

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21 BMT8 2012 A Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien Name: Note: Klasse: Punkte: 1 Aufgabe 1 Gegeben ist der Term 3,5kg : 100 g. a) Berechne den Wert des Terms. 3,5kg : 100 g

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 1. Juli :30 Uhr 10:20 Uhr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2015 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 1. Juli :30 Uhr 10:20 Uhr QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 05 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. Juli 05 8:30 Uhr 0:0 Uhr Hinweise zur Durchführung, Korrektur und Bewertung (gemäß 58 MSO) Seite Allgemeine Hinweise

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

Zentrale Abschlüsse Mathematik RSA

Zentrale Abschlüsse Mathematik RSA Zentrale Abschlüsse Mathematik RSA Kurzformaufgaben bis 40 Punkte, 45 min 4 Komplexaufgaben je 15 Punkte, restliche Zeit Bearbeitungszeit 135 min Der Prüfling Die Schülerinnen und Schüler bearbeiten die

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Mathematik II Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Funktionen, Gleichungen, geometrische Körper und Trigonometrie

Funktionen, Gleichungen, geometrische Körper und Trigonometrie Mathematik-Klassenarbeit Nr. 4 VERGL. Klassen 9 02.07.14 Funktionen, Gleichungen, geometrische Körper und Trigonometrie Hilfsmittel: Nicht programmierbarer Taschenrechner Hinweise: Bei allen Rechnungen

Mehr

Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule und in Realschulen

Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule und in Realschulen Die Pyramide Autor(en): Pünchera, J. Objekttyp: Article Zeitschrift: Jahresbericht des Bündnerischen Lehrervereins Band (Jahr): 17 (1899) Heft: Der Geometrie-Unterricht in der I. und II. Klasse der Kantonsschule

Mehr

Realschulabschluss/Sekundarabschluss I 2013 Mathematik

Realschulabschluss/Sekundarabschluss I 2013 Mathematik Hauptteil Wichtiger Hinweis für alle Aufgaben: Runde Endergebnisse auf 2 Stellen hinter dem Komma! Schreibe jeden deiner Lösungswege auf! Aufgaben 1. Die Abbildung zeigt den Grundriss eines Swimmingpools.

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

VORSCHAU. zur Vollversion 3. Inhaltsverzeichnis. Vorwort Materialaufstellung und Hinweise Laufzettel... 7

VORSCHAU. zur Vollversion 3. Inhaltsverzeichnis. Vorwort Materialaufstellung und Hinweise Laufzettel... 7 Inhaltsverzeichnis Vorwort.... 4 Materialaufstellung und Hinweise... 5 Laufzettel.... 7 Parallelogramm, Raute, Drache, Trapez, Dreieck, Vieleck Station 1: Flächenberechnung Parallelogramm... 8 Station

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede

Mehr

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode

Station Figurierte Zahlen Teil 2. Arbeitsheft. Teilnehmercode Station Figurierte Zahlen Teil 2 Arbeitsheft Teilnehmercode Mathematik-Labor Station Figurierte Zahlen Liebe Schülerinnen und Schüler! Schon die alten Griechen haben Zahlen mit Hilfe von Zählsteinen dargestellt:

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 1

Station Von Zuckerwürfeln und Schwimmbecken Teil 1 Station Von Zuckerwürfeln und Teil 1 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Was haben ein Zuckerwürfel und ein Schwimmbecken

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS MATHEMATIK ( 31 Abs. 1 Nr. 1 VSO)

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS MATHEMATIK ( 31 Abs. 1 Nr. 1 VSO) QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 008 BESONDERE LEISTUNGSFESTSTELLUNG AM 0.07.008 Teil A: Teil B: 8.0 Uhr bis 09.00 Uhr 9.0 Uhr bis 0.0 Uhr MATHEMATIK ( Abs. Nr. VSO) Hinweise zu:. Auswahl. Korrektur

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS MATHEMATIK ( 54 Abs. 1 Nr. 1 VSO)

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS MATHEMATIK ( 54 Abs. 1 Nr. 1 VSO) QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 0 BESONDERE LEISTUNGSFESTSTELLUNG AM 06.07.0 Teil A: Teil B: 8.30 Uhr bis 9.00 Uhr 9.0 Uhr bis 0.0 Uhr MATHEMATIK ( 5 Abs. Nr. VSO) Hinweise zu:. Auswahl. Korrektur

Mehr

Heft 2 Komplexaufgaben

Heft 2 Komplexaufgaben Heft 2 Komplexaufgaben Du musst vier Aufgaben bearbeiten. Eine Aufgabe wurde durchgestrichen und darf nicht bearbeitet werden. Die Bearbeitung der Aufgaben erfolgt auf dem bereitliegenden, gestempelten

Mehr

Station Von Zuckerwürfeln und Schwimmbecken Teil 2

Station Von Zuckerwürfeln und Schwimmbecken Teil 2 Station Von Zuckerwürfeln und Teil 2 Tischnummer Arbeitsheft Teilnehmercode Liebe Schülerinnen und Schüler! Mathematik-Labor Station Von Zuckerwürfeln und Im ersten Teil habt ihr bereits einige Eigenschaften

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2007 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 6 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Formen Sie (3 2x)²

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Experimente zu Zahlenfolgen

Experimente zu Zahlenfolgen Experiment A: Immer kürzer und doch kein Ende in Sicht b) Bearbeitet in der Gruppe den und die. Materialbedarf Zwei Streifen Papier mit je 100 cm Länge (z. B. von einer Kassenrolle) 1 Maßband Nehmt das

Mehr

Bundestag. Diagramm 1: Diagramm 2: Sitzverteilung im Bundestag. Mathematik: Musteraufgabe 2006/ Bundestag 16. Bundestag

Bundestag. Diagramm 1: Diagramm 2: Sitzverteilung im Bundestag. Mathematik: Musteraufgabe 2006/ Bundestag 16. Bundestag Bundestag Daniel hat für ein Politikreferat im Internet nach der Sitzverteilung im aktuellen 16. Bundestag recherchiert. Zurzeit regiert eine Koalition aus CDU/CSU und SPD. Vor der Wahl hat im 15. Bundestag

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r. gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt

Mehr

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium ARBEIT erstmalig 2017 ZENTRALE KLASSENARBEIT Schuljahrgang 6 Gymnasium Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen,

Mehr

Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode (Schüler-ID und Geburtstag)

Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode (Schüler-ID und Geburtstag) Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode (Schüler-ID und Geburtstag) Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Herzlich

Mehr

Hauscurriculum Klasse 5 (ab Schuljahr 2015/16)

Hauscurriculum Klasse 5 (ab Schuljahr 2015/16) 1 1. Statistische Erhebungen Natürliche Zahlen (4 Wochen) 1.1. Statistische Erhebungen in der Klasse 1.2 Große Zahlen Stellenwerttafel planen statistische Erhebungen in Form einer Befragung oder einer

Mehr

Realschulabschluss/Sekundarabschluss I 2013 Mathematik Original-Prüfung Hauptteil EA

Realschulabschluss/Sekundarabschluss I 2013 Mathematik Original-Prüfung Hauptteil EA Hauptteil (Kurs mit erhöhten Anforderungen) Wichtiger Hinweis für alle Aufgaben: Runde Endergebnisse auf 2 Stellen hinter dem Komma! Schreibe jeden deiner Lösungswege auf! Aufgaben 1. Die Abbildung zeigt

Mehr

1. Aufgabe: Grundwissen

1. Aufgabe: Grundwissen NAME: Mathematik 3. Klassenarbeit Klasse 10e- Gr. A 06. Feb. 2007 Trigonometrie für Winkel bis 90 Grad - ups - Teil A: Arbeitsblatt ohne Nutzung von Tafelwerk, Formelsammlung und Taschenrechner 1. Aufgabe:

Mehr

Abbildung 2. Hinweis: Verwendet für alle schriftlichen Bearbeitungen die beiliegenden Blätter!

Abbildung 2. Hinweis: Verwendet für alle schriftlichen Bearbeitungen die beiliegenden Blätter! Kaum beginnt es zu regnen, beginnt auch der Scheibenwischer mit seiner Arbeit, und das ganz automatisch, als wüsste er, dass es regnet. Viele Fahrzeuge sind inzwischen mit Regensensoren ausgestattet, um

Mehr

Einstiege: Volumen eines Zylinders

Einstiege: Volumen eines Zylinders An Abbildungen Höhe und Radius bestimmen und Volumen berechnen (1/3) 1 Schneide die Netze der beiden Zylinder aus und stelle zwei Modelle her. a) Schätze, welcher Zylinder das größere Volumen und die größere

Mehr

Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar.

Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. Raumgeometrie 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. H G E F K D C A B (a) Berechne den Flächeninhalt des Dreiecks ABK. Runde das Ergebnis auf zwei

Mehr

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2013 im Fach Mathematik. Donnerstag, 18. April 2013

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2013 im Fach Mathematik. Donnerstag, 18. April 2013 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2013 im Fach Mathematik Donnerstag, 18. April 2013

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Donnerstag, 1. Juli 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Qualifizierender Hauptschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Zuordnungen, Graphen

Zuordnungen, Graphen 1. Temperaturschreiber Zuordnungen, Graphen Aufgaben dieser Art findet man in den Lehrbüchern: Zu bestimmten Tageszeiten notiert der Temperaturschreiber einer Schule die Temperatur auf dem Schulhof. Du

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Donnerstag, 8. Juni 2 Prüfungsbeginn: 8. Uhr Thüringer Kultusministerium Qualifizierender Hauptschulabschluss Schuljahr 1999/2 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

12.1 Jeder Körper hat einen Namen

12.1 Jeder Körper hat einen Namen 1207 Quader, Zylinder, 2 mal dreiseitiges Prisma 1208 Quader 1210 Grundfläche, Deckfläche, parallel und deckungsgleich, Vorder-,Rück-, Seitenfläche, 12 Prismen 12.1 Jeder Körper hat einen Namen Sara und

Mehr

Aufgaben aus den zugelassenen Lehrbüchern

Aufgaben aus den zugelassenen Lehrbüchern Ausgewählte Aufgaben zur Aufgaben aus den zugelassenen Lehrbüchern Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Für jede Aufgabe werden diejenige Kompetenz, die bei der Bearbeitung im Vordergrund

Mehr

Aufgabe1: ohne Taschenrechner (insgesamt 34 P)

Aufgabe1: ohne Taschenrechner (insgesamt 34 P) Rudolf-Steiner-Schulen Hamburg, schriftliche Realschulprüfung Mathematik 0, Lösungen Aufgabe: ohne Taschenrechner (insgesamt P). I II III a) 7,08 b) 87, + 68,5 7,5 + 57,90 6, 867,50 87,59 c) 5,, = 66,08

Mehr