7 Partielle Ableitung

Größe: px
Ab Seite anzeigen:

Download "7 Partielle Ableitung"

Transkript

1 Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff 7 Partielle Ableitung Definition 7 Sei U R n offen und f : U R m eine Funktion Dann heißt f im Punkt nach der j-ten Variablen j partiell differenierbar, falls die Richtungsableitung Df ej ( = lim t t (f( te j f( eistiert Wir setten dann ( := Df ej ( und nennen ( die j-te partielle Ableitung von f an der Stelle f Beachte 72 ( Ist f = f m mit f,, f m : U R, so gilt δ j ( ( = δ j m ( dh die Komponenten von ( sind die j-ten partiellen Ableitungen von f,, f m in (2 Ist = n ( = lim t t, so gilt + te j = f j + t f n n j + t Damit folgt n (δ= j +t = lim δ j δ j f f δ n Die ist gerade die Ableitung von f, wenn wir alle Variablen,, j, j+,, n festhalten, und f dann als Funktion der Variablen j auffassen Nach ( können wir immer die Komponenten f,, f m getrennt betrachten In der i-ten Komponenten berechnen wir dann die gewünschte Ableitung der Funktion an der Stelle s = i ( δ, δ R; s f i ((,, j, δ, j+,, n t n getext: Julia Wolters 57

2 Prof Dr Siegfried Echterhoff Analsis 2 Vorlesung SS 29 ( Beispiel: f : R 3 R 2 ; f e + = sin( Dann gilt: = e +, = e +, =, δ δ δ 2 = cos(, 2 =, 2 = cos( δ δ δ Sat 73 Sei f : U R n R m differenierbar in U Dann eistieren alle partiellen Ableitungen ( und für die Jakobi-Matri im Punkt gilt: Df( = ( (,, δ ( ( = δ δ n m δ ( δ n ( M m n (R m δ n ( Beweis: Nach 65 eistieren alle Richtungsableitungen an der Stelle, also auch ( = Df ej ( j n Nach der linearen Algebra gilt für F : R n R m linear: Die Darstellungsmatri von F bgl Standardbasen {e,, e n }, bw {e,, e m } von R n bw R m ist gegeben durch A F = (F (e,, F (e n (Dann:F ( = A Nach 65 folgt dann (Df( e,, Df( e n = (Df e (,, Df en ( = ( (,, ( δ δ n 74 (Achtung Die Umkehrung gilt im Allgemeinen nicht, dh es eistieren Funktionen die partiell, aber nicht total differenierbar sind! ( ( ( Beispiel: f : R 2 R; f = 2 +, 2 ( (, = ( Dann ist f partiell differenierbar in mit δ ( f = lim ( = lim = = δ ( 58 getext: Julia Wolters

3 Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff Aber: Wäre f differenierbar in der Fall (Blatt 6, Aufgabe! (, so wäre f nach 66 auch stetig in Wir halten fest: Es gelten die folgenden Implikationen: f differenierbar in f stetig in alle Richtungsabg Df V ( ( Dies ist nicht eistieren im Punkt Aber: = f partiell differenierbar in f stetig in = f differenierbar in ( Im allgemeinen gibt die Jakobi-Matri i j ( nur einen (und war den einig möglichen Kandidaten für die Ableitung Df( Man muss dann immer noch testen, ob die i,j Matri die Bedingungen von Definition 6 erfüllt! In viele Fällen genügt es aber doch, die partielle Ableitungen u untersuchen, wie der folgende Sat 76 eigt Doch unächst benötigen wir eine Beeichnung: Beeichnung 75 Sei U R n offen, f : U R m eine Funktion und U Dann heißt f stetig partiell differenierbar in, falls f in einer Umgebung U ε ( partiell differenierbar ist und alle partiellen Ableitungen : U ε ( R m stetig im Punkt sind Ist dies für alle U erfüllt, so heißt f stetig partiell differenierbar auf U Sat 76 Sei f : U R n R m stetig partiell differenierbar in U Dann ist f auch differenierbar in Beweis: Durch aufspalten in Komponentenfunktionen können wir obda f : U R annehmen, und durch ersetten von U durch U ε ( (wenn nötig können wir obda annehmen, dass f auf gan U partiell differenierbar ist (die Ableitungen von f in hängen nur von die Funktionswerten auf U ε ( ab! ( Wir müssen eigen: Ist L = δ (,, Mit h := ist dies äquivalent u δ n ( so gilt lim (f( f( L( = lim h h h (f( + h f( Lh = f partiell differe getext: Julia Wolters 59

4 Prof Dr Siegfried Echterhoff Analsis 2 Vorlesung SS 29 Sei dau δ > mit U δ ( U, wobei wir hier die Umgebung bgl der Maimumnorm wählen! Wir definieren Punkte,,, n U δ ( durch =, = +h e, 2 = + h 2 e 2,, n = n+ + h n e n = + h Für alle j n betrachte die Funktion g j : [, ] R; g j (t = f( j + th j e j Da f partiell differenierbar ist g j differenierbar mit g j(t = ( j + th j e j h j Nach dem Mittelwertsat der Differentialrechnung in einer Variablen eistiert dann ein Θ j [, ] mit und dann folgt f( j f( j = g j ( g j ( = g j(θ j = ( j + Θ j h j e j h j f( + h f( = f( n f( = und dann folgt: f( +h f( Lh = j= (f( j f( j so = j= j= ( ( j + Θ j h j e j ( h j = v(h, h δ }{{ j } =v j (h und wobei, das Standard-Skalarprodukt auf R n beichnet Wegen j j + Θ j h j e j = h k e k + Θ j h j e j h k= ( j + Θ j h j e j h j, mit v(h R gilt j + Θ j h j e j für h, und da alle δ im Punkt stetig sind, folgt v(h für h Damit folgt f( + h f( Lh = v(h, h Cauch Schwart h 2 h 2 und der Sat ist bewiesen! Wir erhalten nun die folgende Kette von Implikationen: f stetig partiell differenierbar f differenierbar Beispiel 77 Dann gilt Sei f : R R \ {} R, f δ =, δ = = 2 h 2 v(h 2 h 2 f stetig f partiell differenierbar beide ( partiellen Ableitungen sind stetig, also ist f überall differenierbar mit Df( =, 2 6 getext: Julia Wolters

5 Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff 2 (Für Kettenregel Sei f : R 2 R 3, f = ; g : R 3 R, g = ( Dann: Dg = (,,, Df = Da alle Einträge (also partiellen Ableitungen stetig sind, sind f und g differenierbar Nach Kettenregel gilt nun: D(g f Probe: g f = Dg Df = 2 2 D(g f = ( 2,, 2 = (2 2, 2 2 = (2, 2 2 ( Ist f : U R n R partiell differenierbar in, so ist die Jakobi-Matri Df( = δ (,, δ n ( ein Zeilenvektor der Länge n Der dau transponierte Vektor (Df( t ist dann ein Spaltenvektor im R n Dieser hat einen besonderen Namen: Definition 78 (Gradient Sei F : U R n R partiell differenierbar in Dann heißt der Spaltenvektor δ ( f( = (Df( t = δ n ( der Gradient von f im Punkt Alternative Beeichnung: grad f( := f( Beachte: Produktregel für : Sind f, g : U R n R partiell differenierbar, so gilt die Produktregel (f g = f g + g f δ denn: (f g( = f( δg ( + g( ( nach der gewünschten Produktregel δ i δ i δ i in einer Variablen! 79 (Geometrische Deutung Ist f : U R n R total differenierbar in, so eigt f( immer in Richtung des größten Anstiegs von f, falls Df( Skie: Denn: Ist v R n mit v 2 =, so messen wir den Anstieg von f in in Richtung v durch die Richtungsableitung Df v ( Nach 66 gilt Df v ( = Df( v = j= ( v j = f(, v getext: Julia Wolters 6

6 Prof Dr Siegfried Echterhoff Analsis 2 Vorlesung SS 29 Nach Cauch-Schwart folgt f(, v f( 2 v 2 = f( 2 da v 2 = Der Anstieg in Richtung v ist also immer f( Für v = f( 2 f( gilt aber Df v ( = f(, v = also wird der Anstieg in Richtung f( maimal f( 2 f(, f( = f( 2 7 Mit Hilfe {( des Gradienten können wir auch ( die Tangentialebene T (,f( am Graphen G(f = U} von f im Punkt leicht darstellen: Ist f differenierbar in, so gilt nach 66 bgl Basis {e,, e n } von R n : f( f( { ( ( } e T := T (,f( = + λ i f( i Df( e i λ,, λ n R i= { ( ( } ei = + λ f( i δ i ( λ i,, λ n R Dies ist eine n-dimensionale Hperebene im R n+, und i= {( e δ ( ( } en,, ist δ n ( eine Basis des Raums ( aller Richtungsvektoren von T f( Betrachte: N( := R n+ Dann steht der Normalenvektor N( senkrecht auf allen Richtungsvektoren, denn ( ( ej f(, = ( ( ( = für alle j n Damit folgt die alternative Darstellung für T: ( T = R n+, N( =, N( f( }{{} =, f( f( = { R n+, N( =, f( f( } (Normalenform für T 62 getext: Julia Wolters

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

9 Höhere partielle Ableitungen und die Taylorformel

9 Höhere partielle Ableitungen und die Taylorformel Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff 9 Höhere partielle Ableitungen und die Talorformel Definition 91 Sei U R n offen, f : U R m eine Funktion Dann heißt f 2-mal partiell differenzierbar,

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch Tangentialebene Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch implizit definierten Fläche. f (x 1,..., x n ) = c Tangentialebene 1-1

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

54 Die Jacobi-Matrix. E f WR C 0 Œ0; Œ0; 2!R3 definiert durch. r cos ' r sin ' E f.r; '/ D : (54.2) pv D RT; 0.r; '/ D. p D p.

54 Die Jacobi-Matrix. E f WR C 0 Œ0; Œ0; 2!R3 definiert durch. r cos ' r sin ' E f.r; '/ D : (54.2) pv D RT; 0.r; '/ D. p D p. 34 R Plato Teil V ehrdimensionale Differenzialrechnung Beispiel 533 (Ideale Gasgleichung) Für eine bestimmte enge eines idealen Gases gilt für das spezifische Volumen v D V=m (mit der asse m und dem Volumen

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

49 Differenzierbarkeit, Richtungsableitung und partielle Differenzierbarkeit

49 Differenzierbarkeit, Richtungsableitung und partielle Differenzierbarkeit 49 Differenzierbarkeit, Richtungsableitung und partielle Differenzierbarkeit 49.1 Differenzierbarkeit 49.2 Eindeutigkeit des Differentials; Unabhängigkeit der Differenzierbarkeit von den gewählten Normen

Mehr

Totale Ableitung und Jacobi-Matrix

Totale Ableitung und Jacobi-Matrix Totale Ableitung und Jacobi-Matrix Eine reelle Funktion f : R n R m ist in einem Punkt x differenzierbar, wenn f (x + h) = f (x) + f (x)h + o( h ) für h 0. Totale Ableitung 1-1 Totale Ableitung und Jacobi-Matrix

Mehr

39 Differenzierbare Funktionen und Kettenregel

39 Differenzierbare Funktionen und Kettenregel 192 VI. Differentialrechnung in mehreren Veränderlichen 39 Differenzierbare Funktionen und Kettenregel Lernziele: Konzepte: totale Ableitungen, Gradienten, Richtungsableitungen, Tangentenvektoren Resultate:

Mehr

Heinrich-Hertz-Oberschule, Berlin

Heinrich-Hertz-Oberschule, Berlin Reellwertige Funktionen mehrerer Variabler Teilnehmer: Maximilian Ringleb Jakob Napiontek Kay Makowsky Mallku Schlagowski Trung Duc Nguyen Alexander Reinecke Herder-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

25. Differenzierbarkeit im Mehrdimensionalen

25. Differenzierbarkeit im Mehrdimensionalen 25 Differenzierbarkeit im Mehrdimensionalen 317 25 Differenzierbarkeit im Mehrdimensionalen Wie im eindimensionalen Fall in Kapitel 10 wollen wir uns nach der Stetigkeit von Abbildungen jetzt mit der Differenzierbarkeit

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

i j m f(y )h i h j h m

i j m f(y )h i h j h m 10 HÖHERE ABLEITUNGEN UND ANWENDUNGEN 56 Speziell für k = 2 ist also f(x 0 + H) = f(x 0 ) + f(x 0 ), H + 1 2 i j f(x 0 )h i h j + R(X 0 ; H) mit R(X 0 ; H) = 1 6 i,j,m=1 i j m f(y )h i h j h m und passendem

Mehr

2. Differentialgleichungen

2. Differentialgleichungen 2. Differentialgleichungen Was will man bei einer Differentialgleichung (DGL) eigentlich herausfinden? Man hat eine Gleichung (oder mehrere) von einer Funktion und ihren Ableitungen gegeben. Nun will man

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

50 Partielle Ableitungen

50 Partielle Ableitungen 50 Partielle Ableitungen 217 50 Partielle Ableitungen 501 Beispiel Die Differenzierbarkeit von Funktionen von mehreren Veränderlichen kann nach jeder Variablen einzeln untersucht werden, wobei die anderen

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

10 Differentialrechnung für Funktionen in mehreren Variablen

10 Differentialrechnung für Funktionen in mehreren Variablen 6 Differentialrechnung für Funktionen in mehreren Variablen Die meisten Funktionen in den Naturwissenschaften hängen von mehreren Variablen ab. In diesem Kapitel behandeln wir deshalb Methoden zur Untersuchung

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Reellwertige Funktionen mehrerer Veränderlicher

Reellwertige Funktionen mehrerer Veränderlicher Reellwertige Funktionen mehrerer Veränderlicher Teilnehmer: Philipp Besel Joschka Braun Robert Courant Florens Greÿner Tim Jaschek Leroy Odunlami Gloria Xiao Heinrich-Hertz-Oberschule, Berlin Ludwigs-Georgs-Gymnasium,

Mehr

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen 6.1 Funktionen von mehreren Variablen Eine Abbildung f : D R, D R n, ordnet jedem n-tupel x = (x 1, x 2,...,x n ) D (eindeutig) eine

Mehr

Mathematik II. Vorlesung 46. Der Gradient

Mathematik II. Vorlesung 46. Der Gradient Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 46 Der Gradient Lemma 46.1. Es sei K ein Körper und V ein K-Vektorraum, der mit einer Bilinearform, versehen sei. Dann gelten folgende Aussagen

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 49 Zu einer reellwertigen Funktion Extrema auf einer offenen Menge G R n interessieren wir uns, wie schon bei einem eindimensionalen

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )} Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

Partielle Ableitungen

Partielle Ableitungen Partielle Ableitungen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Funktionen von zwei Variablen 1 1.1 Aufbau solcher Funktionen.................... 1

Mehr

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion.

Übungen zu Grundlagen der Mathematik 2 Lösungen Blatt 12 SS 14. Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion. Übungen zu Grundlagen der Mathematik Lösungen Blatt 1 SS 14 Prof. Dr. W. Decker Dr. M. Pleger Aufgabe 44. Bestimmen Sie die Taylor-Polynome der Funktion f : U R, (x, y) x y x + y, im Punkt (1, 1) bis einschließlich.

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim

f(x) f(a) f (a) := lim x a Es existiert ein Polynom ersten Grades l(x) = f(a) + c (x a) derart, dass gilt lim x a x a lim A Analysis, Woche 8 Partielle Ableitungen A 8. Partielle Ableitungen Wir haben vorhin Existenzkriterien für Extrema betrachtet, aber wo liegen sie genau? Anders gesagt, wie berechnet man sie? In einer

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Differenzierbarkeit und Taylor-Entwicklung Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet.. Jacobi-Matrix Man bestimme die Jacobi-Matrix

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 37 Wir haben schon im ersten Semester gewöhnliche Differentialgleichungen samt einiger Lösungsverfahren besprochen. Dort ging

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

8. Übungsblatt zur Vorlesung Mathematik I für Informatik

8. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 8. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 01./02. Dezember 2009 Gruppenübung

Mehr

Gradient, Hessematrix, Definitheit, Taylorentwicklung und Extremwertaufgaben von Funktionen mehrerer Variabler

Gradient, Hessematrix, Definitheit, Taylorentwicklung und Extremwertaufgaben von Funktionen mehrerer Variabler Rolf Haftmann Gradient, Hessematri, Definitheit, Talorentwicklung und Etremwertaufgaben von Funktionen mehrerer Variabler Gradient: Spaltenvektor der partiellen Ableitungen f 1 f f 1 f = grad f = 2 = f

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

7 Differential- und Integralrechung für Funktionen

7 Differential- und Integralrechung für Funktionen Differential- und Integralrechung für Funktionen mehrer Veränderlicher 7 7 Differential- und Integralrechung für Funktionen mehrer Veränderlicher Die Differential- und Integralrechung für Funktionen mehrer

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Analysis II. Mehrdimensionale Differenzialund Integralrechnung

Analysis II. Mehrdimensionale Differenzialund Integralrechnung Übungen zur Vorlesung Analysis II Aufgaben Mehrdimensionale Differenzialund Integralrechnung gelesen von Prof. Dr. Heinrich Freistühler Martin Gubisch Konstanz, Sommersemester 28 Übungsaufgaben. Aufgabe

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppit, Dr. I. Rybak 11. Gruppenübung ur Vorlesung Höhere Mathematik Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise u den Hausaufgaben: Aufgabe H 31.

Mehr

Mehrdimensionale Analysis

Mehrdimensionale Analysis KAPITEL IV Mehrdimensionale Analsis 15 Mehrdimensionale Differentialrechnung Wir wollen in diesem Abschnitt einige Aspekte der Differentialrechnung von Abbildungen von R n nach R oder nach R m ansprechen

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr