Kapitel 12: Induktive

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 12: Induktive"

Transkript

1 Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter Gumm, Philipps-Universität Marburg

2 Überblick Induktive Datenbereiche Listen, verkettete Listen Doppelt verkettete Listen LinkedList Bäume, Binärbäume Praktische Informatik I, HWS 2009, Kapitel 12 Seite 2

3 Induktiv definierte Daten Die natürlichen Zahlen sind induktiv definiert 0 ist eine natürliche Zahl Wenn N eine natürliche Zahl ist, dann auch N+1 Binärzahlen kann man induktiv definieren Jede der Ziffern 0 und 1 ist eine Binärzahl Ist B eine Binärzahl, dann auch B0 und B1. Strings kann man induktiv definieren Der leere String ist ein String Ist S ein String und z ein Zeichen, dann ist S z ein String Listen die leere Liste [ ] ist eine Liste ist e ein Element und L = [ x 1,, x n ] eine Liste, dann ist auch cons(e,l) := [ e, x 1,, x n ] eine Liste. 0,,,,,,,... 0, 1, 00, 01, 10, 11, 000, 001, 010, 011,, a, b,..., aa, ab,..., ba, bb,... aaa, aab,... [ ], [ 2,3,5 ], [1,6, 19, 24, 0, 42 ] Binärbäume (ohne Blätter) Der leere Baum ist ein Binärbaum Sind B 1 und B 2 Binärbäume, dann auch B 1 B 2 Praktische Informatik I, HWS 2009, Kapitel 12 Seite 3

4 Listen, rekursiv definiert Liste definiert mittels Liste Eine Liste ist entweder die leere Liste oder sie hat ein erstes Element und eine Rest-Liste Objektreferenz null bedeutet leere Liste new Liste<E>(e) ergibt Referenz auf einelementige Liste des Typs E public class Liste<E> { // Objektfelder: private E inhalt; private Liste rest; // Konstruktoren: public Liste(E e) { inhalt = e; rest = null; public Liste(E e, Liste l) { inhalt = e; rest = l;... Praktische Informatik I, HWS 2009, Kapitel 12 Seite 4

5 ... und Test... verkettete Liste Praktische Informatik I, HWS 2009, Kapitel 12 Seite 5

6 Länge berechnen, typisch rekursiv Länge einer Liste: 1 falls Liste nur ein Element enthält sonst: Länge der Restliste +1 public class Liste<E> {... public int laenge() { if (rest == null) { return 1; else { return 1+rest.laenge();... Wie programmiert man das mit einer Schleife? Praktische Informatik I, HWS 2009, Kapitel 12 Seite 6

7 hinten Anhängen (append) Hänge e hinten an die Liste an Typisch rekursiv: Falls Liste nur ein Element hat, dann hänge e an dieses Element an Ansonsten, hänge e ans Ende der Restliste an public void hintenanhaengen(e e) { if (rest == null) { rest = new Liste(e); else { rest.hintenanhaengen(e); Einfach erweiterbar auf hintenanhaengen(liste x) Wie programmiert man das mit einer Schleife? Praktische Informatik I, HWS 2009, Kapitel 12 Seite 7

8 Suchen in einer Liste Prüft, ob ein Element e in der Liste enthalten ist Wieder typisch rekursiv public boolean enthalten(e e) { if (inhalt.equals(e)) { return true; else { if (rest == null) { return false; else { return rest.enthalten(e); Warum nicht inhalt == e? Praktische Informatik I, HWS 2009, Kapitel 12 Seite 8

9 Kopieren rekursiv: deep copy gegeben Listen a, b a = b; kopiert Referenzen a = b.kopie(); public Liste kopie() { if (rest == null) { return new Liste(inhalt); else { return new Liste(inhalt, rest.kopie()); Soll eine komplette Kopie der Liste b erstellen Natürliche rekursive Formulierung Problem: Was ist, wenn inhalt auch eine Referenz ist? inhalt.kopie() aufrufen?! muss definiert sein, mehr dazu später Rekursives Kopieren alle Felder entlang der Referenzstrukturen nennt man deep copy Praktische Informatik I, HWS 2009, Kapitel 12 Seite 9

10 Leere Liste? Bisher leere Liste mittels einer Nullreferenz dargestellt Liste a = null; Problem: Leere Liste und nichtleere Liste müssen unterschiedlich behandelt werden Was ergibt a.laenge()...? Lösung: Verwende Listenkopf Liste ist jetzt immer ein Objekt (auch eine leere Liste) Bessere Lösung: Verwende abstrakte Klassen (siehe später) Praktische Informatik I, HWS 2009, Kapitel 12 Seite 10

11 Entfernen aus einer Liste? Gegeben eine Liste a, darin ein Element e Wie entferne ich e aus a? Um ein Element zu entfernen, benötigt man eine Referenz auf das davor liegende Listenelement Praktische Informatik I, HWS 2009, Kapitel 12 Seite 11

12 Doppelt verkettete Liste Idee: Speichere nicht nur Referenz auf die Restliste (Suffix) sondern auf den Präfix der Liste public class Liste<E> { // Objektfelder: private Liste praefix private E inhalt; private Liste suffix; // Konstruktor: public Liste(E e) { inhalt = e; praefix = null; suffix = null; public void entfernen(e e) { if (inhalt.equals(e)) { praefix.suffix = suffix; return; if (suffix!= null) { suffix.entfernen(e); Praktische Informatik I, HWS 2009, Kapitel 12 Seite 12

13 java.util.linkedlist Universelle Klasse für Listen Basiert intern auf doppelt verketteter Liste mit Kopf (header) Praktische Informatik I, HWS 2009, Kapitel 12 Seite 13

14 Vorteile induktiver Datenstrukturen Induktive (selbstbezügliche) Datenstrukturen haben keine (wirkliche) Größenbeschränkung Im Gegensatz zu Arrays kann eine Liste beliebig groß machen Und zwar ohne Umkopieren Induktive Datenstrukturen ermöglichen elegante, einfache, rekursive Methoden Nachteil: Solche Datenstrukturen sind langsamer als Arrays Man kann z.b. nicht direkt an einen Index springen In Java-Bibliothek gibt es verschiedene Implementierungen von Listen: java.util.arraylist : Listen auf Basis von Arrays java.util.linkedlist : Listen auf Basis von doppelt verketteten Listenelementen Klassen bieten die gleiche Schnittstelle an, sind aber anders implementiert Implementierung hat Auswirkung auf die Effizienz der Programme (siehe Kapitel 16) Praktische Informatik I, HWS 2009, Kapitel 12 Seite 14

15 Baum (mathematisch) Ein Baum B = (V, E) ist ein Tupel bestehend aus einer Menge V = { v 1, v 2,..., v n von Knoten und einer Menge E V V von (gerichteten) Kanten mit folgenden Eigenschaften: Definition aus Kapitel 6 Genau ein Knoten hat keine eingehende Kante (Wurzel). Alle Knoten ausser der Wurzel haben genau eine eingehende Kante. Es gibt keine Zyklen (Rundwege aus Kanten). Induktive Definition: Ein leerer Baum ist ein Baum Gegeben Bäume B 1,..., B d, dann ist ein neuer Knoten mit ausgehenden Kanten nach B 1 und B d ebenfalls ein Baum Wir betrachten zunächst Bäume, die in ihren Knoten Werte speichern (analog zu Listen) und die maximal zwei Unterbäume haben Praktische Informatik I, HWS 2009, Kapitel 12 Seite 15

16 Experiment Wie eine Liste, bei der jedes Listenelement zwei Suffixe hat Praktische Informatik I, HWS 2009, Kapitel 12 Seite 16

17 Baum-Terminologie Die Knoten enthalten Datenelemente (bei uns: ganze Zahlen) Ein Pfad ist eine Liste von Knoten im Baum, in der aufeinander folgende Knoten durch Kanten verbunden sind Die Länge eines Pfades ist die Anzahl der Knoten im Pfad Die Pfadlänge eines Baumes ist die Summe aller Pfadlängen von einem Knoten zur Wurzel. Jeder Knoten (außer der Wurzel) hat genau einen Elternknoten Die durch ausgehende Kanten mit ihm verbundenen Knoten sind seine Kinder Ein Knoten, der keine Kinder hat, heißt Blattknoten Jeder Knoten ist die Wurzel eines Unterbaumes Beobachtung: Zwischen der Wurzel des Baumes und jedem anderen Knoten gibt es genau einen Pfad. Die Tiefe eines Baumes ist die Länge des längsten Pfades von der Wurzel zu einem Blatt Ein Baum heißt vom Rang d, wenn jeder Knoten maximal d Kinder hat Ein Baum heißt Binärbaum genau dann, wenn er vom Rang 2 ist, d.h. wenn jeder Elternknoten maximal zwei Kinder hat. Praktische Informatik I, HWS 2009, Kapitel 12 Seite 17

18 Doppelte Rekursion: Tiefe Berechnung der Tiefe eines Binärbaums Tiefe = Länge des längsten Asts von der Wurzel aus Warum geht das so nicht? Praktische Informatik I, HWS 2009, Kapitel 12 Seite 18

19 Programmtechnische Darstellung von Bäumen Bisher implementiert: Binärbaum Wie implementiert man allgemeine Bäume von Rang d? Problem: Jeder Knoten kann eine andere Anzahl von Kindern haben, maximal d. Lösung 1: Parent-Link-Darstellung In jedem Knoten wird nur der Zeiger auf seinen Elternknoten gespeichert. Ist in der Regel nur sinnvoll, wenn der Baum nur von unten nach oben durchlaufen werden soll Lösung 2: Explizite Speicherung der Kinder In einer verketteten Liste oder einem Array Falls ein Array benutzt wird, muss maximaler Rang des Baumes bei der Implementierung bekannt sein Lösung 3: Listendarstellung der Kinder Jeder Knoten hat zwei Zeiger: einen zu seinem ganz linken Kind, falls es ein solches gibt einen zu seinem rechten Geschwister oder zum Elternknoten, falls er keinen rechten Geschwister hat Allgemeiner Baum dargestellt als Binärbaum Praktische Informatik I, HWS 2009, Kapitel 12 Seite 19

20 Ordnungen von Bäumen Eine Ordnung (order) ist eine Abbildung eines Baumes auf eine lineare Struktur ("Plattklopfen des Baumes") Man bildet eine eindeutigen Knotenfolge derart, dass jeder Knoten genau einmal darin vorkommt Bei Binärbäumen unterscheidet man vier wichtige Ordnungen: Preorder Inorder Postorder Die Ordnung gibt an, an welcher Stelle die Wurzel im Bezug zum linken und rechten Unterbaum vorkommen soll. Die Definition der Ordnung ist rekursiv. Beispiel: Preorder Erst Wurzel, dann linker Teilbaum, dann rechter Teilbaum 2 B 3 C 4 1 E A 5 D Preorder: A B C E D Praktische Informatik I, HWS 2009, Kapitel 12 Seite 20

21 Inorder und Postorder Regel: 1. Linker Unterbaum Regel: 1. Linker Unterbaum 2. Wurzel 2. Rechter Unterbaum 3. Rechter Unterbaum 3. Wurzel 4 A 5 A 2 B 5 D 3 B 4 D 1 C 3 E 1 C 2 E Inorder: C B E A D Postorder: C E B D A Praktische Informatik I, HWS 2009, Kapitel 12 Seite 21

22 Beispiel: Operatorbaum 5 * + Klammer auf, wenn man eine Ebene absteigt, Klammer zu, wenn man eine Ebene aufsteigt Inorder: 5 * (((9 + 8) * (4 * 6)) + 7) * + * 7 Postorder: * * 7 + * Darstellung ohne Klammern trotzdem eindeutig Der Sytnaxbaum dient zur maschineninternen Darstellung von int-ausdrücken Darstellung des Baumes mittels Inorder ergibt unsere vertraute Darstellung Darstellung des Baumes mittels Postorder ergibt polnische Notation Kann verwendet werden, um mittels eines Stack den Wert des Ausdrucks zu berechnen (siehe Übung) Praktische Informatik I, HWS 2009, Kapitel 12 Seite 22

23 Operationen auf rekursiven Daten Funktionen auf induktiv definierten Daten sind rekursiv am einfachsten Beispiel : male() Hilfsfunktion male(int n) Malt einen Baum ab Spalte n Rote Verbindungslinien nur zur weiteren Hervorhebung In Blatt: println(info); In Knoten: rechts.male(n+5); einruecken(n, + ); links.male(n+5); Praktische Informatik I, HWS 2009, Kapitel 12 Seite 23

24 Zusammenfassung Induktive Datenstrukturen referenzieren sich selbst Standardbeispiele: Bäume, Listen Induktive Datenbereiche bearbeitet man natürlich rekursiv Praktische Informatik I, HWS 2009, Kapitel 12 Seite 24

Abstrakte Klassen und Induktive Datenbereiche

Abstrakte Klassen und Induktive Datenbereiche Abstrakte Klassen und Induktive Datenbereiche Abstrakte Klassen, Induktive Datenbereiche, Bäume, Binärbäume, Bäume mit Blättern, Listen, Konstruktoren, Prädikate, Selektoren, Mutatoren, Operationen. Abstrakte

Mehr

4.3 Bäume. Definition des Baumes. Bäume sind eine sehr wichtige Datenstruktur der Informatik.

4.3 Bäume. Definition des Baumes. Bäume sind eine sehr wichtige Datenstruktur der Informatik. 4.3 Bäume Bäume sind eine sehr wichtige Datenstruktur der Informatik. Definition des Baumes Ein Baum besteht aus einer nichtleeren Menge von Knoten und einer Menge von Kanten. Jede Kante verbindet genau

Mehr

13. Bäume: effektives Suchen und Sortieren

13. Bäume: effektives Suchen und Sortieren Schwerpunkte Aufgabe und Vorteile von Bäumen 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Sortieren mit Bäumen Ausgabealgorithmen: - Preorder - Postorder

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Problem: Was ist, wenn der Stapel voll ist? Idee: Erzeuge dynamisch ein grösseres Array und kopiere um. Dynamische Anpassung der Größe

Problem: Was ist, wenn der Stapel voll ist? Idee: Erzeuge dynamisch ein grösseres Array und kopiere um. Dynamische Anpassung der Größe Maximale Größe?! Problem: Was ist, wenn der Stapel voll ist? Idee: Erzeuge dynamisch ein grösseres Array und kopiere um Dynamische Anpassung der Größe Praktische Informatik I, HWS 2009, Kapitel 10 Seite

Mehr

Informatik Abitur Bayern 2017 / II - Lösung

Informatik Abitur Bayern 2017 / II - Lösung Informatik Abitur Bayern 2017 / II - Lösung Autoren: Wolf (1) Wagner (2) Scharnagl (3-5) 1a 5 1b Diese Methode vergleicht den Namen des Interpreten eines jeden Elements der Liste mit dem gegebenen Namen.

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

3.8 Bäume. Definition des Baumes

3.8 Bäume. Definition des Baumes 3.8 Bäume Definition des Baumes Ein Baum besteht aus einer nichtleeren Menge von Knoten und einer Menge von Kanten. Jede Kante verbindet genau zwei Knoten. Die Knoten (nodes) enthalten Datenelemente. Die

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Verkettete Datenstrukturen: Listen

Verkettete Datenstrukturen: Listen Verkettete Datenstrukturen: Listen 2 Listen Formal: Liste = endliche Folge von Elementen [a 1, a 2,..., a n ]. Spezialfall: leere Liste [ ]. Länge einer Liste = Anzahl der Elemente (bei leerer Liste: 0).

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Listen & Bäume Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 SvenKosub@uni-konstanzde Sprechstunde: Freitag, 14:00-15:00 Uhr, onv Sommersemester

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik 2 - SS 06 Bäume 2 Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe Bäume Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe S. Staab, Informatik für IM II; Folien nach D. Saupe, sowie W. Küchlin, A.

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@informatik.uni-leipzig.de aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 13. Listen. Listen 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 13. Listen. Listen 1 Kapitel 13 Listen Listen 1 Ziele Implementierungen für Listen kennenlernen Einfach verkettete und doppelt verkettete Listen verstehen Listen-Implementierungen in der Java-Bibliothek kennenlernen Durch

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1 Kapitel 11 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 2 Ziele Implementierungen für

Mehr

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Übung 3: Die generische Klasse BinärerSuchbaum in Java 1 Datenelemente der Klasse BinaererSuchbaum Das einzige Datenelelement in dieser Klasse ist die Wurzel vom Typ BinaerBaumknoten. Die Klasse BinaerBaumknoten

Mehr

Binärbäume: Beispiel

Binärbäume: Beispiel Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des

Mehr

ADT: Verkettete Listen

ADT: Verkettete Listen ADT: Verkettete Listen Abstrakter typ - Definition public class Bruch int zaehler, nenner; public Bruch(int zaehler, int nenner) this.zaehler = zaehler; this.nenner = nenner; Konstruktor zum Initialisieren

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Programmieren I. Kapitel 13. Listen

Programmieren I. Kapitel 13. Listen Programmieren I Kapitel 13. Listen Kapitel 13: Listen Ziel: eigene Datenstrukturen erstellen können und eine wichtige vordefinierte Datenstruktur( familie) kennenlernen zusammengehörige Elemente zusammenfassen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

ALP II Dynamische Datenmengen Datenabstraktion

ALP II Dynamische Datenmengen Datenabstraktion ALP II Dynamische Datenmengen Datenabstraktion O1 O2 O3 O4 SS 2012 Prof Dr Margarita Esponda M Esponda-Argüero 1 Dynamische Datenmengen Dynamische Datenmengen können durch verschiedene Datenstrukturen

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

Motivation Binäre Suchbäume

Motivation Binäre Suchbäume Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung

Mehr

Aufgaben NF 11; Seite 1

Aufgaben NF 11; Seite 1 Aufgabe Ref 1: Gegeben ist die Klasse Schueler public class Schueler { private String name, vorname, kurs; // Konstruktor public Schueler(String n, String vn, String k) { name=n; vorname=vn; kurs=k; public

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 8. Vorlesung Martin Middendorf und Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Gefädelte

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Informatik II Übung 2

Informatik II Übung 2 Informatik II Übung 2 Florian Scheidegger florsche@student.ethz.ch Folien mit freundlicher Genehmigung adaptiert von Gábor Sörös und Simon Mayer gabor.soros@inf.ethz.ch, simon.mayer@inf.ethz.ch 7.3.2013

Mehr

ALP II Dynamische Datenmengen

ALP II Dynamische Datenmengen ALP II Dynamische Datenmengen Teil III Iteratoren Iterator-Objekt O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 22. ALP2-Vorlesung, M. Esponda 2 Motivation: Iteratoren Wir haben für die Implementierung

Mehr

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18 EINI LogWing/ Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 17/18 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

Klausur "ADP" SS 2015

Klausur ADP SS 2015 PD Dr. J. Reischer 20.7.2015 Klausur "ADP" SS 2015 Nachname, Vorname Abschluss (BA, MA, FKN etc.) Matrikelnummer, Semester Versuch (1/2/3) Bitte füllen Sie zuerst den Kopf des Angabenblattes aus! Die Klausur

Mehr

ADS: Algorithmen und Datenstrukturen

ADS: Algorithmen und Datenstrukturen ADS: Algorithmen und Datenstrukturen Teil VII Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 08.

Mehr

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe Bäume Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe Bäume (trees) können als eine Verallgemeinerung von Listen angesehen werden

Mehr

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 - ! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Einfach verkettete Listen Mariano Zelke Datenstrukturen 2/32 Eine Zeiger-Implementierung von einfach verketteten Listen, also Listen mit Vorwärtszeigern.

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Aufrufe von Objektmethoden

Aufrufe von Objektmethoden Aufrufe von Objektmethoden SWE-35 Objektmethoden werden für ein bestimmtes Objekt aufgerufen; sie benutzen dessen Objektvariablen: double r = big.getradius (); Methodenaufrufe können auch die Werte von

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

4.4.1 Implementierung vollständiger Bäume mit Feldern. Reguläre Struktur: Nachfolger des Knoten i sind die Knoten 2*i und 2*i+1.

4.4.1 Implementierung vollständiger Bäume mit Feldern. Reguläre Struktur: Nachfolger des Knoten i sind die Knoten 2*i und 2*i+1. 4.4 Implementierung von Bäumen 4.4.1 Implementierung vollständiger Bäume mit Feldern 1 3 2 7 9 3 4 8 5 17 12 10 6 7 8 13 11 18 9 10 Reguläre Struktur: Nachfolger des Knoten i sind die Knoten 2*i und 2*i+1.

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion

Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis Grundprinzip von Rekursion (10 Std.) Die einfach verkettete Liste als Kompositum (10 Std.) Klasse LISTENELEMENT? Entwurfsmuster Kompositum

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Praxis der Programmierung

Praxis der Programmierung Dynamische Datentypen Institut für Informatik und Computational Science Universität Potsdam Henning Bordihn Einige Folien gehen auf A. Terzibaschian zurück. 1 Dynamische Datentypen 2 Dynamische Datentypen

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Abgabe: (vor 12 Uhr)

Abgabe: (vor 12 Uhr) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 7 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,

Mehr

3 Dynamische Datenstrukturen

3 Dynamische Datenstrukturen 3 Dynamische Datenstrukturen Beispiele für dynamische Datenstrukturen sind Lineare Listen Schlangen Stapel Bäume Prof. Dr. Dietmar Seipel 128 Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester

Mehr

3.3. Rekursive Datentypen

3.3. Rekursive Datentypen 3.3. Rekursive Datentypen class Element int info; Element naechster;... Element element = new Element(); element.info = 1; element.naechster = new Element(); element.naechster.info = 2; Erläuterung: Objekte

Mehr

6. Verkettete Strukturen: Listen

6. Verkettete Strukturen: Listen 6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten

Mehr

Aufgabe 1 (Programmanalyse, Punkte)

Aufgabe 1 (Programmanalyse, Punkte) 2 Aufgabe 1 (Programmanalyse, 8 + 6 Punkte) a) Geben Sie die Ausgabe des Programms für den Aufruf java M an. Schreiben Sie hierzu jeweils die ausgegebenen Zeichen hinter den Kommentar OUT:. public class

Mehr

Listen. M. Jakob. 20. September Gymnasium Pegnitz

Listen. M. Jakob. 20. September Gymnasium Pegnitz Listen M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis 1 Hinführung: Wartenschlangen (6 Std.) 2 Grundprinzip von Listen Rekursion (10 Std.) 3 Die einfach verkettete Liste als Kompositum

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

3. Die Datenstruktur Graph

3. Die Datenstruktur Graph 3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken

Mehr

Verkettete Listen. DVG Verkettete Listen 1

Verkettete Listen. DVG Verkettete Listen 1 Verkettete Listen DVG2-03 - Verkettete Listen 1 Primitive typen Vorteile: werden direkt vom Prozessor unterstützt schneller Zugriff schnelle Verarbeitung Nachteile: kleine menge feste Struktur unflexibel

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Wiederholung: Ziele der Vorlesung. Wintersemester 2012/13. Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Wiederholung: Ziele der Vorlesung. Wintersemester 2012/13. Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische

Mehr

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition. 1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 13. November 2015 13. November 2015 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume

Mehr

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am MB-ALG, SS1 Seite 1 Hauptklausur, geschrieben am.07.01 Vorname Nachname Matrikel-Nr Diese Klausur ist mein letzter Prüfungsversuch (bitte ankreuzen): Ja Nein Ihre Lösung für Aufgabe 1 können Sie direkt

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

Objekttypen. Referenzen, Objekte, Gleichheit, Wrapper, Arrays, mehr-dimensionale Arrays, Bildbearbeitung, krumme Arrays

Objekttypen. Referenzen, Objekte, Gleichheit, Wrapper, Arrays, mehr-dimensionale Arrays, Bildbearbeitung, krumme Arrays Objekttypen Referenzen, Objekte, Gleichheit, Wrapper, Arrays, mehr-dimensionale Arrays, Bildbearbeitung, krumme Arrays Primitive- und Objekt-Datentypen Primitive Datentypen benötigen einen vorher genau

Mehr

Algorithmen und Datenstrukturen Heapsort

Algorithmen und Datenstrukturen Heapsort Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

12 Abstrakte Klassen, finale Klassen und Interfaces

12 Abstrakte Klassen, finale Klassen und Interfaces 12 Abstrakte Klassen, finale Klassen und Interfaces Eine abstrakte Objekt-Methode ist eine Methode, für die keine Implementierung bereit gestellt wird. Eine Klasse, die abstrakte Objekt-Methoden enthält,

Mehr

Einführung in die Programmierung für NF MI. Übung 04

Einführung in die Programmierung für NF MI. Übung 04 Einführung in die Programmierung für NF MI Übung 04 Inhalt Arrays Einführung in Objekte Einführung in die Programmierung für NF Übung 04 2 Arrays Arrays repräsentieren Reihungen von Objekten, z.b. Variablen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dynamische Datenobjekte Pointer/Zeiger, Verkettete Liste Eigene Typdefinitionen 1 Zeigeroperatoren & und * Ein Zeiger ist die Speicheradresse irgendeines Objektes. Eine

Mehr

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14

Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Keller, Schlangen und Listen Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Listen Listen unterstützen die Operationen Lookup, Insert, Remove. + Listen passen sich der Größe der zu speichernden

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

26 Hierarchisch strukturierte Daten

26 Hierarchisch strukturierte Daten Algorithmik II Peter Wilke Sommersemester 2005 Teil III Funktionale Programmierung 26 Hierarchisch strukturierte Daten Peter Wilke Algorithmik II Sommersemester 2005 1 Peter Wilke Algorithmik II Sommersemester

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht:

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: Typprüfung (Compiler / Laufzeit) In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: 1) Der Compiler prüft

Mehr

Computeranwendung und Programmierung (CuP)

Computeranwendung und Programmierung (CuP) Computeranwendung und Programmierung (CuP) ArrayList 0 1 2 Obj0 Obj1 size() - 1 15.12.2014 CuP - VO 2 Auer 1 ArrayList import java.util.arraylist; ArrayList buchliste; buchliste = new ArrayList();

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr