-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen,

Größe: px
Ab Seite anzeigen:

Download "-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen,"

Transkript

1 2. Mengenlehre In diesem bshnitt geben wir einen kompakten Überblik über wesentlihe Grundlagen der Mengenlehre, die im weiteren Verlauf noh relevant sein werden. Neben der allgemeinen Definition und Darstellung von Mengen gehen wir dabei auf spezielle Mengen, eziehungen zwishen Mengen, Mengenoperationen und auh auf bedeutende Regeln und Gesetze ein, die bei Mengenoperationen zu beahten sind. 2.1 Grundlegendes -Grundsätzlih verstehen wir unter einer Menge eine Zusammenfassung von Elementen, die sih eindeutig voneinander untersheiden lassen. Mehrfahnennungen eines Elementes in einer Menge sind also niht zulässig. Mengen werden in der Regel mit großen lateinishen uhstaben,, C,..., ihre Elemente mit lateinishen Kleinbuhstaben a, b,,... bezeihnet. Wollen wir ausdrüken, dass ein Element a zur Menge gehört, shreiben wir a E. Wollen wir das Gegenteil aussagen, a,;. Die Definition einer Menge erfolgt entweder durh die explizite ufzählung oder die implizite eshreibung der Elemente der Menge. Die nzahl der untersheidbaren Elemente einer Menge, die auh als deren Mähtigkeit bezeihnet und mit n() abgekürzt wird, bestimmt dabei meist, welhe Form der Darstellung gewählt wird. Ist n(a) groß, jedoh endlih, wird die explizite Form der eshreibung bevorzugt. Liegt eine unendlihe Menge vor, so ist eine verkürzte ufzählung der Elemente üblih. ei allen Formen erfolgt die ufzählung bzw. eshreibung innerhalb geshweifter Klammem. ei der impliziten Form wird in der geshweiften Klammer zunähst ein Element stellvertretend für alle anderen Elemente allgemein genannt. Gefolgt von einem senkrehten Strih wird dann die umfassende und eindeutige eshreibung des stellvertretenden Elements mit Hilfe mathematisher Symbole und! oder verbaler Sätze aufgeführt. etrahten wir eine endlihe Menge, die die Elemente 7, 8 und 9 beinhalten soll. Wir können diese explizit als = 17; 8; 9} oder implizit als = Ix I 6 < x < 10 /\ X ganzzahlig} darstellen. Die implizite Darstellung bedeutet dabei verbal "alle x mit der Eigenshaft: x größer 6 und kleiner 10 und zugleih x ganzzahlig", was nur von den Zahlen 7, 8 und 9 erfüllt wird. Da hier die Mähtigkeit der Menge nur bei n() = 3 liegt, ist die explizite Darstellung zu bevorzugen.. uer, F. Seitz, Grundkurs Wirtshaftsmathematik, DOI / _2, Springer Fahmedien Wiesbaden 2013

2 10 I llgemeine Grundlagen Eine unendlihe Menge C, die die Zahlen 7, 8, 9 und alle ganzen Zahlen größer 9 beinhalten soll, wurden wir als C = {7; 8; 9;... } definieren, wobei... die restlihen Elemente der Menge repräsentiert. Die Mähtigkeit der Menge C liegt in diesem Fall bei n{c} = 00. Während wir beliebige Mengen mit lateinishen Großbuhstaben bezeihnen, haben sih in der Literatur eine Reihe spezieller Symbole für besondere Mengen eingebürgert. So wird etwa die leere Menge, die keine Elemente beinhaltet, mit 0 und die Universalmenge, die bezüglih einer nzahl an untersuhten Elementen, alle Elemente enthält, mit Cl benannt. Darüber hinaus gilt für die in der Mathematik relevanten Zahlenmengen folgendes: Die Menge der natürlihen Zahlen beinhaltet die Zahlen 1, 2, 3,... mit deren Hilfe Gegenstände abgezählt werden. Sie ist definiert als N={I; 2; 3;... }. Erweitern wir die narürlihen Zahlen um die und alle negativen Zahlen, so erhalten wir die Menge der ganzen Zahlen als Z={... ; -2; -1; 0; 1; 2;... }. Erweitern wir die Menge der ganzen Zahlen um die Zahlen, die sih als Quotient einer ganzen und einer natürlihen Zahl bzw. als abbrehende (z.. 1/2 = 0,5) oder nihtabbrehende (z.. 1/3 = 0, ) periodishe Dezimalzahl darstellen lassen, ergibt sih die Menge der rationalen Zahlen als 1Q={qlq=m/n mit me ZnE N}. Die Menge der reellen Zahlen beinhaltet neben den rationalen Zahlen auh die sog. irrationalen Zahlen, so dass wir R = {rl r ist eine rationale oder irrationale Zahl} festhalten können. Eine Zahl wird dann als irrational bezeihnet, wenn sie sih niht mehr als Quotient einer ganzen und einer natürlihen Zahl - und damit auh niht als periodishe Dezimalzahl - darstellen lässt. Jede nihtperiodishe Dezimalzahl, bei der niht aus den bisher ennittelten Dezimalstellen auf die noh folgenden geshlossen werden kann, ist somit eine irrationale Zahl. Typishe eispiele hierfür sind die Kreiszahllt = 3, , die Euler'she Zahl e = 2, und bestimmte Wurzeln. Um auszudrüken, dass nur positive oder negative Werte aus diesen speziellen Mengen betrahet werden, wird dies durh ein hohgestelltes,,+" bzw.,,-" gekennzeihnet. Positive reelle Zahlen sind demnah mit R+, negative mit R- benannt. Vergleihen wir die einzelnen Elemente zweier Mengen miteinander, können wir Ordnungsbeziehungen zwishen den Mengen herstellen. esitzen zwei Mengen und die gleihen Elemente, sprehen wir von Mengengleihheit und können = shreiben. esonders beim Vergleih von Mengen und bei Mengenoperati0- nen (vgl. bshnitt I 2.2) sind Venn-Diagramme hilfreih. Diese stellen Mengen als Kteise dar, wodurh sih im Fall der Mengengleihheit folgendes ergibt:

3 2. Mengenlehre 11 etrahten wir die beiden Mengen = {±,/9] und = (3; -3), so stellen wir fest, dass beide die gleihen Elemente beinhalten, sodass = gilt. Ergibt der Vergleih der Elemente zweier Mengen und, dass alle Elemente von auh in enthalten sind, so sagen wir, dass eine Teilmenge von ist und shreiben!:. Wir versehen das klassishe Teilmengensymbol hier mit einem Unterstrih um zu verdeutlihen, dass die Mengen und auh gleih sein können. Das dazugehörige Venn-Diagramm zeigt folgendes ild: eispiele: 1. etrahten wir die Mengen E = (2; 4; 6; 8; 10) und N. Da die Elemente 2, 4, 6, 8 und 10 aus E auh in der Menge der natiirlihen Zahlen N vorkommen, gilt E N. 2. Fiir die vorhergehend aufgeliihrten Zahlen mengen können wir N Z Q IR festhalten. Dies bedeutet also, dass alle Elemente von N auh in Z, alle Elemente von Z auh in Q und alle Elemente von Q auh in IR enthalten sind. Gerade im Zusammenhang mit Teilmengen wird klar, dass man eine Menge auh als Menge von Mengen interpretieren kann. So gilt etwa Z = H...; - 2; -1; O}; N}. ußerdem ist unmittelbar einleuhtend, dass zu den Teilmengen einer Menge auh immer die leere Menge 0 und die Menge selbst gehört. 2.2 Mengenoperationen -In diesem bshnitt befassen wir uns näher mit Operationen, die aus mehreren Mengen eine neue Menge erzeugen. Zu diesen Zählen die Vereinigung, der Durhshnitt, die Differenz und das Komplement. Unter der Vereinigung oder Vereinigungsmenge zweier Mengen und verstehen wir die Menge, die sowohl die Elemente von als auh die Elemente von enthält. Fonnal shreiben wir U={XIXEvXE}, was sih im Venn-Diagramm (gepunktet) wie folgt dargestellt:

4 t2 I llgemeine Grundlagen etrahten wir die Mengen = {t ; 2; 3} und = {3; 4; 5}, erhalten wir daraus die Vereinigung u = {t ; 2; 3; 4; 5}. Der Durhshnitt oder die Durhshnittsmenge (Shnittmenge) zweier Mengen und umfasst alle Elemente, die sowohl in Menge als auh in Menge vorkommen. Es gilt was zu folgendem Venn-Diagramm führt: n ={XIXE XE }, Der Durhshnitt der Mengen = {t; 2; 3} und = {3; 4; 5} ist n = {3}, da das Element 3 sowohl in als auh in enthalten ist. Haben zwei Mengen und kein Element gemeinsam, entspriht ihr Durhshnitt der leeren Menge. Es gilt also n = 121. In einem solhen Fall bezeihnen wir die beiden Mengen als disjunkt. Es sei außerdem erwähnt, dass der Durhshnitt einer Menge mit sih selbst wieder die Menge ergibt, also n = gilt. naloges gilt auh für die Vereinigung, d. h. u =. Die Differenz oder Differenzenmenge zweier Mengen und ( vemlindert um ) enbält alle Elemente von, die niht in enthalten sind. Wir shreiben was folgendes Venn-Diagramm liefert: \ ={XIXE xe }, etrahten wir zwei Mengen = {t ; 2; 3} und = {3; 4; 5}, so ist \ = {t ; 2}, da die Elemente t und 2 aus niht in enthalten sind. Sind und zwei disjunkte Mengen, so gilt \ = und \ =. Die Differenz zweier gleiher Mengen ergibt die leere Menge, d. h. \ = 121.

5 2. Mengenlehre 13 Ist die Menge eine Teilmenge der Menge, d. h. s;;, enthält das Komplement oder die Komplementännenge der Menge bezüglih der Menge alle Elemente der Menge, die niht in der Menge enthalten sind. Formal gilt was das folgende Venn-Diagramm liefert: ={xlxe I\XE }, etrahten wir zwei Mengen = {I; 2; 31 und = {I; 2; 3; 4; 51, so gilt Ä = {4; 51, da die Elemente 4 und 5 zwar in, jedoh niht in enthalten sind. Wir erkennen, dass das Komplement nihts anderes als eine spezielle Fonn der Differenz ist, d. h. = \ gilt. Es gilt außerdem, dass das Komplement eines Komplements wieder die Ursprungsmenge liefert. Im obigen eispiel ist das Komplement von = {4; S} nämlih gerade = {1; 2; 3}. 2.3 Mengenalgebra Für die in bshnitt I 2.2 behandelten Mengenoperationen gelten eine Reihe spezieller Gesetze und Regeln, welhe in der folgenden Tabelle zusammengefasst sind. Dem aufmerksamen Leser wird bei genauerer etrahtung auffallen, dass wir einige davon bereits implizit im Text behandelt haben. Gesetz Idempotenzgesetze Identitätsgesetze Komplementgesetze Kommutativgesetze ssoziativgesetze Distributivgesetze De Morgans Gesetze edeutung u= n= u0= uq=q n0=0 nq= u-q n=0 u-u n=n C u ) u C - u C u C) C n ) n C = n ( n C) u C n C) = C u ) n C u C) n C u C) = C n ) u C n C) C u) = n C n) - u

6 14 I llgemeine Grundlagen Da die Distributivgesetze und die Gesetzte von De Morgan anders als die anderen niht auf den ersten lik nahzuvollziehen sind, betrahten wir im Folgenden die ussagen dieser Gesetze nohmals in Fonn von Venn-Oiagrammen, bei denen wir zur besseren Übersiht Rehteke zur Symbolisierung von Mengen verwenden. Die nmerkungen in Klammem beziehen sih dabei jeweils auf das Ergebnis der Mengenoperationen. eginnen wir zunähst mit den beiden Oistributivgesetzen: u(nc) (einfah u. doppelt shraffiert) (u)n(uc) (doppelt shraffiert) n(uc) (doppelt shraffiert) ( n ) u ( n C) (einfah u. doppelt shraffiert) Oe Morgans Gesetze lassen sih wie folgt veranshaulihen: Cl Cl (u) (einfah shraffiert) n (doppelt shraffiert) 1IIIIIIIIIIIil~II::: ::II~IIIIIIIIIIIIIII (n) (einfah shraffiert) Cl u (einfah u. doppelt shraffiert)

7

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a... Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe

Mehr

1 Mengenlehre. 1.1 Grundbegriffe

1 Mengenlehre. 1.1 Grundbegriffe Dieses Kapitel behandelt Grundlagen der Mengenlehre, die in gewisser Weise am nfang der Mathematik steht und eine Sprache bereitstellt, die zur weiteren Formulierung der Mathematik sehr hilfreich ist.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Die Reflexion von Elektronen an einem Potentialsprung nah der relativistishen Dynamik von Dira. Von 0. Klein in Kopenhagen. (Eingegangen am 24. Dezember 1928.) Es wird die Reflexion von Elektronen an einem

Mehr

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A.

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A. Prof. Dr. H.-H. ohler, W 004/05 PC1 apitel.4 - Reversible Reation.4-1.4 Reversible Reationen.4.1 Diretionale und Netto-Reationsgeshwindigeit Wir gehen jetzt zu reversiblen Reationen über und betrahten

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $ $Id: dreie.tex,v 1.37 2017/06/19 14:39:24 h Exp $ 2 Dreiee 2.3 Einige spezielle Punte im Dreie In der letzten Sitzung haben wir drei unserer speziellen Punte eines Dreies behandelt, es steht nur noh der

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Achtung: Im Nenner eines Bruches darf nie die Null stehen!!

Achtung: Im Nenner eines Bruches darf nie die Null stehen!! Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du

Mehr

2 Sehnen, Sekanten und Chordalen

2 Sehnen, Sekanten und Chordalen Sehnen, Seanten und Chordalen Übersiht.1 Sehnen- und Seantensatz................................................... 7. Chordalen.................................................................. 3 Weitere

Mehr

Aufgabenblatt Punkte. Aufgabe 1 (Negation) Seien e R, n, m, k N und. Negieren Sie φ. 4. Lösung Es gilt

Aufgabenblatt Punkte. Aufgabe 1 (Negation) Seien e R, n, m, k N und. Negieren Sie φ. 4. Lösung Es gilt ufgabenblatt 3 40 Punkte ufgabe 1 (Negation) Seien e R, n, m, k N und φ e [e > 0 k n, m (((n k) (m k)) 1/n 1/m < e)] Negieren Sie φ. 4 Es gilt ϕ e [e > 0 k n, m (((n k) (m k)) 1/n 1/m < e)] e [e > 0 [

Mehr

Mathematik 1, Teil B

Mathematik 1, Teil B FH Oldenburg/Ostfriesland/Wilhelmshaven Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre

Mehr

9 Strahlungsgleichungen

9 Strahlungsgleichungen 9-9 Strahlungsgleihungen Ein spontanes Ereignis bedarf keines nstoßes von außen, um ausgelöst zu werden. Das Liht thermisher Strahler, das wir visuell wahrnehmen, entsteht dadurh, dass eine Substanz bei

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch

Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert werden durch 1.2 Mengenlehre Grundlagen der Mathematik 1 1.2 Mengenlehre Definition: Menge, Element, Variablenraum Eine Menge A ist die Zusammenfassung gleichartiger Elemente zu einer Gesamtheit. Eine Menge kann definiert

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

3 Eigenschaften holomorpher Funktionen

3 Eigenschaften holomorpher Funktionen 3 Eigenshaften holomorpher Funktionen 3.1 Der Identitätssatz Der Identitätssatz zeigt einen überrashend engen Zusammenhang zwishen den Werten einer holomorphen Funktion auf. Satz 3.1 (Identitätssatz) Sei

Mehr

2 Ereignisse. Für Ereignisse A und B kann durch Bildung des Durchschnitts (engl.: intersection) A B := {ω Ω : ω A oder ω B}

2 Ereignisse. Für Ereignisse A und B kann durch Bildung des Durchschnitts (engl.: intersection) A B := {ω Ω : ω A oder ω B} 5 2 Ereignisse ei einem stochastischen Vorgang interessiert oft nur, ob dessen Ergebnis zu einer gewissen Menge von Ergebnissen gehört. So kommt es zu eginn des Spiels Mensch-ärgere- Dich-nicht! nicht

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge Mengenlehre Grundbegriff ist die Menge Definition (Naive Mengenlehre). Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung

Mehr

Senkrechter freier Fall

Senkrechter freier Fall Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll

Mehr

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Mengenlehre. ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Mengenlehre ALGEBRA Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. August 2016 Inhaltsverzeichnis 1 Mengenlehre 1 1.1 Die Menge im mathematischen

Mehr

Darstellungstheorie der Lorentz-Gruppe

Darstellungstheorie der Lorentz-Gruppe Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3

Mehr

Mathematik für Techniker

Mathematik für Techniker Siegfried Völkel u.a. Mathematik für Techniker 7., neu bearbeitete und erweiterte uflage 16 1 Rechenoperationen Prinzip der Mengenbildung Wenn eine ussageform für die Objekte eines Grundbereichs vorliegt,

Mehr

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist.

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist. 9 Pthagoras Tripel Nah Pthagoras gilt: In einem rehtwinkligen Dreiek mit den Katheden a und b und der Hpothenuse ist Speziell gilt die sogenannte a + b = Zimmermannsregel. Drei Latten der Länge 3, 4 und

Mehr

2 Mengenlehre. 2.1 Grundlagen Definition

2 Mengenlehre. 2.1 Grundlagen Definition 2 Mengenlehre 2.1 Grundlagen Einer der wichtigsten Grundbegriffe in der Mathematik ist der Mengenbegriff. Die zugehörige Theorie - die Mengenlehre - bildet die Grundlage für die gesamte Mathematik. Nur

Mehr

Mengen (siehe Teschl/Teschl 1.2)

Mengen (siehe Teschl/Teschl 1.2) Mengen (siehe Teschl/Teschl 1.2) Denition nach Georg Cantor (1895): Eine Menge ist eine Zusammenfassung von bestimmten und wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen.

2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen. 2 Mengen Menge Die Summenformel Die leere Menge Das kartesische Produkt Die Produktformel Die Potenzmenge Die Binomialzahlen Der Binomialsatz Unendliche Mengen Springer Fachmedien Wiesbaden 2016 A. Beutelspacher,

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik earbeitet von Prof. Dr. Horst Peters., aktualisierte uflage 202 202. Taschenbuch. 298 S. Paperback ISN 978 3 7 02295 6 Format ( x L): 5,5 x 23,2 cm Gewicht: 7 g Wirtschaft > etriebswirtschaft:

Mehr

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1 rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert

Mehr

Mathe Leuchtturm-Übungen-5.& UE-Klasse (3./4.)-Nr.004-Lückentext-Zahlenmengen- C by Joh Zerbs

Mathe Leuchtturm-Übungen-5.& UE-Klasse (3./4.)-Nr.004-Lückentext-Zahlenmengen- C by Joh Zerbs 1 Mathe Leuchtturm Übungsleuchtturm 5.Kl. 004 =Übungskapitel zu Symbolen und Mengen Sprache der Mathematik Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der 5.Klasse)

Mehr

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT

FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT Dirix Workbooks, Seefeld am Pilsensee Autor: Martin Dirix ISBN 978-3-7347-7405-8 1.

Mehr

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Dozentin: Wiebke Petersen 1. Foliensatz Wiebke Petersen math. Grundlagen 6 Frage Was ist eine Menge? 1 Minute zum Nachdenken

Mehr

Mengenlehre. Jörg Witte

Mengenlehre. Jörg Witte Mengenlehre Jörg Witte 25.10.2007 1 Grbegriffe Die Menegenlehre ist heute für die Mathematik grlegend. Sie spielt aber auch in der Informatik eine entscheidende Rolle. Insbesondere fußt die Theorie der

Mehr

Lösungen Übungsblatt 1 (Mengenlehre)

Lösungen Übungsblatt 1 (Mengenlehre) Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Lösungen Übungsblatt 1 (Mengenlehre) Roger urkhardt 17 Mathematik 1 1. ufgabe egeben seien die

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

LEITFÄHIGKEIT SCHWACHER ELEKTROLYTE

LEITFÄHIGKEIT SCHWACHER ELEKTROLYTE TU Clausthal Stand 8//3 LEITFÄHIGKEIT SCHWCHER ELEKTROLYTE. Versuhsplatz Komponenten: - Thermostat - Leitfähigkeitsmessgerät - Elektrode - Thermometer. llgemeines zum Versuh Der Widerstand eines Leiters

Mehr

im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet.

im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet. Name: Datum: Harmonishe Wellen - Mathematishe eshreibung Da eine Welle sowohl eine räumlihe als auh eine zeitlihe Änderung eines physikalishen Systems darstellt, ist sowohl ihre graphishe Darstellung als

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 8. November 2012 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Die Kryptographie, aus dem Altgriehishen Geheimshrift abgeleitet, ist die Wissenshaft der Vershlüsselung von Nahrihten. Ursprünglih in der Antike eingesetzt, um diplomatishen

Mehr

Vorkurs Mathematik. Christoph Hindermann. Mengenlehre und Kombinatorik

Vorkurs Mathematik. Christoph Hindermann. Mengenlehre und Kombinatorik Kapitel 1 Christoph Hindermann Vorkurs Mathematik 1 1.1.1 Begriff der Menge Eine Menge ist eine Zusammenfassung bestimmer, wohl unterscheidbarer Objekte unserer Anschauung oder unseres Denkens. Die Objekte

Mehr

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke 6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy Institut für Physikalishe Chemie Grundpraktikum 10. OBERFLÄCHENAKTIVITÄT Stand 06/11/006 OBERFLÄCHENAKTIVITÄT 1. Versuhsplatz Komponenten: - Messapparatur - Behergläser - Pipetten - Messkolben - Laborboy.

Mehr

1.2 Mengenlehre-Einführung in die reellen Zahlen

1.2 Mengenlehre-Einführung in die reellen Zahlen .2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5

Mehr

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung Zyklishe Ungleihungen in Varilen und Wege der Symmetrisierung Yimin Ge August 006 Symmetrishe Ungleihungen hen gegenüber zyklishen Ungleihungen mehrere Vorteile. Einerseits kann man ohne Beshänkung der

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16

Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16 Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre

Mehr

Zahlen und Mengen. 1.5 Verknüpfung von Mengen

Zahlen und Mengen. 1.5 Verknüpfung von Mengen 1.5 Verknüpfung von Mengen D 1.114 Einige Kinder einer Kindergartengruppe werden befragt, wer von ihnen Fußball und wer Federball spielt. nna, Julia, Jasmin, Lukas und Markus lieben das Federballspiel.

Mehr

11d Mathematik Stefan Krissel. Nullstellen

11d Mathematik Stefan Krissel. Nullstellen d Mathematik..009 Stefan Krissel D E R Z W E I T E S C H R I T T B E I D E R F U N K T I O N S U N T E R S U C H U N G : Nullstellen Der zweite Shritt bei der Untersuhung von Funktionen ist die Untersuhung

Mehr

Die neue Bundesregierung unter Gerhard Schröder

Die neue Bundesregierung unter Gerhard Schröder Ekart Bomsdorf Die degressiv dynamishe Rente - ein Beitrag zur Lösung des Rentendilemmas Die im Rentenreformgesetz 1999 vorgesehene demographishe Komponente in der Rentenformel ist unter anderem wegen

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

1 Mengen. 1.1 Definition

1 Mengen. 1.1 Definition 1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Wir fragen nun, wie die Faltlinie die senkrechten Rechtecksseiten teilt. 1 b

Wir fragen nun, wie die Faltlinie die senkrechten Rechtecksseiten teilt. 1 b Hans Walser, [0005a], [050] Falten im Rehtek Anregungen: E.-R. M., S. und H. S., S. Eke hinauffalten In einem Hohformat-Rehtek falten wir die rehte untere Eke auf die obere Kante. Dann falten wir wieder

Mehr

2.3 Der Fluss eines Vektorfeldes

2.3 Der Fluss eines Vektorfeldes 32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.

Mehr

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14 Mengenlehre Mengenlehre Vorkurs Informatik WS 2013/14 30. September 2013 Mengen Mengen Definition (Menge) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten

Mehr

Mathematik 1 für Informatik Inhalt Grundbegrie

Mathematik 1 für Informatik Inhalt Grundbegrie Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1 0 Die Logarithmusfunktion Würde man nun versuhen die Aufgae 6. des vorigen Ashnittes rehnerish zu lösen, so stößt man auf folgende noh unlösare Gleihung: h 0,88 www.etremstark.de 0,88 h Gesuht ist also

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g:

N = f0; 1; 2; : : : g: [n] = f1; : : : ; ng: M = f x j x hat die Eigenschaft E g: 1 Mengen Gregor Cantor denierte 1895 eine Menge als eine Zusammenfassung wohldenierter, unterscheidbarer Objekte. Eine Menge wird als neues Objekt angesehen, die Menge ihrer Objekte. Ein Objekt x aus der

Mehr

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein Mengen 1.2 9 1.2 Mengen 7 Der Begriff der Menge wurde am Ende des 19. Jahrhunderts von Georg Cantor wie folgt eingeführt. Definition (Cantor 1895) Eine Menge ist eine Zusammenfassung M von bestimmten,

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen?

Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen? Relatiitätstheorie Zeitreisen Reisen in die Vergangenheit oder Zukunft sind beliebte Themen für Siene- Fition-Romane. Darin lassen sih mit Hilfe on Zeitmashinen Personen in beliebige Epohen ersetzen. Man

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Fabian Gundlah 13. Oktober 2010 Die spezielle Relativitätstheorie untersuht die vershiedenen Sihtweisen von Beobahtern in Inertialsystemen. Ein Inertialsystem ist dabei ein

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy

OBERFLÄCHENAKTIVITÄT. 1. Versuchsplatz. 2. Allgemeines zum Versuch. Komponenten: - Messapparatur - Bechergläser - Pipetten - Messkolben - Laborboy Praktikum Teil A und B 10. OBERFLÄCHENAKTIVITÄT Stand 8/05/013 OBERFLÄCHENAKTIVITÄT 1. Versuhsplatz Komponenten: - Messapparatur - Behergläser - Pipetten - Messkolben - Laborboy. Allgemeines zum Versuh

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Mengenoperationen, Abbildungen

Mengenoperationen, Abbildungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht Üersiht Teil apitel 6: Spiele mit simultanen und seuentiellen Spielzügen apitel 6 apitel 5 Üersiht Teil Üersiht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform vs extensive

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion

Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion Wellen Wellen treten in der Natur in großer Zahl au: Wasserwellen, Shallwellen, Lihtwellen, Radiowellen, La Ola im Stadion Von den oben genannten allen die ersten beiden in die Kategorie mehanishe Wellen,

Mehr

Kinetik homogener Reaktionen - Formalkinetik

Kinetik homogener Reaktionen - Formalkinetik Prof. Dr. xel rehm Universität Oldenburg - Praktikum der Tehnishen Chemie 1 Einleitung Kinetik homogener Reaktionen - Formalkinetik Unter hemisher Kinetik versteht man die Lehre von der Geshwindigkeit

Mehr

Reflexion von Querwellen

Reflexion von Querwellen Mehanishe Wellen Refleion von Querwellen Dein Lernverzeihnis Refleion von Querwellen Übersiht Einführung 2 Refleion von Querwellen an einem Ende 2. Refleion am festen Ende.....................................

Mehr

Auswertung von Operatorbäumen Huffman-Code

Auswertung von Operatorbäumen Huffman-Code Datenstrukturen: Bäume 4 Bäume 4. Terminologie und Grundlagen: Modelle für Graphen und Bäume 4.. Spezifikation und einfahe Algorithmen 4. Anwendungen - 4.. Auswertung von Operatoräumen - 4.. Huffman-Code

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 4. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 4. Vorlesung 1 / 21 Themen

Mehr

Mengenlehre - KurzVersion

Mengenlehre - KurzVersion Mengenlehre - KurzVersion 1. Kapitel aus meinem ALGEBRA - Lehrgang Sprachprofil / WRProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 18. August 2014 Inhaltsverzeichnis

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek,

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, Vorkurs Mathematik für Informatiker -- 4 ussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, 7..2 ussagenlogik Rechnen mit Wahrheitswerten: oder, oder Objekte, die wir untersuchen, sind jetzt

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

Zum Begriff der Paare: ab ordinalem Messniveau

Zum Begriff der Paare: ab ordinalem Messniveau Zum Begriff er Paare: ab orinalem Messniveau Begriffsefinition von Paaren: gleihe bzw. untershielihe Rangornung zwishen Untersuhungsobjekten (z. B. Personen) Paare können konkorant oer iskorant sein 1)

Mehr

Verknüpfungen von Mengen

Verknüpfungen von Mengen R. rinkmann http://brinkmann-du.de Seite 1 0.10.008 Verknüpfungen von Mengen urch Verknüpfungen von Mengen lassen sich andere Mengen bilden, die zu ihren usgangsmengen in bestimmten eziehungen stehen.

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr