Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln"

Transkript

1 Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v /04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen Konstruktionsufgen für Dreieke ei gegeenen Seiten oder Winkeln zu untersuhen. Den Fll dreier gegeener Seitenlängen hen wir ereits vollständig ehndelt. Mn nennt den in diesem Rhmen ewiesenen Stz 5 uh den Kongruenzstz SSS, ws für Seite Seite Seite steht, d wir er die Seitengleihheit ls Definition der Kongruenz verwenden ist diese Bezeihnung hier eher unpssend. Wir kommen nun zum nähsten Typ von Konstruktionufgen ei dem zwei Seiten und ein Winkel vorgegeen sind. Hier git es zwei möglihe Fälle, entweder ist der Winkel der von den eiden Seiten eingeshlossene Winkel oder einer der eiden nderen Winkel. Diese eiden Fälle untersheiden sih reht deutlih voneinnder und wir eginnen mit dem eingeshlossenen Winkel. In den Stndrdezeihnungen seien etw die eiden Seiten, > 0 und der von ihnen eingeshlossene Winkel 0 < < π gegeen. Dss es dnn ein zu diesen Vorgen pssendes Dreiek git ist klr, wir müssen j nur eine Streke AB der Länge und eine Streke AC der Länge im Winkel trgen, und hen dnn ein Dreiek ABC der gewünshten. Dfür müssen wir diesml eine Eindeutigkeitsussge nhweisen, lso zeigen ds ds Dreiek durh,, is uf Kongruenz eindeutig festgelegt ist, mn spriht dnn uh vom Kongruenzstz SWS für Seite Winkel Seite. All dies läßt sih wieder equem üer den Cosinusstz durhführen. Stz 1.6 Dreiekserehnung ei zwei Seiten und dem eingeshlossenen Winkel Seien, > 0 und 0 < < π gegeen. Dnn existiert ein is uf Kongruenz eindeutiges Dreiek ABC mit AC = und AB = so, dss der Winkel ei A ist. In den Stndrdezeihnungen gelten weiter = os, os β = ros, os os γ = ros os Beweis: Die Existenz eines Dreieks ABC mit den verlngten Eigenshften hen wir ereits eingesehen. Nh dem Cosinusstz Stz 4 gilt in jedem solhen Dreiek in den ülihen Bezeihnungen = os und insesondere ist ds Dreiek 3-1

2 Mthemtishe Proleme, SS 2013 Montg 15.4 nh Stz 5 is uf Kongruenz eindeutig estimmt. Weiter hen wir = 22 2 os 2 = os os und nh Stz 5 ist dmit os β = ros os Die Gleihung für γ ergit sih nlog. Der nähste Kongruenzstz Seite Seite Winkel, oder SSW, ist etws komplizierter. Angenommen wir wollen die eiden Seiten, und den Winkel β vorgeen. Dnn trgen wir zunähst eine Streke AB der Länge. Der Winkel β git uns einen Hlstrhl H vor uf dem der dritte Ekpunkt C des gesuhten Dreieks liegen muss und die Länge git einen Kreis K mit Rdius und Mittelpunkt A uf dem C liegen muss. C A β B A β B Fll < Fll > Es können drei vershiedene Fälle uftreten. Ist < so sind wir in der links gezeigten Sitution, K entweder so klein ds er von H verfehlt wird oder so groß ds er von H gleih zweiml getroffen wird. Im ersten Fll git es dnn üerhupt kein Dreiek mit den vorgegeenen Werten und im zweiten Fll git es genu zwei niht kongruente und pssende Dreieke. Eine eindeutige Lösung git es nur in dem Rndfll ds H tngentil n K ist. Dnn ist im Shnittpunkt C ein rehter Winkel γ = π/2 und somit muss / = sin β. Im rehts gezeigten Fll > ist dgegen lles unprolemtish, der Hlstrhl H trifft den Kreis K in genu einem Punkt C und wir hen die eindeutige Lösung ABC. Im niht gezeigten Ausrtungsfll = git es dgegen für β < π/2 eine eindeutige Lösung während die Aufge für β π/2 niht lösr ist. Dmit ist uns die Sitution zumindest qulittiv klr. Zur quntittiven Behndlung können wir dnn wieder den Cosinusstz verwenden, und erhlten den sogennnten Kongruenzstz SSW. 3-2

3 Mthemtishe Proleme, SS 2013 Montg 15.4 Stz 1.7 Dreiekserehnung ei zwei Seiten und einem äußeren Winkel Seien, > 0 und ein Winkel 0 < β < π gegeen. Dnn gelten: Ist, so existiert genu dnn ein Dreiek = ABC so, dss in den Stndrdezeihnungen AC = sowie AB = gelten und β der Winkel ei B ist wenn > oder β < π/2 gilt. In diesem Fll ist is uf Kongruenz eindeutig estimmt und es gelten = os β sin 2 β, sin 2 β os β = ros 2 2 sin 2 β, γ = π β ros sin 2 β os β 2 2 sin 2 β Sei <. Dnn existiert genu dnn ein Dreiek = ABC so, dss in den Stndrdezeihnungen AC = sowie AB = gelten und β der Winkel ei B ist wenn β rsin/ gilt. Ist β = rsin/ so ist is uf Kongruenz eindeutig estimmt und rehtwinklig mit = 2 2, = π/2 β und γ = π/2. Ist dgegen β < rsin/, so git es is uf Kongruenz zwei solhe Dreieke eines mit = os β 2 2 sin 2 β und eines mit = os β+ 2 2 sin 2 β.. Beweis: Zunähst sei = ABC ein Dreiek mit AB =, AC = und Winkel β ei B. Nh dem Cosinusstz Stz 4 ist 2 = os β, lso hen wir 2 2 os β = 0, und fssen wir dies ls qudrtishe Gleihung für uf, so ergit sih = os β ± 2 os 2 β = os β ± 2 2 sin 2 β. Wegen ist 2 2 sin 2 β 2 2 sin 2 β = os β os β, lso ist uh os β 2 2 sin 2 β 0 und wir hen = os β sin 2 β. Im Fll = ist dnn = os β sin 2 β = os β + os β lso muss os β > 0 und somit β < π/2 sein. Weiter sind 2 = 2 os β und = 22 2 os β 2 = os2 β os β 2 2 sin 2 β 3-3 = sin2 β os β 2 2 sin 2 β,

4 Mthemtishe Proleme, SS 2013 Montg 15.4 lso ist nh Stz 5 is uf Kongruenz eindeutig estimmt und es gelten sin 2 β os β = ros 2 2 sin 2 β sowie γ = π β = π β ros sin 2 β os β 2 2 sin 2 β. Umgekehrt hen wir ereits eingesehen ds us > oder β < π/2 die Existenz eines Dreieks mit den geforderten Eigenshften folgt. Aus unserer Vorüerlegung wissen wir ereits ds kein pssendes Dreiek existiert wenn β > rsin/ ist. Im Fll β = rsin/ git es dgegen ein eindeutiges solhes Dreiek und im Fll β < rsin/ hen wir genu zwei solhe Dreieke. Ist β = rsin/, so hen wir 2 2 sin 2 β = 0 und somit = os β = 1 sin 2 β = 2 2. Insesondere ht in C einen rehten Winkel, lso γ = π/2 und = π/2 β. Ist dgegen β < rsin/, so git es zwei Dreieke mit den vorgeshrieenen Werten für,, β er vershiedenen Werten für, lso müssen eide oige Lösungen für vorkommen. Es verleien nur noh die Konstruktionsufgen mit einer vorgegeenen Seite und zwei vorgegeenen Winkeln. D die Winkelsumme 180 ist, spielt es dei keine Rolle welhe Winkel vorgegeen werden, sind zwei Winkel eknnt so stehen ereits lle drei Winkel fest. Der entstehende Stz ist dnn der sogennnte Kongruenzstz Seite Winkel Winkel, lso SWW, und zur Berehnung der fehlenden Seitenlängen verwenden wir den sogennnten Sinusstz, den wir zunähst einml eweisen wollen. Stz 1.8 Der Sinusstz Sei ein Dreiek mit Seiten,, und Winkeln, β, γ in der Stndrdezeihnung. Dnn gilt sin = sin β = sin γ und ezeihnet h, h, h die Höhen uf den jeweiligen Seiten,, so hen wir h = sin β = sin γ, h = sin = sin γ, h = sin = sin β, Beweis: Wir eginnen mit der Aussge üer die Höhen und dei reiht es h = sin zu zeigen, die nderen Gleihungen gehen us dieser durh Umezeihnungen hervor. 3-4

5 Mthemtishe Proleme, SS 2013 Montg 15.4 Wir shreien h = h. Im Fll = π/2 fllen h und zusmmen und wegen sinπ/2 = 1 ist in diesem Fll sofort h = sin. Wir können lso π/2 nnehmen und wie eim Cosinusstz treten drei möglihe Fälle uf. h h h p p p Fll 1 Fll 2 Fll 3 Im ersten Fll ist 0 < < π/2 und h liegt im Dreiek. Dnn lesen wir den Sinus von im links uftuhenden rehtwinkligen Dreiek und hen sin = h/, lso h = sin. Im zweiten Fll ist 0 < < π/2 weiterhin ein spitzer Winkel er h liegt ußerhl des Dreieks. Dnn verlängern wir die Seite wie gezeigt zu einem rehtwinkligen Dreiek und in diesem lesen wir den Sinus von wieder ls sin = h/, hen lso wieder h = sin. Im letzten Fll ist π/2 < < π ein stumpfer Winkel. Betrhten wir dnn ds links uftuhende rehtwinklige Dreiek ACH woei H der Fußpunkt von h = h uf AB ist, so liegt in diesem ei A der Winkel π n, lso ist sin = sinπ = h lso erneut h = sin. Der eigentlihe Sinusstz ist jetzt eine unmittelre Folgerung, wegen und wegen sin β = sin γ ist sin β = sin γ sin = sin γ hen wir uh sin = sin γ. Dmit kommen wir jetzt zum finlen Kongruenzstz SWW: Stz 1.9 Dreiekserehnung ei einer Seite und zwei Winkeln Seien > 0 und 0 <, β < π gegeen. Dnn existiert genu dnn ein Dreiek = ABC mit AB = und Winkeln ei A und β ei B wenn + β < π ist. In diesem Fll ist is uf Kongruenz eindeutig estimmt und es gelten = sin sin + β, = sin β sin + β, γ = π β. 3-5

6 Mthemtishe Proleme, SS 2013 Montg 15.4 Beweis: D die Winkelsumme im Dreiek gleih π ist, ist die Bedingung + β < π notwendig für die Existenz eines pssenden Dreieks. Nun nehme umgekehrt +β < π n. A C β B Dnn trgen wir eine Streke AB der Länge und ilden im Winkel einen von A usgehenden Hlstrhl und im Winkel β einen von B usgehenden Hlstrhl. Diese eiden shneiden sih in einem Punkt C und dnn ist ABC ein Dreiek mit AB = und Winkel ei A und β ei B. Dmit ist die Existenzussge ewiesen, und wir kommen nun zur Eindeutigkeit. Sei lso ein elieiges Dreiek des gesuhten Typs gegeen. Dnn ist γ = π β und Mit dem Sinusstz Stz 8 folgen und eenso = sin sin γ = sin sinπ + β = = sin β sin γ = sin β sin + β. Insesondere ist is uf Kongruenz eindeutig estimmt. sin sin + β Die oige Konstruktion des Punktes C verdient noh einen kleinen Kommentr. Wir htten ereits gnz zu Beginn ngemerkt ds mn die eene Geometrie uh xiomtish ufuen knn, und ds Ureispiel eines solhen Aufus sind die Elemente des Euklid. Diese sind im Zeitrum um 300 vor Christus entstnden und eines der dort verwendeten Axiome ist ds sogennnte Prllelenxiom 3-6

7 Mthemtishe Proleme, SS 2013 Montg 15.4 Shneiden zwei Streken eine Gerde in zwei gegenüerliegenden Winkeln die zusmmen kleiner ls zwei Rehte sind, so treffen sih diese Streken ei Verlängerung ins Unendlihe in einem Punkt der uf der Seite der Gerden liegt in der die eiden gegenüerliegenden Winkel sind die zusmmen kleiner ls zwei Rehte sind. Der Nme Prllelenxiom entsteht d diese Aussge unter Vorussetzung der ürigen Axiome dzu äquivlent ist, dss es zu jeder Gerden und zu jedem Punkt ußerhl der Gerden stets genu eine Gerde durh den Punkt git welhe die vorgegeene Gerde niht trifft. Unser Beweis des SWW-Stzes zeigt ds der Kongruenzstz SWW im wesentlihen zum Prllelenxiom äquivlent ist. Ttsählih wird ei vielen Axiomensystemen für die eene Geometrie die eine oder ndere Form eines Kongruenzstzes ls Axiom verwendet. Zusmmenfssend hen wir dmit die folgenden Kongruenzussgen eingesehen: Zwei Dreieke sind genu dnn kongruent wenn sie in llen drei Seiten, in zwei Seiten und dem von ihnen eingeshlossenen Winkel, in zwei Seiten und dem der längeren Seite gegenüerliegenden Winkel, in einer Seite und zwei Winkeln üereinstimmen. 1.5 Einige spezielle Punkte im Dreiek Mit den speziellen Punkten in einem Dreiek sind Punkte gemeint die in irgendeiner knonishen Weise geometrish us dem Dreiek herus konstruiert werden können, lso eispielsweise der Shnittpunkt der Seitenhlierenden oder der Shnittpunkt der Mittelsenkrehten. Wir ehndeln hier huptsählih die vier wihtigsten von diesen, und dies sind die jeweiligen Shnittpunkte der Seitenhlierenden, der Winkelhlierenden, der Mittelsenkrehten und der Höhen. Dies hängen eng mit dem Innkreis und dem Umkreis eines Dreieks zusmmen. Ein wihtiges Hilfsmittel zur Diskussion dieser Punkte ist der Ähnlihkeitsegriff für Dreieke, mn nennt zwei Dreieke, ähnlih zueinnder wenn in ihnen entsprehende Winkel gleih sind, wenn lso in den Stndrdezeihnungen =, β = β und γ = γ gelten. Aus den Kongruenzsätzen des vorigen Ashnitts können wir leiht entsprehende Aussgen üer ähnlihe Dreieke herleiten, ws wir dnn in der nähsten Sitzung durhführen werden. 3-7

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr Geometrie Dreieke: Konstruktionen Kongruente Dreieke Dtei Nr. 11111 DEM Friedrih ukel Stnd: 19. Juni 2017 INTERNETILITHEK FÜR SHULMTHEMTIK www.mthe-d.shule 11111 Dreieke 1 Kongruenz 2 Inhlt 1. Konstruktion

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Einige elementargeometrische Sätze über Dreiecke

Einige elementargeometrische Sätze über Dreiecke Seite I Einige elementrgeometrische Sätze üer Dreiecke Durch drei nicht uf einer Gerden gelegene (d.h. nicht-kollinere) Punkte A, B, C in der euklidischen Eene ein Dreieck ABC mit Seiten,, c und (Innen-)Winkeln,,

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc EINFÜHRUNG IN DIE GEOMETRIE SS 05 50 DEISSLER skript05-temp.do 5 Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Mihel Gieding h-heidelerg.de/w/gieding Einführung in die Geometrie Skrit zur gleihnmigen Vorlesung im Wintersemester 2006/2007 Kitel 3: Prllelität Vo r l e s u n g 1 1 : D e r I n n e n w i n k e l

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

Mathematische Probleme, SS 2013 Montag 8.4. $Id: dreieck.tex,v /04/09 10:49:12 hk Exp hk $

Mathematische Probleme, SS 2013 Montag 8.4. $Id: dreieck.tex,v /04/09 10:49:12 hk Exp hk $ $Id: dreiek.tex,v 1.2 2013/04/09 10:49:12 hk Exp hk $ 1 Dreieke In diesem Kpitel wollen wir die sogennnte Dreiekslehre ls Teil der Elementrgeometrie der Eene ehndeln. Wie in dieser gnzen Vorlesung sind

Mehr

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel.

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel. Dreieke Shüleruhseite 8 5 Dreieke uftkt Seiten 8, 9 Seite 8 Ds Rehtek knn niht mehr verformt werden, wenn mn zwei gegenüerliegende Eken mit einem 5er-Streifen verindet. Dmit ds Sehsek seine Form ehält,

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Besondere Linien und Punkte im Dreieck

Besondere Linien und Punkte im Dreieck Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

Musterlösung zur Probeklausur zur Geometrie

Musterlösung zur Probeklausur zur Geometrie UNIVERSITÄT ULM Institut für Zhlentheorie un Whrsheinlihkeitstheorie Musterlösung zur Proeklusur zur Geometrie Prof. Dr. Helmut Mier, Hns- Peter Rek Gesmtpunktzhl: 3 Punkte, Punkte= % keine Age. Gi Definitionen

Mehr

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Repetitionsaufgaben: Trigonometrische Funktionen

Repetitionsaufgaben: Trigonometrische Funktionen Repetitionsufgen: Trigonometrishe Funktionen Inhltsverzeihnis Zusmmengestellt von Luks Fisher, KSA Voremerkungen und Lernziele....... 2 I. Trigonometrie im Dreiek...... 3 1. Trigonometrie im rehtwinkligen

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19 Alger Vorlesung (.Teil) Mg. Dniel Zeller INHALTSVERZEICHNIS 0. Linere Gleihungen mit zwei Vrieln... 9 Eine linere Gleihung in Vrilen... 9 Geometrishe Deutung einer lineren Gleihung in Vrilen... Gleihungssystem

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. 9 Rettungsring Umfng und Fläheninhlt von Figuren Begriffe: Umfng und Fläheninhlt 1 Muss der Umfng (u) oder der Fläheninhlt () erehnet werden? Kreuze n! u B C D E F G H Zun eines Grundstüks Rsenflähe eines

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus Der Stz von Ptolemäus 1 Geometrie Der Stz von Ptolemäus Autor: Peter Anree Inhltsverzeihnis 8 Der Stz von Ptolemäus 1 8.1 Der Stz von Ptolemäus un sein lssisher Beweis........... 1 8.2 Verhältnis er Digonlen

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Trigonometrie 1/11. Trigonometrie. Teil 1 Grundlagen

Trigonometrie 1/11. Trigonometrie. Teil 1 Grundlagen Trigonometrie 1/11 Trigonometrie Teil 1 Grundlgen Lehrstoff Trigonometrie o Definieren von sin, os, tn für 0 360 o Durhführen von erehnungen n rehtwinkligen und llgemeinen Dreieken, n Figuren und Körpern

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales

Vektorrechnung in der Ebene Beweis des Satz des Thales. u v ACB. = a b a a + b b b a. = a b a + b a b. Beispiel 3 Satz des Thales Vektorrehnung in der Eene Beweis des St des Thles Beispiel 3 St des Thles Mn eweise den St des Thles: Jeder Peripheriewinkel üer einem Kreisdurhmesser AB ist ein rehter Winkel. C 1 C C 3 Beweis: A M B

Mehr

Aufgaben zur Vorbereitung auf die Landesrunde der Mathematik-Olympiade für Klasse 7 - Teil 2

Aufgaben zur Vorbereitung auf die Landesrunde der Mathematik-Olympiade für Klasse 7 - Teil 2 Bezirkskomitee Chemnitz zur Förderung mthemtish-nturwissenshftlih begbter und interessierter Shüler www.bezirkskomitee.de Aufgben zur orbereitung uf die Lndesrunde der Mthemtik-Olympide für Klsse 7 - Teil

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur)

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur) Geometrie - Lösungen estimmungsufgben ufgbe 1) Geg.: () ; (b) ; () F = 145 ; Ges.: = G; =. (ezeihnungen siehe Figur) F G Lösung: () (1) = 180-145 = 35 ; [Nebenwinkelstz für F]. (),(1) () = = 35 ; [Stufenwinkelstz].

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2013/2014

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2013/2014 Lndeswettewer Mthemtik Bden-Württemerg Musterlösungen. Runde 0/04 Aufge Eine Zhlenfolge eginnt mit den positiven Zhlen und. Die weiteren Zhlen werden geildet, indem mn wehselnd die Summe und den Quotienten

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

a) Behauptung: Es gibt die folgenden drei stabilen Matchings:

a) Behauptung: Es gibt die folgenden drei stabilen Matchings: Musterlösung - ufgenltt 1 ufge 1 ) ehuptung: Es git ie folgenen rei stilen Mthings: ies knn mn ntürlih für ein so kleines eispiel urh etrhten ller möglihen 3! = 6 Mthings eweisen. Mn knn er uh strukturierter

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

2 Mathematik: Fourier Analyse und Delta Funktion

2 Mathematik: Fourier Analyse und Delta Funktion Skript zur 2. Vorlesung Quntenmehnik, Freitg den 5. April, 20. 2 Mthemtik: Fourier Anlyse und Delt Funktion Fourier Anlyse ist ein wihtiges mthemtishes Hilfsmittel bei der Anlyse von Wellen und, dher,

Mehr

2. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

2. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettewer Mthemtik Wissenshftszentrum, Postfh 20 4 48, 5344 Bonn Fon: 0228-3727 4 Fx: 0228-3727 43 e-mil: info@undeswettewer-mthemtikde wwwundeswettewer-mthemtikde Korrekturkommission Krl Fegert Aufgen

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

27 Der Hauptsatz der Differential- und Integralrechnung nebst Folgerungen

27 Der Hauptsatz der Differential- und Integralrechnung nebst Folgerungen 27 Der Huptstz der Differentil- und Integrlrehnung nebst Folgerungen 27.2 Additivität des Riemnn-Integrls bzgl. Intervllen 27.3 Formle Erweiterung des Riemnn-Integrls 27.6 Ds Integrl ls Funktion der oberen

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen

3 Punkte, Ortsvektoren und Verbindungsvektoren. Zunächst im 2-dimensionalen: A 4 1 , C 2 4. und D 3 1 Koordinatensystem. in einem kartesischen Punkte Ortsvektoren und Verindungsvektoren Punkte Ortsvektoren und Verindungsvektoren Zunähst im -dimensionlen: A 4 Gegeen sind die Punkte B 5 C 4 und D Koordintensystem. in einem krtesishen AB CD d Zu

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr