2. Schwingungen eines Einmassenschwingers

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Schwingungen eines Einmassenschwingers"

Transkript

1 Baudynamik (Master) SS Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen Freie ungedämpfte Schwingungen Federzahlen und Federschaltungen Freie gedämpfte Schwingungen 2.2 Erzwungene Schwingungen Erzwungene ungedämpfte Schwingungen Erzwungene gedämpfte Schwingungen 1

2 Baudynamik (Master) SS Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen Freie ungedämpfte Schwingungen Federzahlen und Federschaltungen Freie gedämpfte Schwingungen Literatur: Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik 3. Springer-Verlag,

3 Baudynamik (Master) SS Freie Schwingungen Freie ungedämpfte Schwingungen 3

4 Freie ungedämpfte Schwingungen 2. Newtonsches Gesetz: Eigenfrequenz: Schwingungsgleichung 2 mx+cx = 0 x+ x=0 c m Freie Schwingung wird häufig auch als Eigenschwingung bezeichnet. Die dynamischen Eigenschaften eines Systems werden durch die freie Schwingung des Systems beschrieben. 4

5 Freie ungedämpfte Schwingungen Lösung der Differentialgleichung: xt () Acost Bsin( t) Die unbekannten Integrationskonstanten A und B können aus den Anfangsbedingungen (AB) bestimmt werden. Anfangsbedingungen: x(0) x A x x(0) v0 B v Lösung der Differentialgleichung: v ( ) cos sin( ) 0 xt x t t 0 5

6 Freie ungedämpfte Schwingungen Alternative Darstellung der Lösung: xt () Ccost Die unbekannten Integrationskonstanten C und können aus den Anfangsbedingungen (AB) bestimmt werden. Anfangsbedingungen: x(0) x x (0) v 0 0 C : Schwingungsamplitude : Phasenwinkel C x v / 2 v 0 arctan x0 6

7 Freie ungedämpfte Schwingungen Einfluss des Eigengewichtes: Schwingungsgleichung: 2 x+ x=0 Eigenfrequenz: c m Statische Ruhelage: x st mg c Das Gewicht der Masse hat also keinen Einfluss auf die Schwingung, wenn die Auslenkung von der statischen Ruhelage x st aus gezählt wird. 7

8 Freie ungedämpfte Schwingungen Andere Beispiele: 1.) Mathematisches Pendel g + sin= 0 l g + = l sin bei =0 g l 8

9 Freie ungedämpfte Schwingungen 2.) Physikalisches Pendel A +mgl sin = 0 sin bei 1 Trägheitsmoment: A A +mgl =0 2 + =0 mgl A 9

10 Baudynamik (Master) SS Freie Schwingungen Federzahlen und Federschaltungen 10

11 Federkonstanten Federzahl bzw. Federkonstante: F F cl c l l l Federzahl Kraft Verschiebung Beispiel: Stab F Fl F EA l c EA l l 11

12 Federkonstanten Beispiel: Balken w Fl 3 48 c F EI B 3 48EI w l 12

13 Federkonstanten 13

14 Federschaltungen 1.) Parallelschaltung x Charakteristik: Gleiche Verschiebung in den Federn! F c xc xc x 1 2 x c c c 1 2 Verallgemeinerung: 1 2 c c c... c N c N i1 i 14

15 Federschaltungen 2.) Reihenschaltung x 1 x2 x Charakteristik: Gleiche Kraft in den Federn! F cx cx cx x x x x F F F c c c c c c 1 2 Verallgemeinerung: N c c c c c N i1 i

16 Federschaltungen 3.) Kombination von Parallel- und Reihenschaltung c12 c3 c c c c c c c c c

17 Baudynamik (Master) SS Freie Schwingungen Freie gedämpfte Schwingungen 17

18 Freie gedämpfte Schwingungen d F F d x, x Dämpfungskraft: Fd dx Diese Dämpfungsart nennt man viskose Dämpfung (z.b. Stoßdämpfer im Fahrzeug). Die Dämpfungskraft F d wirkt immer entgegengesetzt zu der Geschwindigkeit. d: Dämpfungskonstante (Einheit: Kraft/Geschwindigkeit) 18

19 Freie gedämpfte Schwingungen Newton: mx cx dx mx dx cx x x x d 2m : Abklingkoeffizient c m 19

20 Freie gedämpfte Schwingungen Exponentialansatz: x Ae t x x x Charakteristische Gleichung ,2 D 1 D : Dämpfungsgrad, Lehrsches Dämpfungsmaß 20

21 Freie gedämpfte Schwingungen 1.) D>1: Starke Dämpfung Lösung: D 1 (reell) 1, x Ae Ae e Ae Ae t t t t t Die Konstanten A 1 und A 2 können aus den AB bestimmt werden. t t e Ae 1 0 bei t, da! Kriechbewegung (keine Schwingung)! 21

22 Freie gedämpfte Schwingungen 2.) D=1: Aperiodischer Grenzfall Lösung: D 1 (reell) 1, t 2t t x Ae Ate e A At Die Konstanten A 1 und A 2 können aus den AB bestimmt werden. t xt () e A At 0 bei t! 1 2 Kriechbewegung (keine Schwingung)! Der Ausschlag im Grenzfall D=1 klingt schneller als bei starker Dämpfung D>1 ab! Im Grenzfall D=1:, d 2mc 22

23 Freie gedämpfte Schwingungen 3.) D<1: Schwache Dämpfung 2 2 1,2 D 1 i 1 D id (komplex) 0 0 Lösung: Alternativ: 1t 2t t d x Ae Ae e Ae Ae i t idt t = e ( A A )cos( t) i( A A )sin( t) 1 2 d 1 2 t = e Acos( t) Bsin( t) d Die Konstanten A und B können aus den AB bestimmt werden. t x Ce cos( t) Die Bewegung ist eine Schwingung! d d d 23

24 Freie gedämpfte Schwingungen t xt () Ce cos( t) d xtt Ce tt ( ttd ) ( d) cos d( d) t Td Ce e cos( t ) d xt () xt ( T ) d e T d Das logarithmische Dekrement kann experimentell bestimmt werden. Danach kann D oder d bestimmt werden! xt () 2 2D ln Td xt ( Td ) d 1 D Logarithmisches Dekrement 2 24

25 Freie gedämpfte Schwingungen Zusammenfassung: Dämpfung d 2m Abklingkoeffizient D (2 ) 2 2 Dämpfungsgrad D 2 2 (2 ) Logarithmisches Dekrement D 1 D 2 25

26 Baudynamik (Master) SS Schwingungen eines Einmassenschwingers 2.2 Erzwungene Schwingungen Erzwungene ungedämpfte Schwingungen Erzwungene gedämpfte Schwingungen Literatur: Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik 3. Springer-Verlag,

27 Baudynamik (Master) SS Erzwungene Schwingungen Erzwungene ungedämpfte Schwingungen 27

28 Erzwungene ungedämpfte Schwingungen Differentialgleichung: mx+cx = F cos( t) x+ x= x t 0 cos( ) Statische Auslenkung: x 0 F c 0 Allgemeine Lösung: x() t x () t x t x x h p h ( t) : homogene Lösung ( t) : Partikularlösung p 28

29 Erzwungene ungedämpfte Schwingungen Homogene Lösung: Die homogene Lösung ist gleich der Lösung der ungedämpften freien Schwingung: xh () t C cos t Partikularlösung: x () t xv cos t p 0 V : Vergrößerungsfunktion, Amplituden-Frequenzgang Durch das Einsetzen der Partikularlösung in die Dgl. kann die Vergrößerungsfunktion V bestimmt werden. 29

30 Erzwungene ungedämpfte Schwingungen Vergrößerungsfunktion: V Frequenzverhältnis, Abstimmung: 30

31 Erzwungene ungedämpfte Schwingungen Sonderfälle: 1.) Statische Belastung: 0 0 V 1 xp () t x Statischer Ausschlag! 0 F c 0 31

32 Erzwungene ungedämpfte Schwingungen 2.) Resonanz: 1 V xp () t Resonanz tritt auf, wenn die Erregerfrequenz gleich der Eigenfrequenz ist. In diesem Fall ist die Schwingungsamplitude unendlich groß! Daher: Resonanz möglichst vermeiden! Partikularlösung im Resonanzfall: 1 x () p t x0tsin t 2 instabil! 32

33 Erzwungene ungedämpfte Schwingungen 3.) Sehr große Erregerfrequenz: V 0 xp () t 0 Bei sehr hoher Erregerfrequenz keine Antwort vom System! Das System ist nicht mehr in der Lage, auf die Erregung zu reagieren! 33

34 Erzwungene ungedämpfte Schwingungen Allgemeine Lösung: x x x Ccos( t) xv cos( t) h p 0 Die Konstanten C und können aus den Anfangsbedingungen (AB) bestimmt werden. 34

35 Baudynamik (Master) SS Erzwungene Schwingungen Erzwungene gedämpfte Schwingungen 35

36 Arten der Erregungen Mögliche Fälle: 1.) Krafterregung 2.) Federerregung 3.) Dämpfererregung 4.) Unwuchterregung 5.) Fußpunkterregung 1.) 2.) 3.) Für alle 5 Fälle kann eine einheitliche Differentialgleichung bzw. Schwingungsgleichung hergeleitet werden! 4.) 5.) 36 x cos E x0 t

37 Erzwungene gedämpfte Schwingungen Differentialgleichung: 1 2D 2 Allgemeine Lösung: cos x x x x 0E t 1, Fall 1.), 2.): Krafterregung & Federerregung E 2 D, Fall 3.): Dämpfererregung 2, Fall 4.), 5.): Unwuchterregung & Fusspunkterregung x() t x () t x t x x h p h ( t) : homogene Lösung ( t) : Partikularlösung p 37

38 Erzwungene gedämpfte Schwingungen Homogene Lösung: Die homogene Lösung ist gleich der Lösung der freien gedämpften Schwingung. Sie klingt exponentiell ab. () t x t Ce cos t h d 38

39 Erzwungene gedämpfte Schwingungen Homogene Lösung: Nach hinreichend großer Zeit ist x h (t) im Vergleich zu x p (t) vernachlässigbar klein, d.h., x () t x () t h p x() t x () t x () t x (), t t t h p p E Die Schwingung bis zu diesem Zeitpunkt t E nennt man Einschwingvorgang! Partikularlösung: x () t x V cos t p 0 V : Vergrößerungsfunktion, Amplituden-Frequenzgang : Phasenverschiebung, Phasen-Frequenzgang 39

40 Erzwungene gedämpfte Schwingungen Durch Einsetzen der Partikularlösung in die Differentialgleichung und dann Koeffizienten-Vergleich können die Vergrößerungsfunktion und die Phasenverschiebung bestimmt werden. 2 2 cos( t) : (- cos2dsin cos ) V E sin( t) : - sin2dcossin 0 V... tan... 40

41 Erzwungene gedämpfte Schwingungen Vergrößerungsfunktion bzw. Amplituden-Frequenzgang: V E (1 ) 4D Phasenverschiebung bzw. Phasen-Frequenzgang: 2D tan

42 Erzwungene gedämpfte Schwingungen Fall 1.) & 2.): V 1 Fall 3.): V 2 Fall 4.) & 5.): V 3 42

43 Erzwungene gedämpfte Schwingungen Charakteristische Werte von V() und (): V (0) V (1) V ( ) V ( ) m m m Fall 1.) und 2.) 1 1 2D D 1 2 2D 1 D Fall 3.) Fall 4.) und 5.) 0 1 2D D 1 2D 1 D 2 (0) (1) ( ) Fall 1.) 5.)

44 Erzwungene gedämpfte Schwingungen Eigenschaften von V 1 : Fall 1.) & 2.) # D 0 : Ungedämpfte Schwingungen, Resonanz bei 1. # D1: V 1/ 2 D, Resonanz bei 1. 1m # D 0,5: V 1/(2D 1 D ) bei 12 D m m 2 # D 0,5: V1 m 1 bei m 0, Kurven fallen monoton gegen 0. m Eigenschaften von V 2 : Fall 3.) Maximum V 1 ist unabhängig von D und immer bei 1! 2m m 44

45 Erzwungene gedämpfte Schwingungen Eigenschaften von V 3 : Fall 4.) & 5.) # D 0 : Ungedämpfte Schwingungen, Resonanz bei 1. # D1: V 1/ 2 D, Resonanz bei 1. 3m # D 0,5: V 1/(2D 1 D ) bei 1/ 1 D m m 2 V3m m # D 0,5 : 1 bei, Kurven wachsen monoton gegen 1. Phasenverschiebung für alle 5 Fälle: # D 0 : Sprung von 0 nach bei 1 (Resonanz). # 1: Niederige Erregerfrequenz, 0, Ausschlag und Erregung in Phase. # 1: Hohe Erregerfrequenz,, Ausschlag und Erregung in Gegenphase. Die Phasenverschiebung gibt an, um wieviel der Ausschlag hinter der Erregung nacheilt! m 45

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 16 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 2016 Prof. Dr.-Ing.

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Beispiel: Erzwungene gedämpfte Schwingungen

Beispiel: Erzwungene gedämpfte Schwingungen Lineare Dgln. mit konstanten Koeffizienten Zur Startseite TM-Mathe Gewöhnliche Dgln. (Grundlagen) Differenzialgleichungen 1. Ordnung Lineare Dgln. mit konstanten Koeffizienten Lineare Differenzialgleichungen

Mehr

1. Einführung. Baudynamik (Master) SS 2017

1. Einführung. Baudynamik (Master) SS 2017 Baudynamik (Master) SS 2017 1. Einführung 1.1 Bedeutungen der Baudynamik 1.2 Grundbegriffe und Klassifizierung 1.3 Modellierung der Bauwerksschwingungen LEHRSTUHL FÜR BAUSTATIK 1 Baudynamik (Master) SS

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

Mathematik 2 für Ingenieure

Mathematik 2 für Ingenieure Skriptum zur Vorlesung Mathematik für Ingenieure Differentialgleichungen Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner) Fachhochschule Pforzheim FB-Ingenieurwissenschaften,

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

4 Erzwungene Schwingungen konservativer Schwingungssysteme

4 Erzwungene Schwingungen konservativer Schwingungssysteme 23 4 Erzwungene Schwingungen konservativer Schwingungssysteme Die allgemeine Lösung einer inhomogenen linearen Schwingungsgleichung findet man durch Überlagerung der homogenen Lösung (freie Schwingungen)

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

PS1. Grundlagen-Vertiefung Version

PS1. Grundlagen-Vertiefung Version PS1 Grundlagen-Vertiefung Version 14.03.01 Inhaltsverzeichnis 1 1.1 Freie Schwingung................................ 1 1.1.1 Gedämpfte Schwingung......................... 1 1.1. Erzwungene Schwingung........................

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

15 Erzwungene Schwingungen

15 Erzwungene Schwingungen 11 Unwuchen in elasischen Rooren oder Fahrbahnunebenheien bei Fahrzeugen führen auf erzwungene Schwingungen. Berache werden soll im Folgenden der Fall der Schwingungserregung durch eingepräge Kräfe. Bei

Mehr

Modalanalyse am Zweimassenschwinger

Modalanalyse am Zweimassenschwinger 6 A? D E I? D A 7 E L A H I E J J * A H E 4 6 4 6. = K J J 1 1 1 1 I J E J K J B H H A I I K @ ) = C A J A? D E H B, H 1 C 4 E C. =? D C A > E A J A I I K @ 4 A C A K C I J A? D E TU Berlin Sekretariat

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

Physikalisches Grundpraktikum. Mechanische Schwingungen

Physikalisches Grundpraktikum. Mechanische Schwingungen Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: Hhttp://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

8 Freie Schwingungen kontinuierlicher Systeme

8 Freie Schwingungen kontinuierlicher Systeme 51 Freie Schwingungen sind Lösungen der partiellen Differentialgleichung gegebene Anfangs- und Randbedingungen. Das Vorgehen ist die eindimensionale Wellengleichung und die Balkenbiegung einheitlich und

Mehr

Baudynamik und Zustandsanalyse

Baudynamik und Zustandsanalyse Baudynamik und Zustandsanalyse Eine Einführung in die Baudynamik mit Mathematica Das vorliegende Skript wurde im Original mit dem Programmsystem MATHEMATICA von WOLFRAM-Research [http://www.wolfram.com]

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Physikalisches Praktikum I. Erzwungene Schwingung und Resonanz

Physikalisches Praktikum I. Erzwungene Schwingung und Resonanz Fachbereich Physik Physikalisches Praktikum I Name: Erzwungene Schwingung und Resonanz Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Erzwungene Schwingung und Resonanz

Erzwungene Schwingung und Resonanz M30 Name: Erzwungene Schwingung und Resonanz Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Das 2. Newtonsche Gesetz liefert folgende Bewegungsgleichung. mx"(t) = -k x (t) - b x'(t) (1) x" + 2γ x' + ω 0 2 x = 0 (2)

Das 2. Newtonsche Gesetz liefert folgende Bewegungsgleichung. mx(t) = -k x (t) - b x'(t) (1) x + 2γ x' + ω 0 2 x = 0 (2) 6.2-1 6.2 Schwingungen II 6.2.1 Freie Schwingungen mit Dämpfung Bis jetzt haben wir Reibungskräfte außer Acht gelassen. Aber jedes mechanische System besitzt einen gewissen Grad an innerer Reibung, die

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Mathematik II. für Bereich IT 2. Sem. Prof. Dr. K. Blankenbach

Mathematik II. für Bereich IT 2. Sem. Prof. Dr. K. Blankenbach Mathematik II für Bereich IT. Sem. Inhalt: Prof. Dr. K. Blankenbach 1. Differentialgleichungen Anwendungsgebiete: Bewegungen, RC-Lade- und Entladekurve, Wärmelehre, mechanische und elektrische Schwingungen,

Mehr