STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton

Größe: px
Ab Seite anzeigen:

Download "STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton"

Transkript

1 STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG Spule mit Eisenken Abgabedatum: Teilnehme: Ludwik Anton 676

2 - -

3 Aufgabe ist es, eine velustbehaftete Spule mit Eisenken (Skizze) zu untesuchen. Dies soll mit dem Pogamm Maxwell geschehen. Dazu sollen zuest dei einfachee Modelle beechnet weden, die man auch mit den physikalischen Fomeln genügend genau beechnen kann. Zum einen soll übepüft weden, ob die mit Maxwell beechneten Wete, fü zum Beispiel eine einfache Wicklung, ichtig sind. Zum andeen sollen diese Modelle als Hinfühung zu Modell 4 dienen. Es soll nach und nach übepüft weden, wie sich die Veluste änden, wenn nun ein Ken in die Spule eingefügt wid und wie sich dabei die Wete von Maxwell gegenübe den Weten de physikalischen Fomeln vehalten. Als nächstes sollen dann auch die Hysteeseveluste mit einbezogen weden, die Wete aus Maxwell sollen dabei wiede mit den Weten de physikalischen Fomeln veglichen weden. Als letztes Modell soll nun Maxwell effizient genutzt weden, zudem soll die Geometie des Rückschlusschenkels an die Efodenisse angepasst weden. Skizze: Spule mit Eisenken Z obees Joch stand σ CU mm mm mm +H/ +h/ Schenkel Schenkel Wicklung untees Joch mm mm a b c mm -h/ -H/ Daten: Fequenz f = 5 Hz Windungszahl w = Stom duch die Wicklung Leitwet Kupfe Î = 56,57 ma σ CU = 6 58 S/m - -

4 I Model Hie soll alleine die Wicklung betachtet weden, wie sie sich im Vakuum ( = ) vehält, bzw. wo hie die Feldlinien velaufen und welche Veluste aufteten..define Model In Maxwell D wid als Solve, de Eddy Cuent - Solve vewendet. Aufgund de Rotationssymmetie eine Spule wid die Zeichnung in de RZ-Plane angefetigt. Unte Define Model, Daw Model wid die folgende Zeichnung angefetigt: c a b (in mm) Unte Model Dawing Units weden mm vewendet, die Dawing Size betägt fü R von bis und fü Z von + bis, da die Felde im Beeich von ± 5mm inteessieen und man hie am besten eine doppelt so goße Dawing Size wählt, um genügend genaue Egebnisse zu ehalten.. Setup Mateials Als backgound und fü die Schenkel, bzw. die Joche, wid vacuum vewendet, fü die 6 Wicklung kommt coppe mit eine Leitfähigkeit von σ CU = 58 S / m zum Einsatz, beide Mateialien sind in Maxwell beeits vodefiniet und wuden nu ausgewählt und zugewiesen. vacuum coppe Rel. Pemittivity Rel. Pemeability ( ),99999 Conductivity 5,8e+7 Imag. Pemeability 3. Setup Boundaies/Souces Duch die Wicklung definieen wi einen Stom von 56,57 A. Diese egibt sich aus wî = 4 A. Diese Wet wid in Maxwell unte Magnitude angegeben, zusätzlich wid stand vewendet, um eine konstante Veteilung des Stomes zu spezifizieen. Die obee, untee und echte Kante des Zeichenbeeichs wid als Balloon definiet

5 4. Setup Solution Unte Setup Solution Options wid Adaptive Analysis ausgewählt, die Anzahl de Duchläufe wid auf begenzt und ein kleine Fehle von, eingestellt. Die Fequenz betägt 5 Hz. Will man späte in bestimmten Gebieten de Zeichnung eine genauee Analyse duchfühen, deaktiviet man die Adaptive Analysis und wählt unte Stating Mesh Manual Mesh aus. Hie kann man unte Refine die Anzahl de Deiecke in bestimmten Gebieten ehöhen, um so dot eine bessee Genauigkeit zu ezielen. Bild Bild In Bild wuden in jedes Objekt Deiecke gelegt, somit ehält man auch eine bessee Genauigkeit. Die Veteilung de Deiecke kann natülich auch gezielte efolgen. 5. Solve Unte solve wid solve nominal poblem gewählt und de Rechne beechnet das Poblem. Unte convegence kann man sich einige Daten anzeigen lassen, zum Beispiel die Anzahl de Deiecke in de kompletten Zeichnung (36 St), die Enegie die im Magnetischen Feld gespeichet ist, W =,5 J den dazugehöigen Fehle,78 und die Veluste P = 6,58 mw im Kupfe. Übepüfen de Wete von Maxwell mit den bekannten physikalischen Fomeln: Die Induktivität de Spule beechnet sich mit dem Wet de Enegie aus Maxwell zu: 4 W 4.5 J L = = =,7 mh Î (56,56 ma ) Übe die physikalische Fomel ehält man: π a π, L = w = = 9,87 mh h,4 Setzt man die 9,87 mh in die Fomel fü die Enegie ein, egibt sich folgende Gleichung: W = L Î = 9,87 mh (56,57 ma) = 7,896 J 4 4 Da die Veluste in de Wicklung aufteten, wid mit folgende Fomel noch die Velustleistung beechnet: a + b π P = (w Î) = 6,5 mw σ (b a) h cu - 4 -

6 Dabei ist anzumeken das die Egebnisse de physikalischen Fomeln mit den beechneten Weten von Maxwell übeeinstimmen. 6. Post Pocess Im Post Pocesso kann man sich die Felde anzeigen lassen. Um sich zum Beispiel die Feldlinien anzeigen zu lassen, geht man unte Plot auf Field wählt die Flux lines aus und als Geometie Suface all-. Nun kann man noch Einstellungen vonehmen, ob de Plot gefüllt sein soll, bzw. wie viele Linien eingezeichnet weden sollen. Wählt man 5 Divisions, ehält man folgenden Feldlinienvelauf: Nun kann man sich noch das komplexe B bzw. H Feld anzeigen lassen, hiebei egeben sich folgende Gafiken. Mag B(CmplxMag) Im Post Pocess kann man sich unte Geomety ceate point einen Punkt x in (,) anlegen, da hie das maximale Feld auftitt. Im Calculato kann man nun mit Qty B Cmplx Real Geo Point x value eval die Feldkomponenten im Punkt (,) ausgeben lassen. Fü Modell bekam man: B Z =,475 mt, B = T Mit folgende Fomel lassen sich die von Maxwell beechneten Wete bestätigen: w Î 56,57A B = = =,77 mt h,4m Diese Wet stimmt noch gut mit dem von Maxwell beechneten übeein. II Model Hie wid nun das Mateial des Kens und de Spule geändet, um zu untesuchen wie sich dabei die Feldlinien vehalten, bzw. wie und ob sich das B und das H Feld änden. Abe ohne Hysteeseveluste.. Define Model unveändet. Setup Mateials Unte Mateial Add weden neue Mateialien definiet. Ein Mateial 8 mit eine Pemeabilität von fü den Schenkel und ein Mateial 8 mit eine Pemeabilität von - 5 -

7 fü das Joch. Mateial 8 wid dem obeem, dem unteem Joch und dem Rückschlussschenkel, Mateial 8 dem Schenkel zugewiesen. vacuum coppe Mateial 8 Mateial 8 Rel. Pemittivity Rel. Pemeability ( ),99999 Conductivity 5,8e+7 Imag. Pemeability Skizze: Joch Schenkel Rückschlussschenkel l,a l,a l A l 3 4, <<, 3 A l 3 l A 4 A 4 Joch l,a, 3 4 L l,a, 4 w = 4 li i= i A i Deshalb wude = fü den Schenkel gewählt, bzw. = fü das Joch und den Rückschlusschenkel, denn die goßen tagen in de Summe kaum noch zu Induktivität bei. Zudem lassen sich die Wete späte noch mit den Fomeln beechnen. Somit tägt nu noch 3, also de Schenkel zu Induktivität bei. 3. Setup Boundaies/Souces unveändet 4. Setup Solution unveändet 5. Solve Die bei Convegence angezeigten Daten lauten, fü die Anzahl de beechneten Deiecke in de kompletten Zeichnung 467 St, die Enegie W = 7,4368 mj, den dazugehöigen Fehle,3 und die Veluste P = 6,58 mw in de Wicklung. Aus de Enegie kann man nun die Induktivität beechnen: 4 W 4 7,4368 mj L = = = 9, H Î 3. ma - 6 -

8 6. Post Pocess Man sieht sofot, dass nun die Feldlinien im Mateial gefangen sind und wede Linien außehalb noch innehalb des Kens velaufen: a b Mag B(CmplxMag) Die Induktivität de Spule lässt sich beechnen zu: π a Vs π (, m ) L = w = = 9,87 H h Am,4 m Vegleicht man nun diesen Wet mit dem, de übe die mit Maxwell beechnete Enegie beechnet wude, stellt man fest, dass diese Wete noch genügend gut übeeinstimmen. w Î Vs = h Am 56,57 ma,4 m B = = - 7 -,78 T Diese Wet stimmt mit dem Wet de in Maxwell mit dem Calculato ausgelesen wude, B Z =,67 T, B = T im Punkt (,) in etwa übeein. Die Maxima in den Ecken sind fü dieses Beispiel uninteessant, da diese an schafen Ecken aufteten, die in de Realität so nicht vokommen. III Model 3 Fodeung bei diesem Model ist es, die Flussdichte in de Mitte des Kens konstant zu halten. Hie wid nun das Mateial des Kens und de Spule geändet, um zu untesuchen, wie sich die Hysteeseveluste vehalten.. Define Model unveändet. Setup Mateials Unte Mateial wid das Mateial 8 mit de Pemeabilität von editiet. Ihm wid eine Imag. Pemeabilität von -8 zugewiesen. (Veluste müssen in Maxwell negativ eingegeben weden) vacuum coppe Mateial 8 Mateial 8 Rel. Pemittivity Rel. Pemeability ( ),99999 Conductivity 5,8e+7 Imag. Pemeability -8 Die Imag. Pemeabilität von 8 kommt dahe, dass fü das Eisen, fü den Ken, vom Händle nu folgende Kenngößen bekannt gegeben weden. Aus diesen lässt sich die Imag. Pemeabilität folgendemaßen beechnen:

9 Geg: ~ W kg p =,5, ς Fe = 765 kg m Vs fü f = 5 Hz, Bˆ = T, = Am Ges: Imag. Pemeabilität '' p = p = ~ p ς = ω α = ~ p ς ω ω '' = α α '' = 6536 '' Ĥ '' ω ' Bˆ ' 6536 '' ( '' Bˆ = Bˆ ' j ( Vs Am '') ) 8 3. Setup Boundaies/Souces unveändet 4. Setup Solution unveändet 5. Solve Die unte "Convegence" angezeigten Daten lauten, fü die Anzahl de beechneten Deiecke in de kompletten Zeichnung (37 St), die Enegie W = 7,4348 mj, den dazugehöigen Fehle,57 und die Veluste P = 6,58 mw in de Kupfewicklung. Die Veluste können auch im "Post Pocesso" mit dem Calculato beechnet weden, dazu gibt man fü Qty EM_loss an, geomety suface all und integiet dies mit dem RZ Integal auf. 6. Post Pocess Die Feldlinien sind weitgehend unbeeinflusst von de Ändeung, das B Feld ändet sich wie folgt: Mag B(CmplxMag) - 8 -

10 Am Feldvelauf des B-Feldes ist gut zu ekennen, dass das Feld im Ken nicht konstant ist, goße Teile des Kenes weden nu mit geinge magnetische Flussdichte genutzt. Im Punkt (,) hat man eine Feldkomponente von, B Z =,673 T, B = T, die sich kaum von de in Modell 3 untescheidet. Es wid vesucht dies mit Model 4 zu änden. Im Calculato kann man sich nun übe Qty B Qty H Cmplx Conj Dot Cmplx Real Geom Suface Schenkel RZ_Integal eval, was Re(B H*) dv entspicht beechnen lassen. Beechnet man nun fü diese Geometie den Wet des imaginäen Anteils (,798 j,38) J kann man sich die kompletten Hysteeseveluste im Schenkel beechnen, zu: jω v v S = B H * dv = (,355 + j 4,395) W. Daaus folgt dass die Hysteeseveluste des Schenkels 35 mw betagen. Dies wid mit folgende Fomel übepüft: π a Schenkel ω '' wî P = = 396,9 mw (l =,4 mm, a =, mm) l Die Bildleistung des Schenkels betägt 4,4 va, mit de bekannten Fomel egibt sich: π a QSchenkel = ω ' wî = 4,96 va (l =,4 mm, a =, mm) l Man sieht, dass die Egebnisse doch einigemaßen übeeinstimmen. Bzw. wenn man als Geom Suface all vewendet (,976 j,38) J, kommt man zu dem fast identischen Egebnis. Daaus folgt, dass die Hysteeseveluste nu im Schenkel aufteten. Dabei stimmen die Wete elativ gut mit de von Maxwell beechneten Enegie übeein:,976 mj Die Enegie beechnet sich zu: = 7,44 mj 4 Hysteeseveluste entstehen duch die ständige Umpolung de Elementamagnete in feomagnetischen Wekstoffen im wechselnden Magnetfeld. Weil sich die Beeiche gleiche magnetische Ausichtung (die Weißschen Bezike) bei Betagsändeung des Magnetfelds in Richtung Sättigung vegößen, und dabei unte Aufwendung von Enegie ihe Genzwände neu finden müssen, setzen sie so die Enegie des magnetischen Felds in Wäme um. Fü die Induktivität de Spule mit den von Maxwell eechneten Weten egibt sich: v v B H *dv L = = (8,74 j,699) H Î Diesen Wet kann man mit de nachfolgenden Fomel bestätigen: π a L = ( ' j '' ) w = (9,87 j,79) H h IV Model 4 Hie soll untesucht weden wie sich das Model vehält, wenn de Rückschlussschenkel dünne gewählt wid. Und es soll gezeigt weden wie man mit Maxwell effektive abeiten kann.. Define Model Aus technischen Günden ist es von Voteil wenn die Flussdichte im Ken de Spule konstant ist. Mit Hilfe den folgenden Fomeln wuden die neuen Abmessungen fü den Ken bestimmt, de deutlich kleine ausfällt als zuvo, was auch witschaftliche Voteile mit sich bingt, da wenige Mateial fü die selbe Wikung vewendet weden muss. π a = π (c b ) => c = a + b = 3 mm und a π a h J = π a => h J = = 5 mm Da nu das Feld im inneen de Spule von Inteesse ist, wid die Dawing Size in de Göße de Außenabmessung de Spule gewählt. Somit spat man sich einiges an Zeichenaufwand, da nu meh die Wicklung eingezeichnet weden muss und es bietet auch einen Voteil fü die Vemaschung, da keine Deiecke meh in dem Beeich liegen, de fü die Beechnung unwichtig wäe. Infolgedessen spat man auch Ressoucen

11 h J. Setup Mateials Hie wid nun dem Backgound, de den Ken dastellt, das Mateial 8 mit de Pemeabilität und de imag. Pemeabilität -8 zugewiesen. Die Wicklung ist als aus Kupfe definiet. vacuum coppe Mateial 8 Rel. Pemittivity Rel. Pemeability ( ),99999 Conductivity 5,8e+7 Imag. Pemeability Setup Boundaies/Souces Die obee, untee und echte Kante des Zeichenbeeichs wid als Symety (Odd) definiet. Bei Odd-Symetie sind die Vozeichen de Stöme hinte de Genze genau entgegengesetzt deen vo de Genze. Feldlinien velaufen tangential zu Genze. 4. Setup Solution unveändet 5. Solve Die unte Convegence angezeigten Daten lauten, fü die Anzahl de beechneten Deiecke in de kompletten Zeichnung (34 St), die Enegie W = 3,34744 mj, den dazugehöigen Fehle,936 und die Gesammtveluste P = 6,58 mw. 6. Post Pocess - - Mag B(CmplxMag)

12 Das Mateial in Model 4 wid besse ausgenutzt. Man könnte die äußeen Ecken noch abflachen um Mateial zu spaen, jedoch wüde das die Kosten zu seh ehöhen. An den Innenkanten egeben sich elativ hohe B-Felde, die abe wohl in de Realität nicht vokommen, da man keine solch schafen Ecken hat. Des weiten kann man sich noch die Enegie im Schenkel beechnen lassen und ehält, (,337 j,) J. jω v v S = B H * dv = (,73 + j,) W Daaus folgt, die Hysteeseveluste des Schenkels betagen 73 mw und die Bildleistung des Schenkels betägt, va. Dabei stimmen die Wete elativ gut mit de von Maxwell beechneten Enegie übeein:,337 mj Die Enegie egibt sich zu: = 3,34 mj 4 Die niedigee Enegie lässt sich zum einen duch die Reduzieung des Kens auf knapp die Hälfte des Volumens von Modell 3 zuückfühen. Was wiedeum eine Halbieung de Fläche entspechen wüde. Den gößeen Anteil tägt jedoch das gewählte Mateial dazu bei, da jetzt die Joche und auch de Rückschlusschenkel aus demselben Mateial mit dem gleichen bestehen. Die Komponenten des B-Feldes im Punkt (,) betagen B Z =,573 T, B = T. Mit den Weten aus Maxwell kann man nun noch die Induktivität de Spule beechnen, v v B H *dv L = = (4,78 j,344) H, welche in etwa die Hälfte von Modell 3 egibt. Hieaus Î kann man sich nun noch die Veluste im Eisen beechnen: P Eisen = Im(L) π f Î = 73 mw, was genau den Hysteesevelusten entspicht. Fazit: Duch die Heanfühung an Maxwell duch das Modell lent man schnell den gundlegenden Aufbau des Pogamms. Die späteen Modelle dienen dann de Veifizieung de Daten. In Modell 4 sieht man dann, wie man effizient mit dem Tool umgehen kann und sich so einiges an Abeit und somit auch an Zeit spaen kann. Duch die 4 Modelle weden die Zusammenhänge von B-, H-Feld, Hysteesevelusten, Kupfevelusten und de Enegie in eine Spule klae. Die gafische Auswetung zeigt dann, wo noch Vebesseungsbedaf bei de Dimensionieung de Spule besteht. - -

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Abitur Physik (Bayern) 2016 Themenbereich I: Elektromagnetische Felder, Relativitätstheorie

Abitur Physik (Bayern) 2016 Themenbereich I: Elektromagnetische Felder, Relativitätstheorie Abitu Physik (Bayen) 2016 Themenbeeich I: Elektomagnetische Felde, Relativitätstheoie Aufgabenvoschlag 1 1. Modell de Zündanlage eines Autos Bei einem Ottomoto wid die Vebennung des Benzin-Luft-Gemisches

Mehr

Grundlagen der Elektrotechnik II

Grundlagen der Elektrotechnik II Volesungsfolien Gundlagen de Elektotechnik II Lehstuhl fü Allgemeine Elektotechnik und Plasmatechnik Pof. D. P. Awakowicz Ruh Univesität Bochum SS 009 Die Volesung wid in Anlehnung an das Buch von Pof.

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

Magnetostatik I Grundlagen

Magnetostatik I Grundlagen Physik VL31 (08.01.2013) Magnetostatik I Gundlagen Magnetische Käfte und Felde Magnetfelde - Dipolnatu Das Magnetfeld de Ede De magnetische Fluß 1. & 2. Maxwellsche Gleichungen Flußdichte und magnetische

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Materie im Magnetfeld

Materie im Magnetfeld Mateie i Magnetfeld Die Atoe in Mateie haben agnetische Eigenschaften, die akoskopisch Magnetfelde beeinflussen, wenn an Mateie in sie einbingt. Man untescheidet veschiede Typen von agnetischen Eigenschaften:

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM

46 Elektrizität 3.2 ELEKTRISCHER STROM 3.2.1 DER ELEKTRISCHER STROM 46 Elektizität 3.2 ELEKTRISCHER STROM Bishe haben wi uns mit statischen Felden beschäftigt. Wi haben dot uhende Ladungen, die ein elektisches Feld ezeugen. Jetzt wollen wi uns dem Fall zuwenden, dass ein

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Aktoren. Wirbelstrom- und Hysteresebremse

Aktoren. Wirbelstrom- und Hysteresebremse Aktoen Wibelstom- und Hysteesebemse Inhalt 1. Physikalisches Gundpinzip Magnetische Induktion De magnetische Fluß Faadaysches Gesetz und Lenzsche Regel Wibelstöme 2. Wibelstom- und Hysteesebemsen Aufbau

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Herrn N. SALIE danke ich für interessante Diskussionen.

Herrn N. SALIE danke ich für interessante Diskussionen. nen wi, daß das metische Feld im allgemeinen nicht konsevativ ist. Lediglich in dem Fall eines statischen metischen Feldes ( «.,4 = 0) existiet Enegieehaltung: Die bisheigen enegetischen Betachtungen basieen

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen

Schwingungsisolierung. Hilfen zur Auslegung. und Körperschalldämmung. von elastischen Lagerungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen Schwingungsisolieung und Köpeschalldäung Hilfen zu Auslegung von elastischen Lageungen 2 Vowot 4 1. Einfühung 4 2.

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen

Analytische Berechnung magnetischer Felder in Permanentmagnet erregten Maschinen Analytische Beechnung magnetische Felde in Pemanentmagnet eegten Maschinen Vom Fachbeeich Elektotechnik de Helmut-Schmidt-Univesität Univesität de Bundesweh Hambug zu Elangung des akademischen Gades eines

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Suche nach Dunkler Materie

Suche nach Dunkler Materie Beobachtungen, Expeimente, Modelle Seminaabeit SS 00 RWTH Aachen - Stefan Höltes Beteue: Pof. C. Bege - 1 - Inhalt Vowot 1 Bestimmung de Masse von Galaxien 1.1 Rotationskuven 1. Leuchtkaft von Stenen 1.

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

Inhalt der Vorlesung Experimentalphysik II

Inhalt der Vorlesung Experimentalphysik II Expeimentalphysik II (Kip SS 29) Inhalt de Volesung Expeimentalphysik II Teil 1: Elektizitätslehe, Elektodynamik 1. Elektische Ladung und elektische Felde 2. Kapazität 3. Elektische Stom 4. Magnetostatik

Mehr

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten.

Man erkennt, dass die Feldlinien an der Rundung und der Spitze Ecken besonders dicht liegen. Entsprechend ist hier die auch Ladungsdichte am höchsten. 1.6. Ladungen in Metallen; Influenz In diesem Abschnitt wollen wi zunächst betachten, wie sich Ladungen in geladenen metallischen 1 Objekten anodnen und welche allgemeinen Aussagen sich übe das elektische

Mehr

Erfassen dielektrischer Stoffeigenschaften mit Resonatoren

Erfassen dielektrischer Stoffeigenschaften mit Resonatoren Feuchtetag `99 Umwelt Meßvefahen Anwendungen 7./8. Oktobe 999, BAM, Belin DGZfP-Beichtsband BB 69-D Votag M3 Efassen dielektische toffeigenschaften mit Resonatoen E. Tinks, K. Kupfe, MFPA Weima an de Bauhaus-Univesität,

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Magnetische Levitation

Magnetische Levitation Deutsche Physikalische Gesellschaft (Hsg.): Didaktik de Physik. Augsbug 3. Belin: Lehmanns 3; ISBN 3-93647-11-9 Magnetische Levitation Bend Schalau Volkhad Nodmeie H. Joachim Schlichting Westfälische Wilhelms-Univesität

Mehr

4. Klausur Physik-Leistungskurs Klasse Dauer: 90 min Hilfsmittel. Tafelwerk, Taschenrechner

4. Klausur Physik-Leistungskurs Klasse Dauer: 90 min Hilfsmittel. Tafelwerk, Taschenrechner 4. Klausu Physik-Leistungskus Klasse 11 17. 6. 014 Daue: 90 in Hilfsittel. Tafelwek, Taschenechne 1. Duch eine kuze pule, die an eine Ozsilloskop angeschlossen ist, fällt ein Daueagnet. Welche de dei Kuven

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Der eigentliche Druck

Der eigentliche Druck 147 De eigentliche Duck 5 Kamea: Konica Minolta Maxxum 7D Ist das Bild gut vobeeitet und teten keine Pobleme auf, so ist das Ducken mit den heutigen fü Fine-At geeigneten Tintenducken ein Vegnügen. Leide

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Grundlagen der Berichterstattung:

Grundlagen der Berichterstattung: Gundlagen de Beichtestattung: Fima: F. Hoffmann-La Roche AG o Inklusive TAVERO AG (100 % Roche Tochte: Tagesvepflegung und weitee Sevices) Aeal: Roche-Aeal in Basel (Genzachestasse) o Fü einige de Daten

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln

WEKA FACHMEDIEN GmbH. Technische Spezifikationen für die Anlieferung von Online-Werbemitteln WEKA FACHMEDIEN GmbH Technische Spezifikationen fü die Anliefeung von Online-Webemitteln Jonathan Deutekom, 01.07.2012 Webefomen Webefom Beite x Höhe Fullsize Banne 468 x 60 Leadeboad 728 x 90 Rectangle

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife MATHEMATIK Aufgabenestellung und Bewetung von Klausuen und Püfungen fü den Eweb de Fachhochschuleife in beuflichen Bildungsgängen im Rahmen duale ode vollqualifizieende Bildungsgänge, in de Beufsobeschule

Mehr

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG

TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG TECHNISCHE UNIVERSITÄT HAMBURG - HARBURG Abeitsbeeich Theoetische Elektotechnik Pof. D. sc. techn. C. Schuste Paktikumsvesuch: Schimdämpfung PRAKTIKUMSVERSUCH: SCHIRMDÄMPFUNG Ot de Duchfühung: TUHH Habuge

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Dynamisches Verhalten einer Asynchronmaschine

Dynamisches Verhalten einer Asynchronmaschine ehtuhl fü Elektiche Antiebe und Mechatonik Pof. D.-ng. D.-ng. S. Kulig Paktikumveuch BENT 6 Dynamiche Vehalten eine Aynchonmachine c S-EAM (9) Veuchthematik Die Aynchonmachine, die übe eine Welle mit eine

Mehr

Wavelet-Analysen ozeanischer Drehimpulszeitreihen

Wavelet-Analysen ozeanischer Drehimpulszeitreihen ISSN 1610-0956 Publication: Scientific Technical Repot No.: STR 03/08 Autho: R. Hengst Wavelet-Analysen ozeanische Dehimpulszeiteihen Rico Hengst GeoFoschungsZentum Potsdam, Depatment 1: Geodäsie und Fenekundung,

Mehr

Design und optimale Betriebsführung doppelt gespeister Asynchrongeneratoren für die regenerative Energieerzeugung

Design und optimale Betriebsführung doppelt gespeister Asynchrongeneratoren für die regenerative Energieerzeugung Design und optimale Betiebsfühung doppelt gespeiste Asynchongeneatoen fü die egeneative Enegieezeugung von de Fakultät fü Elektotechnik und Infomationstechnik de Technischen Univesität Chemnitz genehmigte

Mehr

Lösungshinweise und Bewertungskriterien

Lösungshinweise und Bewertungskriterien 27. Bundeswettbeweb Infomatik, 1. Runde Lösungshinweise und Bewetungskiteien Allgemeines Zuest soll an diese Stelle gesagt sein, dass wi uns seh daübe gefeut haben, dass einmal meh so viele Leute sich

Mehr

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln Peise, Fom und Fabe: Fallsticke zwischen Veodnung und Einnahme von Azneimitteln Seit Jahen ist die Tendenz im Gesundheitswesen unvekennba, dass andee Akteue imme meh ökonomische und egulatoische Ringe

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen

Strömungs- und Wärmeübergangseffekte. an der rotierenden temperierten Zylinderwelle. unter Beachtung von Geometrieeinflüssen Stömungs- und Wämeübegangseffekte an de otieenden tempeieten Zylindewelle unte Beachtung on Geometieeinflüssen Uniesität de Bundesweh München Fakultät fü Luft- und Raumfahttechnik Institut fü Themodynamik

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

KUNDENMASSBLATT. Vermesser: Datum: Bootstyp: Segelnummer: Revier: Kundenadresse. Name: Straße: PLZ/Ort: Tel. (priv.): Tel. (gesch.): Mobilnummer: Fax:

KUNDENMASSBLATT. Vermesser: Datum: Bootstyp: Segelnummer: Revier: Kundenadresse. Name: Straße: PLZ/Ort: Tel. (priv.): Tel. (gesch.): Mobilnummer: Fax: KUNDENASSBLATT Vemesse: Datum: Bootstyp: Segelnumme: Revie: Kundenadesse Name: Staße: PLZ/Ot: Tel. (piv.): Tel. (gesch.): obilnumme: Fax: E-ail: WICHTIG Bitte beachten! Seh geehte Kunde, bitte eschecken

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg. genehmigte.

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg. genehmigte. Auslegung von Mikowellen-Themopozess-Anlagen unte Nutzung von hochfequenz-technischen Pinzipien - am Beispiel eines Entbindeungsofens fü keamische Günköpe Von de Fakultät fü Maschinenbau, Vefahens- und

Mehr

Induktivität und Energie des Magnetfeldes

Induktivität und Energie des Magnetfeldes Induktivität und Enegie de Mgnetfelde 1. D CMS (Compct Muon Solenoid) m CERN it ein ieige Teilchendetekto fü den HC (ge Hdon Collide). D Kentück de CMS it ein upleitende Elektomgnet de änge = 13m und mit

Mehr

Anhang V zur Vorlesung Kryptologie: Hashfunktionen

Anhang V zur Vorlesung Kryptologie: Hashfunktionen Anhang V zu Volesung Kyptologie: Hashfunktionen von Pete Hellekalek Fakultät fü Mathematik, Univesität Wien, und Fachbeeich Mathematik, Univesität Salzbug Tel: +43-0)662-8044-5310 Fax: +43-0)662-8044-137

Mehr

Messungen am Kondensator Q C = (1) U

Messungen am Kondensator Q C = (1) U E3 Physikalisches Paktiku Messungen a Kondensato Die Abhängigkeit de Kapazität eines Plattenkondensatos von de Göße bzw. de Abstand de Platten ist nachzuweisen. De Einfluss von Dielektika ist zu untesuchen..

Mehr

Zwei konkurrierende Analogien in der Elektrodynamik

Zwei konkurrierende Analogien in der Elektrodynamik Zwei konkuieende Analogien in de Elektodynamik Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Analogien: Elektodynamik 1 Physikalische Gößen de Elektodynamik elektische Ladung Q

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

ϕ = 3dB Öffnungswinkel im H-Feld

ϕ = 3dB Öffnungswinkel im H-Feld Selbstbauantennen fü VHF-, UHF-, SHF Votag on DL9NAM bei B11 am 16.04.02 Mit diesem Beitag soll gezeigt weden, daß mit egleichsweise einfachen Mitteln, die jedem Amateu zu Vefügung stehen, bauchbae Antennen

Mehr