Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs"

Transkript

1 Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den Vorgaben 9. Inhalliche Schwerpunke Lineare Gleichungssyseme für n >, Marix-Vekor-Schreibweise, sysemaisches Lösungsverfahren für lineare Gleichungssyseme Lineare Abhängigkei von Vekoren, Parameerformen von Geraden und Ebenengleichungen Sandard-Skalarproduk mi den Anwendungen Orhogonaliä, Winkel und Länge von Vekoren Normalenformen von Ebenengleichungen, Lagebeziehungen von Geraden und Ebenen Absandsprobleme (Absand Punk Ebene). Medien/Maerialien enfäll 5. Zugelassene Hilfsmiel Wissenschaflicher Taschenrechner (ohne oder mi Grafikfähigkei) Mahemaische Formelsammlung Wörerbuch zur deuschen Rechschreibung

2 Seie von 9 6. Vorgaben für die Bewerung der Schülerleisungen 6. Modelllösungen Modelllösung a) 6 () Als Parameergleichung von E ergib sich: E : x = s n Der Ansaz n = n n und n = 6 n führ auf den Normalenvekor n = und dami enseh die Normalenform der Ebenengleichung zu E : x x = = 7 bzw. E : x + x =. () Zur Besimmung der Koordinaen des Punkes M* wird die Gleichung der Geraden g: x = 7 s,5 + in die Normalen- 5 5 x S M form von E eingesez: gin E : 7 s,5 + = 5 5 A D B M* C s =,6 Es ergib sich M*( 7). Zur Zeichnung von M, M* und der Verbindungslinie von M nach x M* vergleichen Sie die nebensehende Skizze. x

3 Seie von 9 Modelllösung b) () Die Ebene E wird in Koordinaenform angegeben. Die Pyramidenkane AS liefer den Normalenvekor AS = =. Einsezen der Koordinaen von C führ 7 6 auf die Gleichung: E : x = = + + = E : x x 6x 6 E : x + x + x =. + + = () Für den Absand d von B zu E ergib sich: 6 dbe (, ) = ( 4 ) 6,45(LE) 6 = = = Modelllösung c) () Die Koordinaen von F ergeben sich als Schnipunk der Dreiecksseien F F und F F bzw. der zugehörigen Geraden, wobei die Dreiecksseie F F (wegen der Gleich- schenkligkei des Dreiecks F F F ) parallel zur Pyramidenkane BC is: g : x = r SB r FF + = g : x = BC FF + = g = g r r und FF FF + = + = = 6 9 F ( 9)

4 Seie 4 von 9 Für den Innenwinkel ϕ zwischen den Dreiecksseien F F und F F gil: FF FF ϕ = = = = ϕ. FF FF cos( ) 48,9 () Die Gleichung einer Geraden durch die Dreiecksseie F F laue: g : x = FF FF + = Dazu is die Ebene E : x E : x = = durch den Punk G(,5 ) der Dachfläche BCS orhogonal. Die Koordinaen des Durchsoßpunkes H der Geraden g durch die Ebene E FF lassen sich durch Einsezen der Geradengleichung von FF die Ebenengleichung von E ermieln: + = = H( 9). 9 Der gesuche Absand d der Seie F F vom Punk G ergib sich als Enfernung der 5 d =,5 =,5 + =,8 (LE). 4 9 Punke H und G zu: ( ) g in Modelllösung d) Die Gerade k is parallel zur x -x -Ebene, da der Richungsvekor von k offensichlich komplanar zur x -x -Ebene is. Der Punk S* beweg sich also auf einer Geraden k parallel zur x -x -Ebene. Dami änder sich der Absand des Punkes S* von der x -x -Ebene nich, wenn S* sich irgendwo auf der Geraden k befinde. Da die Grundfläche der Pyramide in der x -x -Ebene lieg, änder sich der Absand des Punkes S* von der Grundfläche der Pyramide nich. Somi bleib die Höhe h der Pyramide ABCDS* unveränder für alle Punke S* auf der Geraden k. Also veränder sich auch das Volumen V = G h der Pyramide nich (bei immer gleicher Grundfläche G).

5 Seie 5 von 9 6. Teilleisungen Krierien Teilaufgabe a) berechne eine Gleichung der Ebene E in Normalenform. 8 (I) ermiel die Koordinaen des Punkes M*. 5 (II) zeichne die Punke M und M* und deren Verbindungslinie ein. (I) Der gewähle Lösungsansaz und -weg muss nich idenisch mi dem der Modelllösung sein. Sachlich richige Alernaiven werden an dieser Selle mi ensprechender bewere. Teilaufgabe b) ermiel eine Ebenengleichung für die Ebene E (mi bekannem Normalenvekor). 5 (II) berechne den Absand des Punkes B von der Ebene E. 4 (I) Der gewähle Lösungsansaz und -weg muss nich idenisch mi dem der Modelllösung sein. Sachlich richige Alernaiven werden an dieser Selle mi ensprechender bewere. Teilaufgabe c) besimm die Koordinaen des Punkes F. 7 (II) berechne den eingeschlossenen Innenwinkel. 4 (I) ermiel den Absand des Punkes G von der Dreiecksseie F F. 8 (III) Der gewähle Lösungsansaz und -weg muss nich idenisch mi dem der Modelllösung sein. Sachlich richige Alernaiven werden an dieser Selle mi ensprechender bewere. AFB = Anforderungsbereich

6 Seie 6 von 9 Teilaufgabe d) zeig, dass die Gerade k parallel zur x -x -Ebene lieg. (II) begründe, dass sich das Volumen der Pyramide nich änder. 5 (II) Der gewähle Lösungsansaz und -weg muss nich idenisch mi dem der Modelllösung sein. Sachlich richige Alernaiven werden an dieser Selle mi ensprechender bewere.

7 Seie 7 von 9 7. Bewerungsbogen zur Prüfungsarbei Name des Prüflings: Kursbezeichnung: Schule: Teilaufgabe a) berechne eine Gleichung 8 (I) ermiel die Koordinaen 5 (II) zeichne die Punke (I) sachlich richige Alernaiven: (5) Summe Teilaufgabe a) 5 EK ZK DK Teilaufgabe b) ermiel eine Ebenengleichung 5 (II) berechne den Absand 4 (I) sachlich richige Alernaiven: (9) Summe Teilaufgabe b) 9 EK ZK DK EK = Erskorrekur; ZK = Zweikorrekur; DK = Drikorrekur

8 Seie 8 von 9 Teilaufgabe c) besimm die Koordinaen 7 (II) berechne den eingeschlossenen 4 (I) ermiel den Absand 8 (III) sachlich richige Alernaiven: (9) Summe Teilaufgabe c) 9 EK ZK DK Teilaufgabe d) zeig, dass die (II) begründe, dass sich 5 (II) sachlich richige Alernaiven: (7) Summe Teilaufgabe d) 7 EK ZK DK Summe insgesam 5 Feslegung der Gesamnoe (Bie nur bei der lezen bearbeieen Aufgabe ausfüllen.) Überrag der Punksumme aus der ersen bearbeieen Aufgabe 5 Überrag der Punksumme aus der zweien bearbeieen Aufgabe 5 Überrag der Punksumme aus der drien bearbeieen Aufgabe 5 der gesamen Prüfungsleisung 5 aus der Punksumme resulierende Noe Noe ggf. uner Absenkung um ein bis zwei Noenpunke gemäß Abs. APO-GOS EK ZK DK Paraphe

9 Seie 9 von 9 ggf. arihmeisches Miel der Punksummen aus EK und ZK: ggf. arihmeisches Miel der Noenureile aus EK und ZK: Die Klausur wird abschließend mi der Noe: ( Punke) bewere. Unerschrif, Daum Grundsäze für die Bewerung (Noenfindung) Für die Zuordnung der Noensufen zu den en is folgende Tabelle zu verwenden: Noe Punke Erreiche sehr gu plus sehr gu sehr gu minus 4 8 gu plus 7 gu 9 gu minus 5 befriedigend plus befriedigend befriedigend minus ausreichend plus ausreichend ausreichend minus mangelhaf plus mangelhaf 48 4 mangelhaf minus 9 ungenügend 9

Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 8 Unterlagen für die Lehrkraft Abiturprüfung 2009 Mathematik, Grundkurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 1 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie ohne Alternative 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite von 9 Unterlagen für die Lehrkraft Abiturprüfung 00 Mathematik, Leistungskurs Aufgabenart Lineare Algebra/Geometrie ohne Alternative Aufgabenstellung siehe Prüfungsaufgabe 3 Materialgrundlage Fotografie

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 7. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 7 Unterlagen für die Lehrkraft Abiturprüfung 007 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 1 (Abbildungsmatrizen). Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 11. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 11. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite von Unterlagen für die Lehrkraft Abiturprüfung 0 Mathematik, Leistungskurs. Aufgabenart Lineare Algebra/Geometrie ohne Alternative. Aufgabenstellung siehe Prüfungsaufgabe 3. Materialgrundlage entfällt

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 4 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 4 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 8 Unterlagen für die Lehrkraft Abiturprüfung 2011 Mathematik, Grundkurs 1. Aufgabenart Lineare Algebra/Geometrie ohne Alternative 2. Aufgabenstellung 1 siehe Prüfungsaufgabe 3. Materialgrundlage

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 6 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 6 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Ministerium für Schule und Weiterbildung NRW M LK NT 6 Seite von 9 Unterlagen für die Lehrkraft Abiturprüfung Mathematik, Leistungskurs. Aufgabenart Lineare Algebra/Geometrie mit Alternative (Übergangsmatrizen).

Mehr

Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 8 Unterlagen für die Lehrkraft Abiturprüfung 2009 Mathematik, Grundkurs 1. Aufgabenart Stochastik 2. Aufgabenstellung siehe Prüfungsaufgabe 3. Materialgrundlage entfällt 4. Bezüge zu den Vorgaben

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 6 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 6 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 8 Unterlagen für die Lehrkraft Abiturprüfung 2011 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Übungsaufgaben zur Vektorrechnung, 6. Klasse (10. Schulstufe) 3 t 2 = 4. durch P an, welche die Gerade g schneidet.

Übungsaufgaben zur Vektorrechnung, 6. Klasse (10. Schulstufe) 3 t 2 = 4. durch P an, welche die Gerade g schneidet. Übungsaufgaben zur Vekorrechnung,. Klasse (0. Schulsufe) Übungsaufgaben zur Vekorrechnung. Klasse ) Zwei Geraden im R Gegeben sind die Gerade sind enweder schneidend, parallel oder. X : g der Punk P(-

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 5 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 5 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 1 Unterlagen für die Lehrkraft Abiturprüfung 28 Mathematik, Grundkurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung

t,t Zentrale Klausur am Ende der Einführungsphase l von 6 Mathematik 'f(x) f '(x) zkm (mit CAS) \ ro Aufgabenstellung zkm (mi CAS) Miniserium für Landes Nordrhein-Wesfalen Seie 'les l von 6 Zenrale Klausur am Ende der Einführungsphase 202 Mahemaik Aufgabensellung Aufgabe : Unersuchung ganzraionaler Funkionen Gegeben is

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 6 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 6 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2012 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) 2. Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 01 Mathematik, Grundkurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest). Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 5 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 5 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite von 8 Unterlagen für die Lehrkraft Abiturprüfung 007 Mathematik, Leistungskurs. Aufgabenart Lineare Algebra/Geometrie mit Alternative (Übergangsmatrizen). Aufgabenstellung siehe Prüfungsaufgabe.

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2012 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Geradendarstellung in Paramterform

Geradendarstellung in Paramterform Vekorrechnung Theorie Manfred Gurner Seie Geradendarellung in Paramerform X X X - X - r r Die Punke auf einer Geraden laen ich folgendermaßen finden: Gegeben ei der Punk und der Richungvekor r. Dann ergib

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Mhe-Abiur b : Fundus für den Pflichbereich Lösungen) Die Auoren übernehmen keine Grnie für die Richigkei der Lösungen. Auch wurde sicher nich immer der kürzese und elegnese Lösungsweg eingeschlgen. Einfche

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

LGÖ Ks M 12 Schuljahr 2017/2018. Zusammenfassung: Abstände, Winkel und Spiegelungen

LGÖ Ks M 12 Schuljahr 2017/2018. Zusammenfassung: Abstände, Winkel und Spiegelungen LGÖ Ks M 12 Schuljahr 217/218 Zusammenfassung: Asände, Winkel und Spiegelungen Inhalsverzeichnis Asände 1 Winkel 5 Spiegelungen 7 Für Experen 1 Asände Asand Punk Punk: Schreiweise: Den Asand zweier Punke

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 6 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung 2010. Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 6 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung 2010. Mathematik, Leistungskurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 21 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie mit Alternative 2 (Übergangsmatrizen) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E Übungen zum ABI 8 Geomerie (Lineare Algebra) - Lösung eie von 7 Aufgaben incl Lösungen: Aufgabe G Gegeben sind eine Ebenenscar E :( + ) x+ x + ( ) x+ + = mi, eine Ebene E: x+ x + = und der Punk P( ) (a)

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 5 Unterlagen für die Lehrkraft Abiturprüfung 27 Mathematik, Grundkurs 1. Aufgabenart 1 Analysis 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage 4. Bezüge zu den Vorgaben 27 1.

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)

Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg) Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

A.24 Funktionsscharen 1

A.24 Funktionsscharen 1 A.4 Funkionsscharen A.4 Funkionsscharen ( ) Bemerkung: Im Buch Kurvenprobleme gib es viel Aufgaben zu Funkionen, die einen Parameer enhalen. Falls Sie hier also nich genug kriegen... A.4.0 Orskurven (

Mehr

Demo-Text für Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.

Demo-Text für  Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel. Funkionen und Kurven Differenialgeomerie Tex Nummer: 5 Sand: 9. März 6 Demo-Tex für www.mahe-cd.de INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mahe-cd.de 5 Differenialgeomerie Vorwor Das Thema Kurven is

Mehr

5. Übungsblatt zur Linearen Algebra II

5. Übungsblatt zur Linearen Algebra II Fachbereich Mahemaik Prof. J. Bokowski Dennis Frisch, Nicole Nowak Sommersemeser 27 5., 8. und 2. Mai 5. Übungsbla zur Linearen Algebra II Gruppenübung Aufgabe G (Hüllen) In dieser Aufgabe soll es darum

Mehr

ANALYTISCHE BERECHNUNGEN AM

ANALYTISCHE BERECHNUNGEN AM Schule Bundesgymnasiu um für Berufsäige Salzburg Modul Thema Mahemai 8 Arbeisbla A 8-6 Kreis ANALYTISCHE BERECHNUNGEN AM KREIS Bisher onnen wir lediglich die Fläche, den Umfang oder den Radius eines Kreises

Mehr

Investitionsrechnung in der öffentlichen Verwaltung

Investitionsrechnung in der öffentlichen Verwaltung GablerPLUS Zusazinformaionen zu Medien des Gabler Verlags Invesiionsrechnung in der öffenlichen Verwalung Rechenmehoden zur prakischen Bewerung von Invesiionsvorhaben 2011 1. Auflage Kapiel 3 Saische und

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Berechnungen am Wankelmotor

Berechnungen am Wankelmotor HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich heinrich_schmihuber@homail.com Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Ministerium für Schule und Weiterbildung NRW PH GK HT 2 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung 2012.

Ministerium für Schule und Weiterbildung NRW PH GK HT 2 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung 2012. Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2012 Physik, Grundkurs 1. Aufgabenart Bearbeitung eines Demonstrationsexperiments Bearbeitung einer Aufgabe, die fachspezifisches Material enthält

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Prüfungsaufgaben Wiederholungsklausur

Prüfungsaufgaben Wiederholungsklausur NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur

Mehr

Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ

Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ Serie 26 Qualifikaionsverfahren Telemaikerin EFZ Telemaiker EFZ Berufskennnisse schriflich Pos. 5.2 Elekrische Sysemechnik Name, Vorname Kandidaennummer Daum Zei: Hilfsmiel: Bewerung: 45 Minuen Masssab,

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Ministerium für Schule und Weiterbildung NRW M LK 1NT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK 1NT 1 Seite 1 von 6. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 6 Unterlagen für die Lehrkraft Abiturprüfung 010 Mathematik, Leistungskurs 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage entfällt 4. Bezüge zu den Vorgaben

Mehr

Prüfung Finanzmathematik und Investmentmanagement 2011

Prüfung Finanzmathematik und Investmentmanagement 2011 Prüfung Finanzmahemaik und Invesmenmanagemen 0 Aufgabe : (0 Minuen) a) Auf der Grundlage einer Lagrange-Opimierung ergib sich die folgende funkionale Form für die (, ) -Koordinaen der (rein riskanen) Randporfolios

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A1 (mit CAS) Seite 1 von 5 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2011 Mathematik ZK M A (ohne CAS) Seite 1 von 10 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 011 Mathematik 1. Aufgabenart Analysis. Aufgabenstellung Aufgabe 1: Hochwasser am Rhein Aufgabe

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen. und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren ZK M A (ohne CAS) Seite von 4 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Die Titanwurz ist die Pflanze, die die größte Blüte der Welt hervorbringt. Für ein Referat hat ein Schüler

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2014 Mathematik

Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 2014 Mathematik Seite von 0 Unterlagen für die Lehrkraft Zentrale Klausur am Ende der Einführungsphase 04 Mathematik. Aufgabenart Analysis. Aufgabenstellung Aufgabe : Untersuchung ganzrationaler Funktionen Aufgabe : Verkehrsstau

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

Abiurprüfung Mahemaik 013 Baden-Würemberg (ohne CAS) Wahleil - Aufgaben Analysis A 1 Aufgabe A 1.1 Der Querschni eines 50 Meer langen Bergsollens wird beschrieben durch die x-achse und den Graphen der

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Originalklausur mit Musterlösung

Originalklausur mit Musterlösung Originalklausur mi Muserlösung Abiur Mahemaik Aufgabe : Aufgabe : Aufgabe 3: Infiniesimalrechnung Wahrscheinlichkeisrechnung / Saisik Analyische Geomerie In den Aufgabensellungen werden unerschiedliche

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Aufgabenstellung Mathematik Gegeben ist die Funktion f mit f ( = 0,5 4,5 + 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Weisen Sie

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren ZK M A (mit CAS) Seite von 5 Beispielklausur für zentrale Klausuren Aufgabenstellung Mathematik Die Titanwurz ist die Pflanze, die die größte Blüte der Welt hervorbringt. Für ein Referat hat ein Schüler

Mehr