Signale und Codes Vorlesung 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Signale und Codes Vorlesung 4"

Transkript

1 Signale und Codes Vorlesung 4 Nico Döttling December 6, / 18

2 2 / 18

3 Letztes Mal Allgemeine Hamming Codes als Beispiel linearer Codes Hamming Schranke: Obere Schranke für k bei gegebenem d bzw. für d bei gegebenem k. Das ist sog. Kugelpackungsbedingung: Wieviele Hammingkurgeln lassen sich maximal in einen Raum packen sodass sich keine Kugeln überlappen Es gibt Codes welche die Hamming Schranke exakt erfüllen: Perfekte Codes Hamming Codes sind perfekt! Durch hinzufügen eines Paritätsbits läßt sich die Minimaldistanz eines Codes um eins vergrößern. 3 / 18

4 Heute: Shannon Theorie Bisher: Hamming-Theorie. Fehler haben haben ein festes Gewicht. Analyse der Korrekturleistung eines Codes ist Worst-Case Betrachtung. Nur der schlimmst mögliche Fehler von Gewicht d wird betrachtet und führt zum Begriff der Minimaldistanz. Andere Sichtweise: Hamming-Theorie geht davon aus dass Fehler maximal bösartig gewählt werden. Frage: Wie häufig/selten tritt in natürlichen Kanälen der schlimmstmögliche Fall ein? 4 / 18

5 Shannon Theorie Probabilistisches Kanal/Kommunikationsmodell Kommunikationssystem besteht aus drei Komponenten Quellen/Sender: Erzeugt eine Nachricht, also Bit oder Symbolfolge anhand eines stochastischen Prozesses S Kanal: Überträgt Nachricht an Empfänger. Führt möglicherweise Fehler in die Nachricht ein. Fehlerfolge F ist auch stochastischer Prozess. Empfänger: Empfängt eine gestörte Nachricht vom Kanal. Kennt Prozesse S und F (Verteilungen!) und möchte ursprüngliche Nachricht errechnen. 5 / 18

6 Entropie einer Quelle Sei S eine Zufallsvariable auf einer endlichen Menge S mit Verteilung D(x) = Pr[S = x] (Es gilt also x S D(x) = 1). Die Entropie von S ist definiert durch H(S) = x S D(x) log 2(D(x)) = E S [ log 2 (D(S))]. Falls S ein p-gebiastes Bit ist, also D(0) = 1 p und D(1) = p, dann setzen wir H 2 (p) = H(S) = p log 2 (p) (1 p) log 2 (1 p). Entropie gibt an wieviel Zufall in einer Verteilung steckt. Grundlegender Begriff der Informationstheorie. 6 / 18

7 Zur binären Entropiefunktion H 2 (p) Sei B n (0, r) = {x F n 2 d(x, 0) r} die binäre Hammingkugel mit Radius r um den Punkt 0 und Vol n (r) = B n (0, r) ihre Mächtigkeit. Dann gilt Vol n (p n) = 2 (H 2(p)+o(1)) n 7 / 18

8 Binärer symmetrischer Kanal Quelle S produziert Gleichverteilung auf {0, 1} Kanal: Jedes übertragene Bit wird mit Wahrscheinlichkeit p geflippt und mit Wahrscheinlichtkeit 1 p korrekt übertragen (unabhängig von der Vorgeschichte). Dieser Kanal heißt binärer symmetrischer Kanal mit Fehlerwahrscheinlichkeit p, kurz BSC p. Wir können den Fehler welchen BSC p erzeugt additiv darstellen: Für y F n 2 ist BSC p(y) = y + η, wobei η Ber p (n) (jede Komponente von eta 0 mit Wkt 1 p und 1 mit Wkt p). Frage: Wieviele Bits können durch n Kanalanwendungen übertragen werden? Wir erlauben Rekonstruktionsfehler Rekonstruktionsfehler sollte klein sein 8 / 18

9 Noisy Channel Coding Theorem Theorem Informell Über den BSC p lassen sich bei n Kanalbenutzungen (1 H 2 (p)) n Bits übertragen wobei die Wahrscheinlichkeit eines Rekonstruktionsfehlers exponentiell klein in n ist, Formal Für alle ɛ > 0 existiert ein δ > 0 sodass wenn k < (1 H 2 (p) ɛ)n und n hinreichend groß, dann existieren Funktionen Encode : F k 2 Fn 2 und Decode : Fn 2 Fk 2 sodass Pr[Decode(Encode(x) + η) x] e δn x,η wobei x gleichverteilt zufällg gezogen und η p-biased ist. 9 / 18

10 Noisy Channel Coding Theorem: Konzeptionelle Ideen Die Codierungsabbildung (der Code) Encode wird gleichverteilt zufällig aus allen Funktionen F k 2 Fn 2 gezogen. Die Decodierungsabbildung Decode is ein Brute-Force Algorithmus: Für y F n 2 ist Decode(y) = min x F k 2 d(encode(x), y). Der Beweis ist nicht konstruktiv! Beweisprinzip der sog. probabilistischen Methode. 10 / 18

11 Beweis (1) Fixiere zunächst x und Encode(x) und ziehe einen Fehler η F n 2 zufällig. Ziehe danach den Rest der Abbildung Encode zufällig. Sei ɛ Konstante (wird später festgelegt) Nenne η schlecht falls wgt(η) > (p + ɛ ) n η F n 2 Bernoulli-verteilt (jedes η i ist p-biased coin) wgt(η) N ist binomialverteilt. Es gilt E[wgt(η)] = E[ n ((1 p) 0 + p 1) = n p. η η n }{{} rechne Summe nicht mod 2! ] = n E[η 1 ] = 11 / 18

12 Beweis (2) Chernoff-Schranke: Wenn X Bin(p, n) (binomialverteilt), dann ist Pr[X > (1 + γ)e[x ]] e E[X ] γ2 /3. Es gilt E[X ] = p n. Finde γ sodass (1 + γ)p n = (p + ɛ ) n γ = ɛ /p. Damit: Pr[η schlecht] = Pr[wgt(η) > (p + ɛ ) n] e ɛ 2 3p n 12 / 18

13 Beweis (3) Nenne x schlecht für x, η gdw. d(encode(x ), Encode(x) + η) (p + ɛ )n. Das ist genau dann der Fall wenn Encode(x ) B n (Encode(x) + η, (p + ɛ )n). Es gilt B n (Encode(x) + η, (p + ɛ)n) = Vol n ((p + ɛ )n) Encode(x ) wird für alle x x gleichverteilt zufällig gezogen. Fixiere ein x. 13 / 18

14 Beweis (4) Dann gilt Pr [x schlecht für x, η] Encode = Pr [Encode(x ) B n (Encode(x) + η, (p + ɛ )n)] Encode = Vol n((p + ɛ ) n) 2 n 2H(p+ɛ )n 2 n = 2 H(p+ɛ )n n Mit einer Union-Bound gilt Pr[ x : x schlecht für x, η] x Pr E [x schlecht für x, η] 2 k+h(p+ɛ )n n 14 / 18

15 Beweis (5) Da H stetig ist gibt es für jedes ɛ > 0 (neue Konstante) ein ɛ > 0 sodass H(p + ɛ ) < H(p) + ɛ. Also Pr[ x : x schlecht für x, η] 2 k+h(p)n n+ɛ Fall η nicht schlecht ist und kein x x schlecht für x, η ist, dann gilt Decode(Encode(x) + η) = x. Die Wahrscheinlichkeit dass η schlecht ist oder eine x existiert welches schlecht ist für x, η ist höchstens (Union-Bound) e ɛ2 3p n + 2 k+h(p)n n+ɛ n = e ɛ2 3p n + 2 ((1 H(p) ɛ )n k) Falls (1 H(p) ɛ )n k für wachsendes n wächst, dann konvergiert dieser Ausruck gegen / 18

16 Beweis (6) Wir wissen das k (1 H(p) ɛ ). Setze ɛ = ɛ/2. Dann gilt (1 H(p) ɛ )n k = (1 H(p) ɛ/2)n k ɛ 2 n Damit: Wahrscheinlichkeit dass ein Decodierfehler auftritt konvergiert gegen 0 für wachsendes n.. 16 / 18

17 Allgemeines Coding Theorem Shannon Theorem gilt allgemeiner als in der Hier gezeigten Form. Jedem Kanal K läßt sich eine Kapazität zuordnen: C K = max X I (K(X ); X ) = max X (H(X ) H(X K(X ))). Shannon konnte zeigen dass Falls H( X ) C K ɛ (für beliebig kleines ɛ), dann lässt sich Quelle X so codieren dass die Ausgaben der Quelle fehlerfrei über den Kanal übertragen werden können. Anders: Jede Übertragungsrate < C K ist erreichbar. Shannon s Beweis ist konzeptionell der selbe wie der hier gezeigte, ist technisch aber etwas anspruchsvoller. 17 / 18

18 Converse Coding Theorem Dieses Ergebnis ist tight Die Rate 1 H(p) ist für diesen Kanal die bestmögliche. Egal wie Encode und Decode gewählt sind, falls k (1 H(p) + ɛ) (für bel. kleines ɛ), dann ist die Wahrscheinlichtkeit dass ein Decodierfehler auftritt / 18

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142

5. Woche Perfekte und Optimale Codes, Schranken. 5. Woche: Perfekte und Optimale Codes, Schranken 88/ 142 5 Woche Perfekte und Optimale Codes, Schranken 5 Woche: Perfekte und Optimale Codes, Schranken 88/ 142 Packradius eines Codes (Wiederholung) Definition Packradius eines Codes Sei C ein (n, M, d)-code Der

Mehr

Die Größe A(n, d) und optimale Codes

Die Größe A(n, d) und optimale Codes Die Größe A(n, d) und optimale Codes Definition Optimaler Code Wir definieren A(n, d) = max{m binärer (n, M, d) Code} Ein (n, M, d)-code heißt optimal, falls M = A(n, d). Bestimmung von A(n, d) ist offenes

Mehr

Signale und Codes Vorlesung 11

Signale und Codes Vorlesung 11 Signale und Codes Vorlesung 11 Nico Döttling January 31, 2014 1 / 22 Ein List-Decoder für WH k Theorem (Goldreich-Levin) Für jedes ɛ > 0 existiert ein effizienter List-Decoder für WH k welcher 1 2 ɛ Fehler

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Die Hamming-Distanz definiert eine Metrik.

Die Hamming-Distanz definiert eine Metrik. Die Hamming-Distanz definiert eine Metrik. Satz Metrik Hamming-Distanz Die Hamming-Distanz ist eine Metrik auf {0, 1} n, d.h. für alle x, y, z {0, 1} n gilt: 1 Positivität: d(x, y) 0, Gleichheit gdw x

Mehr

Vorlesung Theoretische Grundlagen

Vorlesung Theoretische Grundlagen Vorlesung Theoretische Grundlagen Fehlerkorrigierende Jörn Müller-Quade 4. Februar 2010 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

zu Aufgabe 26: a) A 3 A 2 A 4 A 1 A 5 A 0 A 6

zu Aufgabe 26: a) A 3 A 2 A 4 A 1 A 5 A 0 A 6 zu ufgabe 6: a) 3 5 6 7 p( ) p( ) p( 3 ) p( ) p( 5 ) p( 6 ) p( 7 ) = p( 3 ) = p( 3 ) = p( 3 ) = p( ) = p( ) = p( ) = p( ) = p( ) = p( ) = p( ) = p( ) = 8 p( ) = p( ) = p( ) = p( ) Lösung: b) binär 8 p(

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Grundlagen der Informationstheorie. Hanna Rademaker und Fynn Feldpausch

Grundlagen der Informationstheorie. Hanna Rademaker und Fynn Feldpausch Grundlagen der Informationstheorie Hanna Rademaker und Fynn Feldpausch . Thema Informationstheorie geht zurück auf Claude Shannon The Mathematical Theory of Communication beschäftigt sich mit Information

Mehr

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung

4.0.2 Beispiel (Einfacher Wiederholungscode). Im einfachsten Fall wird die Nachricht einfach wiederholt. D.h. man verwendet die Generatorabbildung Wir beschäftigen uns mit dem Problem, Nachrichten über einen störungsanfälligen Kanal (z.b. Internet, Satelliten, Schall, Speichermedium) zu übertragen. Wichtigste Aufgabe in diesem Zusammenhang ist es,

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Kapitel III Selektieren und Sortieren

Kapitel III Selektieren und Sortieren Kapitel III Selektieren und Sortieren 1. Einleitung Gegeben: Menge S von n Elementen aus einem total geordneten Universum U, i N, 1 i n. Gesucht: i-kleinstes Element in S. Die Fälle i = 1 bzw. i = n entsprechen

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Informationstheorie Vera Demberg Universität des Saarlandes 26. Juni 202 Vera Demberg (UdS) Mathe III 26. Juni 202 / 43 Informationstheorie Entropie (H) Wie viel Information

Mehr

Die Markov sche Ungleichung

Die Markov sche Ungleichung Abweichung vom Erwartungswert Slide 1 Die Markov sche Ungleichung Satz: Für eine ZV X 0 und für alle t > 0 gilt die Ungleichung oder äquivalent dazu Pr[X t] E[X] t Pr[X t E[X]] 1 t. Die Wahrscheinlichkeit

Mehr

Kapitel 9: Informationstheorie. 2. Entropie

Kapitel 9: Informationstheorie. 2. Entropie ZHAW, NT, FS2008, Rumc, Kapitel 9: 2-1 Kapitel 9: Informationstheorie 2. Entropie Inhaltsverzeichnis 2.1. INFORATIONSQUELLEN...2 2.2. INFORATIONSGEHALT...3 2.3. INIALE ANZAHL BINÄRE FRAGEN...5 2.4. ENTROPIE

Mehr

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012 Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 011/01 Sandra Uhlenbrock 03.11.011 Die folgende Ausarbeitung wird, basierend auf Branching Processes

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung 8 Dirk Achenbach 7. Februar 2013 I NSTITUT FÜR K RYPTOGRAPHIE UND S ICHERHEIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006

Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Informationstheorie und Codierung Schriftliche Prüfung am 8. Mai 2006 Institut für Nachrichtentechnik und Hochfrequenztechnik Bitte beachten Sie: Sie dürfen das Vorlesungsskriptum, einen Taschenrechner

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

Mathe III. Garance PARIS. Mathematische Grundlagen III. Informationstheorie. 20. Juni /1

Mathe III. Garance PARIS. Mathematische Grundlagen III. Informationstheorie. 20. Juni /1 Mathematische Grundlagen III Informationstheorie 20 Juni 20 / Informationstheorie Ein Gerüst, um über den Informationsgehalt von (linguistischen) Ereignissen nachzudenken Einige Beispiele für Anwendungen:

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =. 2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Erzeugendensystem und Basis

Erzeugendensystem und Basis Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

Klausur Informationstheorie und Codierung

Klausur Informationstheorie und Codierung Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b.

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b. Entropie Grundlegend für das Verständnis des Begriffes der Komprimierung ist der Begriff der Entropie. In der Physik ist die Entropie ein Maß für die Unordnung eines Systems. In der Informationstheorie

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Übungsblatt Nr. 7. Lösungsvorschlag

Übungsblatt Nr. 7. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag Aufgabe (K)

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Stochastische Lernalgorithmen

Stochastische Lernalgorithmen Stochastische Lernalgorithmen Gerhard Jäger 14. Mai 2003 Das Maximum-Entropy-Prinzip Der Entropiebegriff Entropie: Chaos, Unordung, Nicht-Vorhersagbarkeit,... Begriff kommt ursprünglich aus der Physik:

Mehr

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition

Mehr

Lösungsvorschläge zu Blatt Nr. 13

Lösungsvorschläge zu Blatt Nr. 13 Institut für Algorithmen und Kognitive Systeme Dr. Jörn Müller-Quade Carmen Kempka Christian Henrich Nico Döttling Vorlesung Informatik III Lösungsvorschläge zu Blatt Nr. Aufgabe (K ( Punkte Gegeben ist

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Begriffe aus der Informatik Nachrichten

Begriffe aus der Informatik Nachrichten Begriffe aus der Informatik Nachrichten Gerhard Goos definiert in Vorlesungen über Informatik, Band 1, 1995 Springer-Verlag Berlin Heidelberg: Die Darstellung einer Mitteilung durch die zeitliche Veränderung

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

Algorithmen für Ad-hoc- und Sensornetze VL 11 Kapazität und Scheduling

Algorithmen für Ad-hoc- und Sensornetze VL 11 Kapazität und Scheduling Algorithmen für Ad-hoc- und Sensornetze VL 11 Kapazität und Scheduling Dr. rer. nat. Bastian Katz 8. Juli 2009 (Version 2 vom 13. Juli 2009) Motivation Wenn man Übertragungen optimal zeitlich plant, kann

Mehr

Übungsblatt Nr. 6. Lösungsvorschlag

Übungsblatt Nr. 6. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 6 Aufgabe (K) (4 Punkte)

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Informationstheorie Prof Dr. Matthew Crocker Universität des Saarlandes 22. Juni 205 Matthew Crocker (UdS) Mathe III 22. Juni 205 / 43 Informationstheorie Entropie (H) Wie

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Information und Codierung

Information und Codierung Richard W. Hamming Information und Codierung Technische Universität Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invantar-Nr.: Sachgebiete:. Standort: VCH Inhalt Vorwort zur 1. Auflage der Originalausgabe

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 24/25 Universität Karlsruhe 7. März 25 Priv-Doz. Dr. D. Kadelka Klausur zur Vorlesung Stochastik II Dauer: 9 Minuten Name: Vorname: Matrikelnummer: Diese Klausur

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Landmarkenbasierte anhand anatomischer Punkte interaktiv algorithmisch z.b. zur Navigation im OP Markierung von

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

K3 (Diskrete) Zufallsvariablen 3.1 Basis

K3 (Diskrete) Zufallsvariablen 3.1 Basis K3 (Diskrete) Zufallsvariablen 3.1 Basis Ω = {ω}, X(ω) ist eine Größe die durch ω bestimmt ist. Bei der zufälligen Auswahl von ω bekommen wir den Wert, X(ω). Definition: Ist (Ω, F, P) ein Wahrscheinlichkeitsraum

Mehr

Pseudo-Zufallsgeneratoren basierend auf dem DLP

Pseudo-Zufallsgeneratoren basierend auf dem DLP Seminar Codes und Kryptografie SS 2004 Struktur des Vortrags Struktur des Vortrags Ziel Motivation 1 Einleitung Ziel Motivation 2 Grundlegende Definitionen Zufallsgeneratoren 3 Generator Sicherheit 4 Generator

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester

Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Mitschrift Mathematik, Vorlesung bei Dan Fulea, 2. Semester Christian Nawroth, Erstellt mit L A TEX 23. Mai 2002 Inhaltsverzeichnis 1 Vollständige Induktion 2 1.1 Das Prinzip der Vollstandigen Induktion................

Mehr

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2)

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Streaming Data: Das Modell

Streaming Data: Das Modell Streaming Data: Das Modell Berechnungen, bei fortlaufend einströmenden Daten (x t t 0), sind in Echtzeit zu erbringen. Beispiele sind: - Verkehrsmessungen im Internet, - Datenanalyse in der Abwehr einer

Mehr

Lösungen 4.Übungsblatt

Lösungen 4.Übungsblatt Karlsruher Institut für Technology (KIT) WS 2011/2012 Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math.techn. Rainer Mandel Lösungen 4.Übungsblatt Aufgabe 13 (K) Bestimmen Sie sämtliche Häufungswerte

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur

Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Mathematische Grundlagen der Computerlinguistik III: Statistische Methoden Probeklausur Crocker/Demberg/Staudte Sommersemester 2014 17.07.2014 1. Sie haben 90 Minuten Zeit zur Bearbeitung der Aufgaben.

Mehr