mit. Wir definieren (Skalarprodukt = Winkel).

Größe: px
Ab Seite anzeigen:

Download "mit. Wir definieren (Skalarprodukt = Winkel)."

Transkript

1 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert das Funktional (z.b. Kosten- oder Gewinnfunktion ). Nach endlich vielen Schritten erreicht man so eine optimale Ecke (globales optimal, d.h. es gibt in ganz keine andere Ecke mit besserem Zielfunktionswert). 3.1 Trennungslemma: Sei eine kompakte konvexe Menge und Dann existiert eine lineare Abb. auf mit Beweis: O.B.d.A. sei und wir betrachten die Funktion. Da K abgeschlossen und beschränkt ist, existiert eine untere Schranke (Minimum) mit. Wir definieren (Skalarprodukt = Winkel). Dann gilt offensichtlich: Angenommen es existiert ein mit. Da konvex und für alle Punkte gilt:. Wir zeigen, dass beim Entfernen von zunächst abnimmt Widerspruch zur Wahl vom Minimum.

2 2 Es gilt:. Also existiert ein, (klein genug) mit: für. K 3.2 Satz: Sei die Lösungsmenge eines linearen Ungleichungssystems. Ist kompakt, dann ist die konvexe Hülle seiner Extremalpunkte (ein konvexes Polyeder). Also: Lösungsmenge und kompakt Ecken. (Schnitt der konvexen Obermengen) Beweis: Seien die Extremalpunkte und sei Es gilt, da konvex. Angenommen, es existiert ein Punkt, dann wähle nach 3.1 (Trennungslemma) ein auf, sodass gilt:

3 3 Sei nun und betrachte die kompakte konvexe Menge. (Satz 2.1.5): existiert min. eine Ecke in (Lemma 2.1.5): ist auch Ecke von, also. Widerspruch bei:. (Wie findet man Ecken eines konvexen Polyeders?) 3.3 Lemma: Sei, ein konvexes Polyeder und eine Ecke, dann ist. M. a. W.: Es gibt keine weitere Ecke, die verschieden ist von. Beweis: Sei Ecke, dann lässt sich als Konvexkombination schreiben. (Linearkombination mit nichtnegativen Koeffizienten, mit Summe = 1) Annahme:. Dann sind min. 2 der Koeffizienten größer Null. O.B.d.A.: : Dann ex. mit: und die eine Gerade mit bilden. Es gilt und ist innerer Punkt von, da gilt: Widerspruch

4 4 3.4 Satz von Minkowski: Jedes konvexe Polyeder ist die konvexe Hülle seiner Ecken (Extremalpunkte). M. a. W.: Man benötigt alle Ecken und nur die Ecken, um K darstellen zu können. Man darf Ecken nicht in der konvexen Hülle weglassen. Beweisskizze: Sei, mit paarweise verschiedenen Punkten. Es sei Ecke, dann gilt(lemma 3.3): Ecke. Gilt, dann muss Ecke. Man lässt alle Punkte weg, beginnend mit Ende bleiben nur Ecken übrig., die zur Darstellung von K nichts beitragen. Am

5 5 3.5 Definition: Sind Ecken eines konvexen Polyeders. Die Strecke heißt Kante von, wenn es kein, der innerer Punkt einer Strecke mit ist. nein ja M.a.W.: Bedeutet gerade, dass konvex ist. Die Ecken heißen benachbart, falls Kante. 3.6 Lemma: Sei konvex und eine lineare Abbildung. Es existiert ein mit und sei. Dann gilt: Ist Kante von, so ist Kante von Beweis: Sei und angenommen mit und. Da Kante von ist, können nicht beide Punkte in liegen. Ist, so ist und es gilt der Widerspruch:

6 Wie wir wissen, werden die Ungleichungen, eines linearen Ungleichungssystems, in den Ecken (Extremalpunkten) zu Gleichungen (Satz 2.1.6). Betrachtet man nun zwei Systeme von linear unabhängigen, die jeweils eine Ecke beschreiben, dann sind die Ecken benachbart, wenn sich die zwei Systeme gerade um ein unterscheiden. Das sagt folgendes Kriterium: Kantenkriterium: Sei die Lösungsmenge des Ungleichungssystems mit mit Wähle so, dass und linear unabhängig sind. Man definiere die Gerade und nehmen an, dass die Punkte mit und mit in enthalten sind. Dann sind Ecken von und ist Kante von. Insbesondere gilt: Beweis: Nach Satz sind Ecken. Noch zu zeigen: Kante: Offensichtlich gilt: und da Kante von, dann ist sie auch Kante von

7 7 3.8 Bemerkung: (Lineare Algebra I) Austauschlemma: Sei ein K-Vektorraum mit Basis und es existieren Vektoren Wählt man einen Vektor, dann entscheidet man leicht, gegen welchen Vektor man ihn austauschen kann. Es gilt folgende Linearkombination: Ist, dann ist eine neue Basis von V. Beispiel: Standardbasis von sowie und. Dann gilt: man kann beliebig vertauschen, aber man kann nicht mit tauschen, da sonst linear abhängig.

8 Tableau: Aufgrund der minimalen Basisänderung der Ausgangsbasis zu einer neuen Basis (nur ein Vektor / vereinfachen: wird verändert), lässt sich dieses Verfahren anhand eines Tableaus Pivotspalte Pivotzeile Pivot - Ausgangsbasis - weitere Vektoren - Man möchte austauschen Das ergibt folgende Gleichung: und für alle anderen Zeilen gilt Das ergibt das neue Tableau: Umformungsregeln: - ersetze den Pivot durch - Pivotzeile: alle Koeffizienten - Pivotspalte: alle Koeffizienten - andere Zeilen: betrachte den Koeffizienten in der Pivotspalte jener Zeile. Zu jedem Koeffizienten addiere das fache des neuen Koeffizienten der neuen Pivotzeile.

9 9 Beispiel: Standardbasis von und. sowie Wähle zum Tauschen gegen oder. Bei gilt: ersetze den Pivot durch alle anderen Koeffizienten in der Pivotzeile : alle anderen Koeffizienten in der Pivotspalte : betrachte nicht Pivotzeilen betrachte Koeffizienten in der Pivotspalte jener Zeile addiere das fache des neuen Koeffizienten der der neuen Pivotzeile. neues Tableau

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Hüllen und Kombinationen

Hüllen und Kombinationen Hüllen und Kombinationen 2 Die zulässigen Bereiche in der Linearen Optimierung sind Lösungen von linearen Ungleichungssystemen. Deswegen müssen wir die Werkzeuge der linearen Algebra um Elemente erweitern,

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V.

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V. L2.3 Basis und Dimension Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat Formaler: was ist die 'Dimension' von Sei Definition: 'Span' 'lineare Hülle' = alle möglichen Linearkombination der

Mehr

Lineare Optimierung und Simplex-Algorithmus

Lineare Optimierung und Simplex-Algorithmus Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen

Mehr

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine nichtleere Teilmenge des nichttrivialen Vektorraums (V, +, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine nichtleere Teilmenge

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

1 Definitionen: 6 Punkte gesamt

1 Definitionen: 6 Punkte gesamt ANTWORTEN zum KOLLOQIUM zur Einführung in die Lineare Algebra Hans G. Feichtinger Sommersemester 2014 Fr., 25. Juli 2014, 10:00, Fakultät f. Mathematik Punktezahl: (1) 6 (2) 9 (3) 5 (4) 10 TOTAL (von 30):

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 8 Dimensionstheorie Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Wenn

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Christoph Vogelsang Matr.Nr. 66547 Nils Martin Stahl Matr.Nr. 664 Seminar: Geometrie Dozent: Epkenhans Wintersemester 005/006 Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Ausarbeitung der

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

3.1 Sukzessive Minima und reduzierte Basen: Resultate

3.1 Sukzessive Minima und reduzierte Basen: Resultate Gitter und Codes c Rudolf Scharlau 4. Juni 2009 202 3.1 Sukzessive Minima und reduzierte Basen: Resultate In diesem Abschnitt behandeln wir die Existenz von kurzen Basen, das sind Basen eines Gitters,

Mehr

GEOMETRIE DER POLYEDER

GEOMETRIE DER POLYEDER GEOMETRIE DER POLYEDER Das Polyeder P sei gegeben durch P = x R n Ax b. Definition. (i) Die Hyperebene H = x R n c T x = d,c, heißt Stützhyperebene von P, falls die Ungleichungc T x d redundant ist bzgl.

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2 7 Lineare Unabhängigkeit, asis Existenzsatz M Am Ende des vorigen Paragraphen betrachteten wir bei vorgegebener Teilmenge T eines K-Vektorraumes V das Erzeugnis U von T in V. Die ildung des Erzeugnisses

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens Fachbereich Mathematik Algebra und Zahlentheorie Christian Curilla Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) Blatt 7 SoSe 2011 - C. Curilla/ B. Janssens Präsenzaufgaben (P13)

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen Definition 3.1. Es seien V und W zwei Vektorräume über demselben Zahlkörper k. Eine Abbildung heisst linear, falls gilt i) [ λ k ] [ v V ] [ f (λ v) = λ f ( v) ] ii)

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr