Fixpunkt-Iterationen

Größe: px
Ab Seite anzeigen:

Download "Fixpunkt-Iterationen"

Transkript

1 Fixpunkt-Iterationen 2. Vorlesung Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014

2 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip Iteration Verschiedene Verfahren Direkte Fixpunkt-Iteration Newton-Verfahren Sekantenmethode Reihenentwicklung Fixpunkt-Iteration, Theorie Konvergenzordnung Konvergenzbedingung Graphische Veranschaulichung Prüfungsfragen Nichtlineare Gleichungssysteme Grundbegriffe

3 Wiederholung, Fragenliste Nichtlineare Gleichungen in einer Variablen Was ist... Wie geht... Theorie Aufgaben eine lineare (nichtlineare, polynomiale, algebraische, transzendente) Gleichung? eine Nullstelle?... mehrfache Nullstelle? ein Fixpunkt? Intervallhalbierung?... Regula Falsi? Sekantenmethode?... Newton-Verfahren? Fixpunkt-Iteration? Wann, warum und wie schnell findet Intervallhalbierung garantiert eine Nullstelle? Haben Sie die Aufgaben auf den letzten zwei Folien der vorigen Woche durchgerechnet?

4 Fixpunkt-Iteration Das Grundprinzip vieler iterativer Verfahren Gegeben: eine Funktion φ(x) und ein Startwert x (0). Ergebnis: falls konvergent, liefert die Fixpunkt-Iteration einen Fixpunkt ξ von φ. Iterationsvorschrift: für k = 0,1,2... x (k+1) = φ(x (k) ) Viele numerische Verfahren lassen sich als Spezialfälle einer Fixpunkt-Iteration betrachten. Aussagen über die Konvergenz von Fixpunkt-Iterationen sind deswegen von allgemeiner Bedeutung.

5 Ein Beispiel x ǫ sin x = m Die Kepler-Gleichung setzt verschiedene Parameter einer elliptischen Umlaufbahn in Beziehung Angenommen, ǫ 1 und m 0 sind gegeben; x ist gesucht. Formulieren Sie selber Lösungswege graphische Darstellung: wo liegen überhaupt Lösungen? Durch Fixpunkt-Iteration Als Nullstellen-Aufgabe (hier lassen sich das Newtonsche Verfahren oder die Sekanten-Methode gut anwenden)

6 Fixpunkt-Verfahren für Kepler-Gleichung findet Fixpunkt von φ(x) = m+ǫ sin x Konkret für m = 2,ǫ = 0,1 und Startwert x (0) = 0 ergibt sich neue Näherung x (1) = φ(x (0) ) = 2, und weiter... x (2) = φ(x (1) ) = 2, x (3) = φ(x (2) ) = 2, x (4) = φ(x (3) ) = 2, x (5) = φ(x (4) ) = 2, x (6) = φ(x (5) ) = 2, x (7) = φ(x (6) ) = 2, Die Anzahl richtiger Stelle nimmt konstant zu

7 Newton-Verfahren für Kepler-Gleichung findet Nullstelle von f(x) = x ǫ sin x m f(x) = x ǫ sinx m f (x) = 1 ǫ cos x x (n+1) = x (n) x(n) ǫ sinx (n) m 1 ǫ cos x (n) Funktion Ableitung Iterationsvorschrift Konkret für m = 2,ǫ = 0,1 und Startwert x (0) = 0 ergibt sich f(x (0) ) = 2 f (x (0) ) = 0,9 neue Näherung x (1) = 2, und weiter... x (2) = 2, x (3) = 2, x (4) = 2, x (5) = 2, Die Anzahl richtiger Stellen nimmt immer rascher zu

8 Newton-Verfahren in Fixpunkt-Form Auch das Newton-Verfahren ist ein Fixpunkt-Verfahren! Fixpunkt-Gleichung x = x f(x) f (x) x = φ(x) Bitte verwechseln Sie nicht Sie suchen die Nullstelle einer Funktion f(x). Das Newton-Verfahren sucht einen Fixpunkt der Funktion φ(x) = x f(x)/f (x)

9 Sekantenmethode für Kepler-Gleichung berechnet aus zwei alten Werten den nächsten Wähle Startwerte x (0) = 0; x (1) = 2 Nächster Wert x (2) = x (1) f(x (1) x (1) x (0) ) f(x (1) ) f(x (0) ) neue Näherung x (2) = 2, und weiter... x (3) = 2, x (4) = 2, x (5) = 2, x (6) = 2, Die Anzahl richtiger Stellen nimmt immer rascher zu

10 Sekantenmethode Sekantenmethode ist zweidimensionales Fixpunkt-Verfahren Die Sekantenmethode berechnet aus zwei Näherungen x (0),x (1) eine verbesserte Näherung, rechnet dann mit zwei neuen Näherungen weiter. Fasse die beiden Näherungen als Komponenten eines Vektors auf. Die Schreibweise [ ] [ ] x1 x 2 x =, Φ(x) = x x 2 f(x 2 ) 1 x 2 x 2 f(x 1 ) f(x 2 ) formuliert die Sekantenmethode als zweidimensionale Fixpunkt-Iteration x (k+1) = Φ(x (k) ) für k = 0,1,2...

11 Reihenentwicklung Nur damit Sie sehen: nicht alle Näherungsverfahren sind vom Typ der Fixpunkt-Iteration Reihenentwicklungen sind ein anderer Typ von Näherungsverfahren (die wir hier nicht weiter behandeln). Für die Kepler-Gleichung gilt (unter Vernachlässigung vierter und höherer Potenzen von ǫ): ( ) x = m+ ǫ ǫ3 ǫ22 3ǫ3 sin(m)+ sin(2m)+ 8 8 sin(3m)+... Je kleiner ǫ, desto genauer. Wenn nicht mehr Reihenglieder angegeben sind, lässt sich die Genauigkeit aber nicht weiter steigern.

12 Konvergenzordnung gibt an, wie rasch die Genauigkeit zunimmt Neue Fehlerschranke mindestens um Faktor C kleiner als... alte Fehlerschranke: lineare Konvergenz (wenn C < 1) das Quadrat des alten Fehlers: quadratische Konvergenz; typisch für Newton-Verfahren. allgemein: die p-te Potenz des alten Fehlers: Konvergenz p-ter Ordnung. Bei Sekanten-Verfahren ist p Faustregeln Lineare Konvergenz braucht eine fixe Anzahl von Schritten pro gültiger Stelle. Ein Newton-Schritt verdoppelt die Zahl der gültigen Stellen. Ein Sekanten-Schritt erhöht die gültigen Stellenanzahl um etwa 60%.

13 Konvergenzordnung Definition Sei ξ Fixpunkt von φ(x), und für alle Startwerte aus einem Intervall um ξ und die zugehörige Folge {x (k) } aus der Vorschrift x (k+1) = φ(x (k) ) verhalten sich Fehlerschranken x (k) ξ ǫ (k) gemäß und C < 1, falls p = 1. ǫ (k+1) C (ǫ (k)) p Das Iterationsverfahren heißt dann ein Verfahren von (mindestens) p-ter Ordnung

14 Konvergenz des Fixpunktverfahrens Das Fixpunktverfahren konvergiert lokal, falls φ (ξ) < 1. Ist φ(x) in einer Umgebung des Fixpunktes ξ stetig differenzierbar und φ (ξ) < 1, so konvergiert die Fixpunkt-Iteration x (k+1) = φ(x (k) ) mindestens linear mit C φ (ξ) gegen ξ für alle x (0) in der Nähe des Fixpunktes. Der Fehler nimmt um den Faktor C pro Iteration ab

15 Interpretation der Bedingung φ (ξ) < 1. Salopp formuliert: Fixpunkt-Iteration konvergiert, wenn φ(x) nicht wirklich stark von x abhängt. Ableitung φ misst, wie stark sich φ(x) ändert, wenn sich x ändert. Der Konvergenzsatz quantifiziert, wie stark φ von x abhängen darf, damit Iteration konvergiert.

16 Andere Form der Konvergenzbedingung Unterschiedliche Eingaben bewirken kleinere Unterschiede im Ergebnis φ(x) φ(y) C x y, C < 1 Exakte Formulierung kontrahierende Abbildung und Beweis im Skriptum.

17 Beispiel: φ(x) = 9 4 x(1 x) Zwei Fixpunkte: ξ 1 = 0,ξ 2 = 5 9. Einsetzen der Fixpunkte in φ (x) = 9 4 (1 2x) liefert φ (0) = 9 4 > 1 φ ( 5 9 ) = 1 4 < 1 Folgerungen: Für Startwerte in der Nähe von ξ 2 = 5 9 konvergiert die Fixpunkt-Iteration. φ(x) ändert sich dort nur etwa 1/4 so stark, wenn sich x-werte ändern. Ein Fehler im Eingabewert bewirkt einen 1/4 so großen Fehler im Resultat. Wiederholtes Einsetzen macht den Fehler immer kleiner

18 Konvergenzordnung: Lehrsatz Zusammenhang zwischen Ableitungen im Fixpunkt und Konvergenzordnung Ist φ(x) in einer Umgebung von ξ genügend oft differenzierbar und φ (ξ) = 0, φ (ξ) = 0,...,φ (p 1) (ξ) = 0, und φ (p) (ξ) 0, dann liegt für p = 2,3,... ein Verfahren p-ter Ordnung vor. Ein Verfahren erster Ordnung liegt vor, wenn zu p = 1 gilt: φ (ξ) < 1.

19 Fixpunkt-Iteration, graphisch interpretiert waagrecht zur Mediane, senkrecht zur Funktion Fixpunkt-Iteration 0.8 x = ax(1 x) graphisch veranschaulicht für a = 5/2 Startwert x = 1/

20 Fixpunkt-Iteration x = ax(1 x) 0.8 für a = 3,15 Startwert x = 1/ konvergiert zu Zyklus mit Periode weitere Beispiele: Skriptum-Titelblatt

21 Newton-Raphson für x 3 1 = 0 Die Formel des Newton-Verfahrens gilt auch für komplexen Zahlen. Fixpunkt-Gleichung x = 1 3 x x 3 konvergiert je nach Startwert zu x = 1, 0.5± i

22 Ein Prüfungsbeispiel Die Funktion φ(x) = 18 30x + 23x2 4x 3 9 hat Fixpunkte für x = 3/4,2 und 3. Überprüfen Sie mithilfe der Konvergenzsätze für die verschiedenen Fixpunkte: Konvergiert die Fixpunkt-Iteration x (k+1) = φ(x (k) ), und wenn ja, mit welcher Konvergenzordnung?

23 Prüfungsbeispiel Gegeben sei die Funktion φ(x) = ax(1 x) für ein a 0 1. Zeigen Sie: x = 0 und x = (a 1)/a sind Fixpunkte von φ. 2. In welchem Bereich muss a liegen, damit eine Fixpunkt-Iteration lokal zu x = 0 konvergiert? 3. In welchem Bereich muss a liegen, damit eine Fixpunkt-Iteration lokal nach x = (a 1)/a konvergiert? 4. Für welchen Wert von a folgt lokal quadratische Konvergenz zum Fixpunkt x = (a 1)/a?

24 Prüfungsbeispiel Gegeben sei die Funktion f(x) = x Wie lautet die reelle Nullstelle von f? 2. Zeigen Sie: Das Newton-Verfahren zur Nullstellenbestimmung führt auf die Iterationsvorschrift x = 1 3x 2 + 2x 3 3. Leiten Sie die Konvergenzordnung dieser Iteration her.

25 Zwei nichtlineare Gleichungen Beispiel für Fixpunkt-Iteration Gegeben sei das nichtlineare Gleichungssystem (log ist natürlich der natürliche Logarithmus) 4x y + xy 1 = 0 x + 6y + log(xy) 2 = 0 Ausgehend von der Näherungslösung x 0 = 0,3 und y 0 = 0,6 bestimme man durch geeignete Fixpunkt-Iteration verbesserten Näherungen x 1 und y 1.

26 Skalare und vektorwertige Funktionen Reellwertige Funktionen, Skalare: f : R R, y = f(x) Vektorwertige Funktionen, Vektoren: f : R n R n, y = f(x) Komponenten eines Vektors R n : x 1 x 2 x =. oder xt = [x 1,x 2,...,x n ] x n Normalerweise ist mit x ein Spalten-, mit x T ein Zeilenvektor gemeint. Iterationsindizes sind (um sie von Vektorkomponenten zu unterscheiden) in der Regel hochgestellt, in Klammern: x (k),k = 0,1,2...

27 Mehrere Unbekannte: Aufgabentypen Nichtlineares Gleichungssystem in zwei Unbekannten 4x y + xy = 1 x + 6y = 2 log(xy) Nullstelle einer vektorwertigen Funktion f : R 2 R 2 4x y + xy 1 = 0 x + 6y + log(xy) 2 = 0 f(x,y) = 0 g(x,y) = 0 f(x) = 0 Fixpunkt einer vektorwertigen Funktion Φ : R 2 R 2 x 1 = 1 4 (x 2 x 1 x 2 + 1) x 2 = 1 6 (x 1 log(x 1 x 2 )+2) x = Φ(x) Beispiel im Skriptum, ab S.21, durchgerechnet!

28 Nullstellen und Fixpunkte Definition Eine Nullstelle einer Funktion f : R n R n ist ein Wert x, für den gilt: f(x) = 0. Definition Ein Fixpunkt einer Abbildung Φ : R n R n ist einen Wert ξ, für den gilt: ξ = Φ(ξ). ( Funktion oder Abbildung meint in diesem Kontext dasselbe.)

29 Fixpunkt-Iteration Schreibweise für vektorwertige Funktionen Φ : R n R n Gegeben: eine Funktion Φ(x) und ein Startwert x (0). Ergebnis: falls konvergent, liefert die Fixpunkt-Iteration einen Fixpunkt ξ von Φ. Iterationsvorschrift: für k = 0,1,2... x (k+1) = Φ(x (k) )

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. Februar 2010 Newton- Gliederung Newton-, ng Newton- , Fragenliste Nichtlineare Gleichungen

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 25. Februar 2016 Organisatorisches Die Termine der Übungsgruppen

Mehr

Nichtlineare Gleichungen in einer Unbekannten

Nichtlineare Gleichungen in einer Unbekannten Nichtlineare Gleichungen in einer Unbekannten 1. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 20. Februar 2014 Clemens Brand und Erika Hausenblas

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. 6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,

Mehr

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 6. Iterationsverfahren Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 Beispiel: Ausbreitung eines Grippevirus in einem Kindergarten Zeitpunkt t 0 t 1 t 2 t 3 t 4 t 5 Anteil kranker

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Kapitel 5. Lösung nichtlinearer Gleichungen

Kapitel 5. Lösung nichtlinearer Gleichungen Kapitel 5. Lösung nichtlinearer Gleichungen 5.1 Nullstellen reeller Funktionen, Newton-Verfahren 5.2 Das Konvergenzverhalten iterativer Verfahren 5.3 Methode der sukzessiven Approximation 5.4 Das Newton-Verfahren

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Heron-Verfahren. Inhaltsverzeichnis. Beispiel. aus Wikipedia, der freien Enzyklopädie

Heron-Verfahren. Inhaltsverzeichnis. Beispiel. aus Wikipedia, der freien Enzyklopädie 1 of 7 28.05.2010 20:16 Heron-Verfahren aus Wikipedia, der freien Enzyklopädie Das Heron-Verfahren oder babylonische Wurzelziehen ist ein Rechenverfahren zur Berechnung einer Näherung der Quadratwurzel

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Vektoranalysis Funktionen mehrerer Variabler Wir untersuchen allgemein vektorwertige Funktionen von vektoriellen Argumenten, wobei zunächst nur reelle Vektoren zugelassen seien. Speziell betrachten wir:

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration -

Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration - Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration - Gernot Lorenz März 2006 Zusammenfassung Das Lösen von Gleichungen der Form f(x) = 0 auf algebraische Art, d.h. durch Auflösung

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Kapitel 4 Folgen, Reihen & Funktionen

Kapitel 4 Folgen, Reihen & Funktionen Kapitel 4 Folgen, Reihen & Funktionen Inhaltsverzeichnis FOLGEN REELLER ZAHLEN... 3 DEFINITION... 3 GRENZWERT... 3 HÄUFUNGSPUNKT... 4 MONOTONIE... 4 BESCHRÄNKTHEIT... 4 SÄTZE... 4 RECHNEN MIT GRENZWERTEN...

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Gleichungen, GS und Nullstellen

Gleichungen, GS und Nullstellen TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG5.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 5 Gleichungen, GS

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Überbestimmte Gleichungssysteme, Regression

Überbestimmte Gleichungssysteme, Regression Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum 3: Nullstellenbestimmung C. Mordasini Max Planck Institute for Astronomy, Heidelberg Program: 1) Introduction 2) Bisektion 3) Newton-Raphson 4) Sekanten 5) Regula falsi

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Regula falsi und Newton-Verfahren zum Lösen von nichtlinearen Gleichungen

Regula falsi und Newton-Verfahren zum Lösen von nichtlinearen Gleichungen Martin-Pollich-Gymnasium Mellrichstadt Kollegstufenjahrgang 2001/2003 Regula falsi und Newton-Verfahren zum Lösen von nichtlinearen Gleichungen Facharbeit im Leistungskurs Mathematik von Dominik Gunreben

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

4.4 Lokale Extrema und die Hessesche Form

4.4 Lokale Extrema und die Hessesche Form 74 Kapitel 4 Differentialrechnung in mehreren Variablen 44 Lokale Extrema und die Hessesche Form Sei jetzt wieder U R n offen und f:u R eine Funktion Unter einem lokalen Extremum der Funktion f verstehen

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Algebraische Gleichungen

Algebraische Gleichungen Algebraische Gleichungen Jörn Loviscach Versionsstand: 22. November 2009, 19:49 1 Begriff Betrachten wir eine Gleichung, in der nur eine Unbekannte, konstante Zahlen und die Grundrechenarten vorkommen:

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Kapitel 2. Nichtlineare Gleichungen. Bisektion Newton Fixpunktiterationen Algebraische Polynome

Kapitel 2. Nichtlineare Gleichungen. Bisektion Newton Fixpunktiterationen Algebraische Polynome Kapitel 2 Nichtlineare Gleichungen Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 2/2 Nullstellen Häufiges Problem im Wissenschaftlichen Rechnen: Berechnen der Nullstellen

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr