Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte

Größe: px
Ab Seite anzeigen:

Download "Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte"

Transkript

1 Statistik II für Wirtschaftswissenschaftler Folie 6.1 Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte I) Werte in (, ), Parameter µ (, ), σ 2 > 0 Normalverteilung N (µ, σ 2 ) mit Dichte p(x) = ϕ µ,σ 2(x) = 1 (x µ) 2 2πσ 2 e 2σ 2 Speziell: Standardnormalverteilung N (0, 1) Berechnung von Wahrscheinlichkeiten: b Ws(a < X < b) = p(x)dx a ( b µ = Φ µ,σ 2 (b) Φ µ,σ 2 (a) = Φ σ ) ( a µ Φ σ )

2 Statistik II für Wirtschaftswissenschaftler Folie 6.2 II) Werte in (0, ), Parameter µ (, ), σ 2 > 0. Eine Zufallsgröße X heißt lognormalverteilt mit Parameter µ und σ 2, wenn ln X N (µ, σ 2 )-verteilt ist. Berechnung von Wahrscheinlichkeiten: ln : (0, ) (, ) streng monoton, ln X normalverteilt Ws(a < X < b) = Ws(ln a < ln X < ln b) ( ) ( ) ln b µ ln a µ = Φ Φ, 0 a b, σ σ wobei ln 0 :=, Φ( ) = 0, ln :=, Φ( ) = 1 Dichte p(x) = 1 2πσ 2 1 (ln x µ) 2 x e 2σ 2 für x > 0, = 0 für x 0

3 Statistik II für Wirtschaftswissenschaftler Folie 6.3

4 Statistik II für Wirtschaftswissenschaftler Folie 6.4 Modellbildung: a) Positive Daten mit rechtsschiefem Histogramm und einem deutlichen Gipfel rechts von der 0. b) Multiplikative Kombination vieler kleiner Effekte Beispiele: X N j=1 ε j ln X N j=1 ln ε j normalverteilt Aktienkurse (im Black-Scholes-Ansatz zur Bewertung von Optionen und anderen Finanzderivaten - σ = Volatilität) Einkommensverteilung eines Landes (klassisches Modell für 50er und 60er Jahre), Bereich um das Dichtemaximum herum ˆ= Mittelstandsbauch) Gegenwärtig: Zweigipflige Verteilung ( 2 3 -Gesellschaft)

5 Statistik II für Wirtschaftswissenschaftler Folie 6.5 SO 2 -Luftkonzentration, generell Konzentrationen von Spurenelementen in Stoffen Niederschlagsmenge (vorausgesetzt, es regnet überhaupt) an einem festen Tag Betriebsdauer von Kfz-Bauteilen vor Ausfall III) Werte in (0, ), Parameter λ > 0 Exponentialverteilung Exp(λ) mit Dichte p(x) = λe λx für x 0, = 0 für x 0 Verteilungsfunktion: F (z) = Ws(X z) = 1 e λz Berechnung von Wahrscheinlichkeiten: Ws(a < X < b) = F (b) F (a) = e λa e λb, speziell: Ws(X > a) = e λa

6 Statistik II für Wirtschaftswissenschaftler Folie 6.6

7 Statistik II für Wirtschaftswissenschaftler Folie 6.7

8 Statistik II für Wirtschaftswissenschaftler Folie 6.8

9 Statistik II für Wirtschaftswissenschaftler Folie 6.9

10 Statistik II für Wirtschaftswissenschaftler Folie 6.10

11 Statistik II für Wirtschaftswissenschaftler Folie 6.11

12 Statistik II für Wirtschaftswissenschaftler Folie 6.12 Modellbildung: Wartezeit bis zum Eintreten eines Ereignisses λ = Maß für die Dichte, mit der die Ereignisse aufeinanderfolgen λ groß Wartezeit X eher klein, d.h. Ws(X > c) klein für große c. Beispiele: Wartezeit bis zur Ankunft des nächsten Kunden im Laden Wartezeit bis zum nächsten Zerfall eines Atoms in radioaktivem Präparat Wartezeit zwischen Inbetriebnahme und Ausfall eines Transistors im Dauerbetrieb

13 Statistik II für Wirtschaftswissenschaftler Folie 6.13 Poisson-Prozess kombiniert Exp(λ) und P(λ) Modellbildung: Zeitpunkte des Eintretens von gleichartigen Ereignissen in rein zufälliger Abfolge, u.a. Grundlage der Bedienungstheorie (Warteschlangentheorie, Queuing): Zeitpunkte, wenn Kunden das System (Kasse, Server im Netz, Landebahn auf Flughafen,...) benutzen wollen. Poisson-Prozess auf [0, ) ist zufällige Folge von Zeitpunkten 0 < T 1 < T 2 <... mit 1) Anzahl der Punkte (d.h. der Ereignisse) in Zeitintervall der Länge L, z.b. zwischen t und t + L, ist P(λ L)-verteilt

14 Statistik II für Wirtschaftswissenschaftler Folie ) Abstände zwischen je zwei aufeinanderfolgenden Punkten, d.h. die Zufallsgrößen T 1, T 2 T 1, T 3 T 2, T 4 T 3,... sind unabhängig voneinander und Exp(λ)-verteilt. λ heißt Intensität des Poisson-Prozesses und misst die Dichte der Punkte. X = 2, X = 3 unabhängig P(λ 1) bzw. P(λ 3)-verteilt

15 Statistik II für Wirtschaftswissenschaftler Folie 6.15 IV) Werte in (0, ), Parameter λ, β > 0. Eine Zufallsgröße X heißt Weibull-verteilt mit Parameter λ und β, wenn X β Exp(λ)-verteilt ist. β = 1 2 X bzw. β = 2 X 2 exponentialverteilt Berechnung von Wahrscheinlichkeiten: x x β streng monoton auf (0, ), X β exponentiell verteilt Ws(a < X < b) = Ws(a β < X β < b β ) wobei e := 0 = e λaβ e λbβ, 0 a b

16 Statistik II für Wirtschaftswissenschaftler Folie 6.16 Dichte p(x) = λβ x β 1 e λxβ für x > 0, = 0 für x 0. Speziell: β = 1 Exp(λ) Modellbildung a) Wartezeit bis zum Eintreten eines Ereignisses (Ausfall eines Gerätes in der Zuverlässigkeitstheorie) b) Positive Daten mit rechtsschiefem Histogramm und einem deutlichen Gipfel (auch bei 0) λ Maß für die Ereignisdichte λ groß Wartezeit X eher klein.

17 Statistik II für Wirtschaftswissenschaftler Folie 6.17

18 Statistik II für Wirtschaftswissenschaftler Folie 6.18

19 Statistik II für Wirtschaftswissenschaftler Folie 6.19

20 Statistik II für Wirtschaftswissenschaftler Folie 6.20 β < 1: Das Ereignis tritt entweder sehr schnell oder sehr spät ein (verglichen mit Exp(λ)) β > 1: Wartezeiten in mittlerem Bereich sind besonders wahrscheinlich (verschleißbedingter Ausfall eines Geräts) Beispiele: Betriebsdauer eines mechanischen Geräts (in Tagen) bis zum Ausfall durch Werkstoffermüdung (β > 1). Zeit bis zum Versagen einer elektronischen Komponente, die ständigen Vibrationen ausgesetzt ist (β 1). Weibull (β > 1) oder lognormal? Weibull (β < 1) oder exponentiell (β = 1)?

21 Statistik II für Wirtschaftswissenschaftler Folie 6.21

22 Statistik II für Wirtschaftswissenschaftler Folie 6.22

23 Statistik II für Wirtschaftswissenschaftler Folie 6.23

24 Statistik II für Wirtschaftswissenschaftler Folie 6.24

25 Statistik II für Wirtschaftswissenschaftler Folie 6.25

26 Statistik II für Wirtschaftswissenschaftler Folie 6.26

27 Statistik II für Wirtschaftswissenschaftler Folie 6.27

28 Statistik II für Wirtschaftswissenschaftler Folie 6.28 Verteilungsfunktionen kontinuierlicher Verteilungen: standardnormal F (t) = Φ(t) = t 1 2π e x2 2 dx, Φ( t) = 1 Φ(t) normal F (t) = Φ µ,σ 2(t) = Φ ( ) t µ σ, < t < lognormal F (t) = Φ ( ) ln t µ σ, t > 0 exponential F (t) = 1 e λt, t 0 Weibull F (t) = 1 e λtβ, t 0 uniform F (t) = t α β α, α t β Ws(a X b) = F (b) F (a)

29 Statistik II für Wirtschaftswissenschaftler Folie 6.29 Beispiel: Neues Gerät, dessen Betriebsdauer Exp(λ)-verteilt ist. Wie lange kann ich es benutzen, wenn ich zu 95% sicher sein will, dass es nicht ausfällt? Gesucht: t mit Ws(X > t) = 0, 95 0, 95 = e λt t = 1 λ ln 0, 95 z.b. λ = 1 100d t = 5, 13 d Alternativ: F (t) = Ws(X t) = 0, 05, d.h. t = q 0,05 = 0, 05-Quantil von Exp(λ) Zur Erinnerung: q α = α-quantil, wenn F (q α ) = α

30 Statistik II für Wirtschaftswissenschaftler Folie 6.30 Dieselbe Situation, aber nun sei die Betriebsdauer lognormal(µ, σ 2 )- verteilt. Gesucht: 0,05-Quantil t, d.h. ( ) ln t µ F (t) = Φ = 0, 05 σ oder (Φ( x) = 1 Φ(x)) : ( ) µ ln t Φ = 0, 95 σ µ ln t σ ist 0, 95-Quantil von N (0, 1) ln t = µ + 1, 645 σ Z.B.: µ = 4,258 und σ = 0,833 (ähnliche Lage und Streuung wie Exp( )) ln t = 2, 888, t = 17, 96 d

31 Statistik II für Wirtschaftswissenschaftler Folie 6.31 Schätzer für Verteilungsparameter N (µ, σ 2 ): ˆµ = X N, ˆσ 2 = s 2 N Exp(λ): ˆλ = 1 X N lognormal(µ, σ 2 ): ˆµ = 1 N Weibull(λ, β): 1 ˆλ = 1 N N j=1 N j=1 ln(x j ), ˆσ 2 = 1 N 1 X j ˆβ, N j=1 ( ln(xj ) ˆµ ) 2 ˆβ nur numerisch berechenbar Poisson-Prozess: Z = Anzahl Ereignisse in Zeitintervall der Länge T beobachtet Z ist P(λ T )-verteilt ˆλ = Z T

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind

3.1 Punktschätzer für Mittelwert µ und Varianz σ 2. Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden sind Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 3.1 3.1 Punktschätzer für Mittelwert µ und Varianz σ 2 Messungen x 1,..., x N, die unabhängig voneinander auf gleiche Weise gewonnen worden

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr

8 Die Exponentialverteilung

8 Die Exponentialverteilung 8 Die Exponentialverteilung 8.1 Einführung Modelle Zuverlässigkeitsmodelle Lebensdauermodelle Bedienungsmodelle. 277 W.Kössler, Humboldt-Universität zu Berlin Def. 26 (Exponentialverteilung) Sei X eine

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

8.3 Zuverlässigkeitsmodelle

8.3 Zuverlässigkeitsmodelle 8.3 Zuverlässigkeitsmodelle Def. 29 (Zuverlässigkeit) Die Zuverlässigkeit eines Systems ζ ist die Wahrscheinlichkeit, dass das System zum Zeitpunkt t intakt ist: Rel(ζ) = P(X t). Annahme: Das System besteht

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) =

Zufallsvariablen. f(x) dx = 1. Die stetige Zufallsvariable X wird also durch seine Dichtefunktion beschrieben. P(c < X < d) = Diskrete Sei X stetig auf (a,b), wobei a, b unendlich sein können, a x 0 < x 1 b P(X = x 0 ) = 0, P(x 0 < X < x 1 ) > 0 (wenn f > 0). Die Funktion f heißt Dichtefunktion (von X) falls: 1. f(x) 0, a < x

Mehr

Erwartungswert und Varianz von Zufallsgrößen. Zufällige Auswahl von Mann und Frau X = Y = Wir erwarten X < Y. der Frau des Mannes

Erwartungswert und Varianz von Zufallsgrößen. Zufällige Auswahl von Mann und Frau X = Y = Wir erwarten X < Y. der Frau des Mannes Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 7.1 Erwartungswert und Varianz von Zufallsgrößen Zufällige Auswahl von Mann und Frau X = Y = Wir erwarten X < Y } Körpergröße { der Frau

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

3 Stetige Zufallsvariablen

3 Stetige Zufallsvariablen 3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 6. Ausgewählte Verteilungen (Distributions) * diskret: Bernoulli, Binomial, Geometrisch, Poisson * stetig: Uniform, Exponential, Normal, χ 2,

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Satz 104 (Skalierung exponentialverteilter Variablen)

Satz 104 (Skalierung exponentialverteilter Variablen) 2.3.1 Eigenschaften der Exponentialverteilung Satz 104 (Skalierung exponentialverteilter Variablen) Sei X eine exponentialverteilte Zufallsvariable mit dem Parameter λ. Für a > 0 ist die Zufallsvariable

Mehr

Formelsammlung Statistik II (SS 2010) 1. 1 Numerische und graphische Zusammenfassung quantitativer

Formelsammlung Statistik II (SS 2010) 1. 1 Numerische und graphische Zusammenfassung quantitativer TU Kaiserslautern 40700 FB Mathematik Prof Dr Jörn Saß Formelsammlung Statistik II (SS 00) umerische und graphische Zusammenfassung quantitativer Daten Beobachtet werden Daten x,, x Die Ordungsstatistiken

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Exponentialverteilung

Exponentialverteilung Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

1 Relevante Beispiele für Verteilungen auf R

1 Relevante Beispiele für Verteilungen auf R Prof. Dr. H. Zähle Vorlesung Sachversicherungsmathemati, Anlage 1 Universität des Saarlandes, SS 2010 1 Relevante Beispiele Verteilungen auf R Wir bezeichnen die Menge aller W-Maße auf (R, B(R)) mit M

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele Verteilungen Problemstellung Ergebnisraum Ω Stichprobe (n aus N) mehrfaches Auswählen = wiederholen Formel für P Erwartungswert

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Mit welchen Verteilungen lassen sich Lebensdauern modellieren?

Mit welchen Verteilungen lassen sich Lebensdauern modellieren? 5. Übung Aufgabe 1 Ein Prozess zur Herstellung von Flachglas im Durchschnitt 1 Verunreinigung je 5 dm 2 Glasfläche. Welche Verteilung weist die Zahl der Verunreinigungen auf einer 0,5m x 1,0 m großen Fensterscheibe

Mehr

3 Spezielle Verteilungen und ihre Anwendungen

3 Spezielle Verteilungen und ihre Anwendungen 3 Spezielle Verteilungen und ihre Anwendungen 13 3 Spezielle Verteilungen und ihre Anwendungen 3.1 Alternativverteilung A(p) Eine besonders einfache diskrete Verteilung ist die so genannte Alternativverteilung.

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

1.5.4 Quantile und Modi

1.5.4 Quantile und Modi 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.70. [Quantil, Modus] Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulassungsprüfung Stochastik, 10.10.14 Wir gehen stets von einem Maßraum (Ω, A, µ) bzw. einem Wahrscheinlichkeitsraum (Ω,A,P) aus. Die Borel σ-algebra auf R n wird mit B n bezeichnet, das Lebesgue Maß

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen

Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Verteilungen eindimensionaler stetiger Zufallsvariablen Einführung Stetige Verteilungen Stetige Gleichverteilung Exponentialverteilung Normalverteilung Bibliografie: Prof. Dr. Kück Universität Rostock

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 24. November 2010 1 Stetige Verteilungen Normalapproximation Gleichverteilung Exponentialverteilung Normalapproximation

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

Praktische Aspekte der Quantitativen Risikomanagement

Praktische Aspekte der Quantitativen Risikomanagement Praktische Aspekte der Quantitativen Risikomanagement: Konzepte, Methoden und Implementierung in Matlab M.Sc. SS 2014 Kapitel 1: Stochastische Modellierung von Risiken Quantitative Modellierung Theoretische

Mehr

Formelsammlung Statistik II 1. 1 Numerische und graphische Zusammenfassung quantitativer

Formelsammlung Statistik II 1. 1 Numerische und graphische Zusammenfassung quantitativer TU Kaiserslautern Sommer 202 FB Mathematik Stand 97202 Prof Dr Jörn Saß Formelsammlung Statistik II umerische und graphische Zusammenfassung quantitativer Daten Beobachtet werden Daten x,,x Die Ordungsstatistiken

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele

Teil IV. Diskrete Verteilungen. Woche 3: Verteilungen. Diskrete Zufallsvariablen Wiederholung. Lernziele Woche 3: Verteilungen Teil IV Patric Müller Diskrete Verteilungen ETHZ WBL 17/19, 08.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Kapitel IV - Stichprobenfunktionen (Statistiken)

Kapitel IV - Stichprobenfunktionen (Statistiken) Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel IV - Stichprobenfunktionen (Statistiken) Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Induktive Statistik Kapitel IV - Stichprobenfunktionen (Statistiken)

Induktive Statistik Kapitel IV - Stichprobenfunktionen (Statistiken) Induktive Statistik Kapitel IV - Stichprobenfunktionen (Statistiken) Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de 11. Januar 2007 Aufgabe der schließenden

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Beispiel 7.5.1: Es werden drei ideale Münzen geworfen, und der Gewinn sei X := Anzahl von W. In Beispiel 7.4.1 hatten wir dazu eine Wahrscheinlichkeitverteilung ermittelt: X

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Lösungen zu Übungsaufgaben Blatt 9

Lösungen zu Übungsaufgaben Blatt 9 Diskrete Zufallsgrößen Zu Aufgabe Die zufällige Anzahl X von Ausfällen eines Servers pro Jahr genüge folgender Verteilung: ai 0 3 4 5 6 >6 pi /0 /0 3/0 /0 /0 /0 /0 0 Ein Ausfall des Servers verursacht

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 4 Ausgewählte Verteilungen * diskret: Bernoulli, Binomial, Geometrisch, Negativ-Binomial, Poisson * stetig: Uniform, (Negativ-)Exponential, Gamma, Normal,

Mehr

1 wenn Erfolg im j-ten Versuch

1 wenn Erfolg im j-ten Versuch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 5.1 Binomialverteilung - Alternative Darstellung n Versuche mit 2 möglichen Ausgängen. Setze Y j = 1 wenn Erfolg im j-ten Versuch 0 wenn

Mehr

Vorlesung Stetige Verteilungen / Mathematische Behandlung

Vorlesung Stetige Verteilungen / Mathematische Behandlung B E A C D Z Faultät Verehrswissenschaften Friedrich List Professur für Verehrsströmungslehre Verehrssystemtheorie I+II (V.-Wirtschaft) Vorlesung..0 Stetige Verteilungen / Mathematische Behandlung Neufert,

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung III Wichtige Verteilungen Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr