2 Besondere mathematische Funktionen

Größe: px
Ab Seite anzeigen:

Download "2 Besondere mathematische Funktionen"

Transkript

1 2 Besondere mathematische Funktionen Inhalt 2.1 Vorbemerkung Summenzeichen Produktzeichen Betragsfunktion Ganzzahlfunktion PotenzenundWurzeln Exponentialfunktionen Logarithmen Anwendung in Scilab Fazit Vorbemerkung Summen- und Produktzeichen kürzen die fortgesetzte Summation und Addition ab. Insbesondere das Summenzeichen wird häufig verwendet. Der Logarithmus und die Exponentialfunktion bereiten vielen Studierenden immer wieder Schwierigkeiten. Daher werden sie hier kurz mit anderen grundlegenden mathematischen Funktionen beschrieben. Ferner werden zwei spezielle Funktionen eingeführt, die in späteren Kapiteln verwendet werden. Es sind die Betragsfunktion und die Gauß-Klammer (Auf- und Abrundungsfunktion). In Kapitel 8 werden die Funktionen mit einer Variablen ausführlicher erklärt. Übersicht über die hier eingesetzten mathematischen Symbole: Summenzeichen Produktzeichen i, j Subskript, Index e Eulersche Zahl Betragsfunktion f (x) Funktion von x W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, DOI / _2, Springer-Verlag Berlin Heidelberg 2012

2 20 2 Besondere mathematische Funktionen log a x Logarithmusfunktion zur Basis a lnx Logarithmusfunktion zur Basis e, natürlicher Logarithmus, Ganzzahlfunktion x Wurzelfunktion 2.2 Summenzeichen Das Summenzeichen steht als Wiederholungszeichen für die fortgesetzte Addition. a i = a 1 + a a n (2.1) In der Gleichung (2.1) bezeichnet man i als Summationsindex, der hier mit eins beginnt und jeweils um eins hochgezählt wird bis die Obergrenze n erreicht ist. Der Index i kann mit jeder ganzen Zahl beginnen und enden. Beispiel x i = x 2 + x 1 + x 0 + x 1 i= 2 Mit negativen Indizes werden in der Ökonomie oft Werte aus der Vergangenheit, mit positiven Indizes zukünftige Werte und mit dem Index Null der Wert der Gegenwart bezeichnet. Das Summenzeichen ist nützlich, um größere Summen übersichtlich darzustellen, deren Wert zu berechnen ist. Es gelten die folgenden Rechenregeln, die sich aus den Rechengesetzen ergeben: Gleiche Summationsgrenzen: a i + b i = (a i + b i ) Beispiel ( ) 3 ( ) 3 ( ) = 1a b1 a2 b2 a3 b3 Additive Konstante: (a i + c)= a i + nc

3 2.2 Summenzeichen 21 Beispiel Multiplikative Konstante: Beispiel 2.4. Summenzerlegung: Beispiel 2.5. ( ai + 1 ) 10 =(a 1 + 1)+...+(a )= a i i 2 = 3 5 i = ca i = c a i 4 i 2 = 3 ( ) = 90 a i = 3 i + m a i + i=m+1 a i für m < n 5 i = = 15 i=4 Das Summenzeichen kann auch doppelt oder mehrfach hintereinander auftreten. Zwei Summenzeichen treten zum Beispiel hintereinander auf, wenn in einer Tabelle alle Werte addiert werden sollen. Die Zeilen einer Tabelle werden in der Regel mit i indiziert und die Spalten einer Tabelle mit j. Die Werte in den Tabellenfeldern werden dann mit a ij bezeichnet (siehe Tabelle 2.1). Tabelle 2.1: Zweidimensionale Tabelle mit Randsummen a 11 a 1 j a mj=1 1m a 1 j a i1 a ij a mj=1 im a ij a n1 a nj a mj=1 nm a nj n a i1 n a ij n a n mj=1 im a ij Wie in der oben stehenden Tabelle ersichtlich, können mit der Doppelsumme alle Werte der Tabelle addiert werden. Dabei ist es egal, ob erst die Zeilen und dann die Spalten addiert werden oder umgekehrt.

4 22 2 Besondere mathematische Funktionen m m m a 1 j + a 2 j + + a nj = j=1 a i1 + j=1 a i2 + + j=1 a im = j=1 m a ij = m j=1 m j=1 m j=1 Lediglich die Reihenfolge der Summation ist unterschiedlich. Nach dem ersten Kommutativgesetz führt dies zu keiner Ergebnisänderung. Beispiel j=1 a ij a ij a ij 3 (b ij + i j)=(b )+(b )+(b ) +(b )+(b )+(b ) 2 3 = 18 + b ij j=1 Übung 2.1. Berechnen Sie folgende Ausdrücke für x = 5,2,1,2 und y = 1,2,3,4: 4 x i 4 x i y i 4 ( xi + 3 ) Übung 2.2. Berechnen Sie die folgenden Summen: 5 5 ( 1 (n 1) 2 (n + 2) k 1 ) k + 1 n=2 Übung 2.3. Ist die Doppelsumme gleich der Summe 2 2 x ij j=1 2 x i j=1 k=1 2 x j?

5 2.4 Betragsfunktion Produktzeichen Das Produktzeichen steht als Wiederholungszeichen für die fortgesetzte Multiplikation. n a i = a 1 a 2 a n Das Produktzeichen wird wie das Summenzeichen zur übersichtlicheren Darstellung von größeren Produkten verwendet. Es gelten die folgenden Rechenregeln, die sich leicht aus den elementaren Rechenoperationen ableiten lassen: Gleiche Produktgrenzen: Multiplikative Konstante: n a i b i = n n a i n n c a i = c n b i a i Anmerkung: Im Text wird das Produktzeichen soweit es eindeutig ist durch einen kleinen Freiraum ersetzt. a b = ab Übung 2.4. Berechnen Sie folgende Ausdrücke für x = 5,2,1,2: 4 x i 5 i 4 2x i Übung 2.5. Schreiben Sie das Doppelprodukt aus. 2 2 j=1 x ij 2.4 Betragsfunktion Die Betragsfunktion liefert von einer reellen Zahl deren vorzeichenlosen Zahlenwert. { x für x 0 x = x für x < 0 Anschaulich kann der Betrag x als der Abstand auf der Zahlengeraden zwischen 0 und x interpretiert werden. Beim Rechnen mit Beträgen ist Folgendes zu beachten: x 0

6 24 2 Besondere mathematische Funktionen x y = x y x y = x für y 0 y x ± y x + y 2.5 Ganzzahlfunktion Die Gauß-Klammer wirdauchalsganzzahlfunktion bezeichnet. Ursprünglich bezeichnet sie die Abrundung einer reellen Zahl zur nächsten ganzen Zahl. Daher wird sie manchmal auch Abrundungsfunktion genannt. x = max { k k x } mit k Z Der senkrechte Strich bedeutet «für die gilt». Hier also «für die k, für die k x gilt». Beispiel 2.7. Die Zahl 2.8wirddurch 2.8 auf 2 abgerundet. 2.8 = 2 Die Zahl 2.8 wird durch die Abrundungsfunktion auf 3 abgerundet, weil 3 < 2.8 < 2 gilt. 2.8 = 3 Jedoch benötigt man manchmal auch die Aufrundung einer reellen Zahl auf die nächste ganze Zahl. Man schreibt dann in Anlehnung an die Abrundungsfunktion: x = min { k k x } mit k Z Beispiel 2.8. Die Zahl 2.8 wird durch die Aufrundungsfunktion 2.8 auf 3 aufgerundet. 2.8 = 3 Die Zahl 2.8 wird dementsprechend aufgerundet auf = 2

7 2.6 Potenzen und Wurzeln Potenzen und Wurzeln Sowohl in der Finanzmathematik als auch in der Analysis tauchen Potenzen auf. Man spricht von einer Potenz mit natürlichem Exponent, wenn man eine reelle Zahl n-mal mit sich selbst multipliziert. a n = a... a }{{} n-mal mit a R,n N Die Zahl a wird Basis genannt und die Zahl n wird als Exponent bezeichnet. Der Gesamtausdruck heißt Potenz a hoch n. Auch in der Potenzrechnung gilt Punktrechnung vor Strichrechnung. Beispiel 2.9. (3 4 )= 81, aber ( 3) 4 = 81 (4 5) 3 = 20 3 = 8000, aber = Für den Umgang mit Potenzen bei natürlichem Exponent gelten folgende fünf Rechenregeln. Regel Beispiel 1. a m a n = a m+n mit a R ;m,n N = am a n = a m n mit a R ;a 0;m,n N 3. ( a b ) n = a n b n mit a,b R ;n N ( a ) n 4. = an b b n mit a,b R ;b 0;n N 5. (a m ) n = a m n mit a R ;m,n N = 2 ( ) = = 36 ( ) 6 2 = = 4 ( 2 3 ) 2 = 2 6 = 64 Für die Addition und Subtraktion von Potenzen existieren keine Rechengesetze. Ausdrücke wie zum Beispiel x 2 + y 2 oder x 2 + x 3 können nicht vereinfacht werden. Die Potenzrechnung wird nun auf ganze Zahlen ausgedehnt. Mit dieser Erweiterung können rationale Zahlen dargestellt werden. a n = 1 a n mit a R \{0},n N a 0 = 1 mit a R \{0} Das Zeichen \ bedeutet ohne die Menge {}. Im vorliegenden Fall ist es die Menge der reellen Zahlen ohne die Null. Schließlich ist es sinnvoll, die Potenzrechnung nochmals zu erweitern, um zum Beispiel folgende Gleichung zu lösen:

8 26 2 Besondere mathematische Funktionen x 2 = 2 Potenziert man beide Seiten mit 1 2, so ergibt sich: ( x 2 ) 1 2 = x = Der gesuchte Wert ergibt sich in Form einer Potenz mit der Basis 2 und dem Exponenten 1 2. Weil diese Gleichungen häufig auftreten, wird die Lösung als Quadratwurzel bezeichnet und als x = 2 2 = 2 geschrieben. Bei der Quadratwurzel entfällt häufig der Wurzelexponent. Die Wurzel von einer negativen Zahl x ist in den reellen Zahlen nicht definiert. Um solche Funktionen zu berechnen, sind imaginäre Zahlen nötig, die zusammen mit den reellen die komplexen Zahlen ergeben (siehe Kapitel 1.2.3). Beispiel ist nicht in R definiert, aber 16 = 4 Daher heißt es etwas allgemeiner: Die nicht negative Lösung x von a = x 2 mit a R + heißt Quadratwurzel. x 2 = x für x R Sucht man die Lösung für eine Potenz größer als 2, so spricht man von der n-ten Wurzel. a = x n mit x R +,n R,n 0 x = a 1 n = n a Nun kann man auch folgende Gleichung lösen: a m = x n mit x R +,m,n R,n 0 x = a m n = n a m Das Wurzelziehen ist also die Umkehroperation zum Potenzieren. Zieht man die n-te Wurzel und potenziert hoch n, dann gelangt man wieder zur Ausgangszahl. Beispiel = 8 Mit der Wurzel lassen sich reelle Zahlen darstellen, die nicht ausgeschrieben werden können, wie zum Beispiel 2. Beispiel = 2 2 = = = 2 = Die fünf Potenzregeln bleiben auch für die Potenzen a m n gültig. Beispiel = = = = 4 3 = 64

9 = = = = Exponentialfunktionen = = = = ( 4 9 ) 1 2 = = 36 = = ( ) = = = 4 = 2 25 ) = ( = = = 256 = Exponentialfunktionen Um das Wort «exponentiell» zu erklären, beginnen wir mit einem Beispiel aus der Biologie. Beispiel Wir betrachten eine Bakterienkultur, deren Wachstumsprozess durch die Zellteilung zustande kommt. Wir gehen davon aus, dass zu Beginn Bakterien existieren und sich jede Stunde die Anzahl der Bakterien verdoppelt. An einem Zeitstrahl würde dies wie folgt aussehen: Stunden Bakterien Da sich die Anzahl der Bakterien pro Stunde verdoppelt, muss die Anzahl der Bakterien zu Beginn mit 2 multipliziert werden, um deren Anzahl nach einer Stunde zu berechnen. Für jede weitere Stunde muss nun der jeweils vorherige Wert wiederum mit 2 multipliziert werden usw. Mit der Exponentialfunktion f (x)=a x mit a,x R wird die obige Populationsänderung beschrieben. a x bedeutet das x-fache Produkt von a.fürx N kann man also a x = a a... a }{{} x-mal schreiben. Wird für a der Wert 2 eingesetzt, so erhält man mit x = 0,...,5dieWerte in der Tabelle. Eine übliche Form die Funktion aufzuschreiben, ist f (x)=ca bx,

10 28 2 Besondere mathematische Funktionen f(x) f (x)= x x Abb. 2.1: Entwicklung einer Bakterienpopulation wobei a,b,c Koeffizienten sind. Mit den Koeffizienten verändert sich die Kurvenform der Exponentialfunktion. Oft wird für die Basis a die Eulersche Zahl everwendet. ( e = lim ) x x x Beispiel Ein weiteres Beispiel für ein exponentielles Wachstum ist die Zinseszinsrechnung. Es wird ein Kapitalbetrag von e zu 5 Prozent über 5 Jahre angelegt. Jahr e Der Betrag am Ende jeden Jahres wird mit dem Faktor 1.05 multipliziert. Für das erste Jahr errechnet sich das angesparte Kapital wie folgt: 1050 = = 1000( ) 1050 = Für das Kapital nach dem zweiten Jahr kann die Exponentialfunktion wieder verwendet werden.

11 = = = Exponentialfunktionen 29 Die Exponentialfunktion besitzt hier die Koeffizienten a = 1.05, b = 1 und c = 1000 f (x)= x Im Allgemeinen gilt, dass im Exponenten jede reelle Zahl stehen kann. Das können negative und positive Zahlen, aber auch Brüche und die Null sein. Mit der Exponentialfunktion können daher sowohl Wachstums- als auch Abnahmeprozesse berechnet werden. Beispiel Eine Maschine kostet e. Es wird angenommen, dass sie jedes Jahr 20 Prozent an Wert verliert. Diese Form des Wertverlusts wird als geometrisch degressive Abschreibung bezeichnet. Die zeitliche Entwicklung des Wertes sieht dann wie folgt aus: Jahr Wert Der Wertverlust der Maschine kann auch mit der Exponentialfunktion beschrieben werden. f (x)= x = x Nach 5 Jahren liegt der Restwert der Maschine bei f (5)= = e Da stets 80 Prozent des Restwerts bestehen bleiben, wird die Maschine nie einen Restwert von Null besitzen. Wir haben bereits gesehen, dass die Exponentialfunktion durch die allgemeine Form f (x)=ca bx mit a,b,c,x R definiert ist. Der Funktionswert f (x) ändert sich, sobald sich die Variable x ändert. Betrachten wir nun eine Änderung der Variablen x um s, also einen neuen Wert x+s. Wie verhält sich der Funktionswert f (x + s)? Da f (x + s)=ca b(x+s) ca b(x+s) = ca bx a bs

12 30 2 Besondere mathematische Funktionen ist, entsteht daraus f (x + s)= f (x)a bs, d. h., wächst die Variable x additiv um s, so ändert sich der Funktionswert multiplikativ um a bs. Übung 2.6. Berechnen Sie für ein Kapital von e, das zu 5 Prozent über 10 Jahre angelegt wird, den Endwert. Übung 2.7. Angenommen das Kapital aus Übung 2.6 wird nur für 9 Jahre angelegt. Wie können Sie aus dem Endkapital, das Sie in der Übung 2.6 berechnet haben, den Endwert nach 9 Jahren berechnen? Übung 2.8. Ein Gewinn soll sich in den nächsten 15 Jahren verdoppeln. Welche durchschnittliche jährliche Wachstumsrate ist dazu notwendig? 2.8 Logarithmen Wie werden Exponentialgleichungen nach x umgestellt? Logarithmen sind zum Lösen von Exponentialgleichungen oder zum Beschreiben von Wachstumsprozessen wichtig. Der Logarithmus (genau genommen handelt es sich um die Logarithmusfunktion) ist die Umkehrung des Potenzierens. y = a x x = log a y mit a,y R + und a 1 (2.2) Wurde beim Radizieren die Basis a errechnet, so sucht man jetzt bei bekanntem Potenzwert y und Basis a den Exponenten x. Der Logarithmus einer beliebigen positiven Zahl y zur Basis a ist derjenige Exponent x, mit dem die Basis a potenziert werden muss, um den Numerus y zu erhalten. Beispiel Hierfür wird die Gleichung aus Beispiel 2.15 betrachtet = x Es ist die Anlagedauer x gesucht. Durch Logarithmieren der Gleichung (siehe Rechenregeln auf der folgenden Seite) log = log x log1.05 erhält man die Variable x in einer lineare Beziehung, so dass durch Division die Lösung berechnet werden kann. x = log log1000 log1.05 = 2

13 2.8 Logarithmen 31 Beispiel = 2 3 log 2 8 = 3 Aus der Definition des Logarithmus (2.2) folgen die Beziehungen: Weitere Rechenregeln sind: log a a = 1 denn a 1 = a log a 1 = 0 denn a 0 = 1 log a a n = n denn a n = a n log a (c d)=log a c + log a d log a c d = log a c log a d log a b n = nlog a b log a n b = 1 n log a b Logarithmen mit gleicher Basis bilden ein Logarithmensystem, von denen die beiden gebräuchlichsten die dekadischen (Basis a = 10, oft mit log bezeichnet) und die natürlichen Logarithmen (mit der Eulerschen Zahl a = e als Basis mit der Bezeichnung ln) sind. Auf dem Taschenrechner sind meistens die beiden oben genannten Logarithmensysteme vorhanden. Wie kann der Logarithmus x = log 2 8 mit einem Taschenrechner berechnet werden? Dazu folgende Überlegungen: Ausgehend von der Gleichung y = a x ergeben sich mit den beiden obigen Logarithmen die beiden folgenden Gleichungen: logy = xloga x = logy loga lny = xlna x = lny lna Daraus ergibt sich nun die Gültigkeit der folgenden Beziehung: x = log a y = logy loga = lny lna Somit ist die Berechnung des Logarithmus log 2 8 kein Problem. x = log 2 8 = log8 log2 = ln8 ln2 = 3

14 32 2 Besondere mathematische Funktionen Logarithmen werden auch für die grafische Darstellung von Wachstumsprozessen verwendet. Angenommen, ein Wert wächst in jeder Periode um 10 Prozent (p = 0.1), dann ist die Wachstumsrate konstant, die resultierenden Werte nehmen aber exponentiell zu (siehe obere GrafikinAbb.2.2). x t = x t 1 (1 + p) t mit t = 1,...,n Wird der Wachstumsprozess in einer Grafik mit logarithmierten Werten auf der Ordinaten abgetragen, so sieht man die Konstanz der Wachstumsrate. log a x t = log a x t 1 + t log a (1 + p) mit a > 0 und a 1 (2.3) In der Gleichung (2.3) handelt es sich um eine Gerade mit Achsenabschnitt log a x t 1 und Steigung log a (1 + p) (siehe untere Grafik inabb.2.2).hierwurdea = e, also der natürliche Logarithmus ln verwendet. normale Ordinate p = t logarithmierte Ordinate zur Basis e 2 10 x ln x 1 10 p = t Abb. 2.2: Exponentieller Wachstumsprozess Übung 2.9. Lösen Sie die folgenden Gleichungen nach x auf. y = e a+bx e ax = 0.5

15 2.9 Anwendung in Scilab 33 Übung Ein Kapital K 0 soll sich verdoppeln. Es ist ein Zinssatz von 5 Prozent pro Jahr gegeben. Wie viel Jahre muss das Kapital angelegt werden? Übung Berechnen Sie folgende Logarithmen: log 2 5 log 3 4 Übung Vereinfachen Sie die folgenden Ausdrücke mit den Rechenregeln der Logarithmusrechnung: ( ln 2x 4 ) x 2 y ln ( ) 2x 4 u 2 x) ln (5x 2 pq 2 4 (a 2 b) Anwendung in Scilab Reelle Zahlen werden in Scilab mit einem Punkt als Dezimalzeichen eingegeben. 3.4 Eine Summe wird in Scilab mit sum() berechnet. Soll eine Summe von beliebigen Zahlen berechnet werden, so sind die Zahlen in eckigen Klammern und durch Kommas getrennt einzugeben. sum(1:6) -> 21 sum(3*(1:4)^2) -> 90 sum([3,6,1]) -> 10 Für eine Doppelsumme muss zuerst ein Zahlenfeld (siehe auch Kapitel 5) in Scilab eingegeben werden. Die Zeilen werden durch Semikolon getrennt. Die Doppelsumme über das Zahlenfeld wird durch den einfachen Summenbefehl berechnet. Soll nur die Summe über die Spalten berechnet werden, so muss nach der Angabe der Variablen ein weiteres Argument angegeben werden. In diesem Fall ist es eine 1. Für die Summe über die Zeilen ist das Argument eine 2. tab = [2,3,4;5,6,7] sum(tab) -> 27 sum(tab,1) -> sum(tab,2) 9 18

16 34 2 Besondere mathematische Funktionen Das Produkt eines Zahlenfelds wird mit dem Befehl prod() berechnet. prod(tab) -> 5040 prod(tab,1)-> prod(tab,2) Den Betrag einer Zahl erhält man in Scilab mit dem Befehl abs(). abs(-2) -> 2 Die Gauß-Klammer wird durch die Abrundungsfunktion floor() berechnet. floor(2.8) -> 2 Die Aufrundungsfunktion ist durch die Funktion ceil() definiert. ceil(2.8) -> 3 Potenzen und Wurzeln können in Scilab mit dem «Dach»-Operator berechnet werden. 2^4 -> 16 2^0.25 -> sqrt(2) Für die 2-te Wurzel steht auch die gesonderte Funktion sqrt zur Verfügung. Die Exponentialfunktion zur Basis e wird mit dem Befehl exp() aufgerufen. exp(1) -> Die Berechnung des Logarithmus zur Basis e erfolgt mit log, also der ln in der Notation des Buches. Es stehen noch weitere Logarithmusfunktionen in Scilab zur Verfügung. log(2) -> log10(2) -> log2(2) -> 1 Für alle Funktionen steht eine Hilfe zur Verfügung. Sie wird mit help aufgerufen. Für die Summenfunktion ist es beispielsweise help sum

17 2.10 Fazit Fazit Das Summenzeichen wird viel in der linearen Algebra und Polynomen verwendet. Das Produktzeichen findet vor allem in der Kombinatorik seine Anwendung. Die Logarithmus- und die Exponentialfunktion sind wichtige mathematische Funktionen, die zur Beschreibung von Wachstumsprozessen und zur Auflösung von Gleichungen herangezogen werden. Insbesondere in der Finanzmathematik werden diese Funktionen verwendet.

18

1 Zahlenmengen und einige mathematische Symbole

1 Zahlenmengen und einige mathematische Symbole 1 Zahlenmengen und einige mathematische Symbole Inhalt 1.1 Vorbemerkung................................................... 3 1.2 Zahlenmengen................................................... 4 1.3 Summenzeichen..................................................

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Mathematik für Ökonomen

Mathematik für Ökonomen Springer-Lehrbuch Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 123 Prof Dr Wolfgang Kohn Prof Dr Riza Öztürk Fachhochschule Bielefeld

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

3 Zahlen und Arithmetik

3 Zahlen und Arithmetik In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

Die Umkehrung des Potenzierens ist das Logarithmieren.

Die Umkehrung des Potenzierens ist das Logarithmieren. Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der 1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg Logarithmen Wie löst man die Gleichung a x = b nach x auf? (dabei soll gelten a, b > 0 und a 1) Neues

Mehr

RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN

RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN Addition und Subtraktion mit Variablen Es dürfen nur Ausdrücke mit gleichen Variablen addiert oder subtrahiert werden. a und a² sind auch unterschiedliche Variablen.

Mehr

Grundlagen komplexe Zahlen. natürliche Zahlen

Grundlagen komplexe Zahlen. natürliche Zahlen Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.

Mehr

Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra. Feedback zur 3. wöchentlichen Aufgabe (Zahlen und Algebra)

Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra. Feedback zur 3. wöchentlichen Aufgabe (Zahlen und Algebra) Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra Auf der Seite http://www.math.utah.edu/~alfeld/math/sexample.html werden zwei Herangehensweisen an das Umrechnen von Basen bei Logarithmen

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Modul Gleichungen umstellen

Modul Gleichungen umstellen Modul Gleichungen umstellen In einigen Fällen kann es sein, dass man eine Gleichung gegeben hat, diese aber umstellen muß, weil man eine bestimmte Variable als Lösung sucht. Dieses Modul befasst sich mit

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Organisation Termine, Personen, Räume Gliederung 1 Grundlegende

Mehr

1 Potenzen und Polynome

1 Potenzen und Polynome 1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Arithmetik, Algebra, Mengen- und Funktionenlehre

Arithmetik, Algebra, Mengen- und Funktionenlehre Carsten Gellrich Regina Gellrich Arithmetik, Algebra, Mengen- und Funktionenlehre Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen VERLAG HARRI DEUTSCH Inhaltsverzeichnis

Mehr

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

Übersicht über wichtige und häufig benötigte mathematische Operationen

Übersicht über wichtige und häufig benötigte mathematische Operationen Bruchrechnung Übersicht über wichtige und häufig benötigte mathematische Operationen Addition/Subtraktion von (ungleichnamigen) Brüchen: Brüche erweitern, sodass die Nenner gleichnamig sind, indem Zähler

Mehr

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen

Mehr

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Potenzen und Wurzeln Anna Heynkes 18.6.2006, Aachen Dieser Text soll zusammenfassen und erklären, wie Potenzen und Wurzeln zusammenhängen und wie man mit ihnen rechnet. Inhaltsverzeichnis 1 Die Potenzgesetze

Mehr

Addition und Subtraktion

Addition und Subtraktion 3 Rechenregeln Addition Das Kommutativgesetz. Für je zwei Zahlen a, b gilt a + b = b + a. Für je drei Zahlen a, b, c gilt a + b + c = (a + b) + c nach Definition. Assoziativgesetz. Für je drei Zahlen a,

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Sermiversusformel und ABC-Tafel

Sermiversusformel und ABC-Tafel Sermiversusformel und ABC-Tafel Um die Höhe eines beobachteten Gestirns zu erhalten oder um eine Distanz zwischen zwei geographischen Orten auf einem Großkreis zu erhalten, wendet man den Seitenkosinussatz

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Für das Rechnen mit Logarithmen gibt es nun natürlich eigene Rechengesetze, welche wir uns nun anschauen

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

MATHEMATISCHE AUFGABENSAMMLUNG

MATHEMATISCHE AUFGABENSAMMLUNG MATHEMATISCHE AUFGABENSAMMLUNG Arithmetik Algebra und Analysis Zweite verbesserte Auflage 1956 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN VII INHALT ERSTER ABSCHNITT Rechnen mit natürlichen Zahlen

Mehr

1.3 Gleichungen und Ungleichungen

1.3 Gleichungen und Ungleichungen 1.3 Gleichungen und Ungleichungen Ein zentrales Thema der Algebra ist das Lösen von Gleichungen. Ganz einfach ist dies für sogenannte lineare Gleichungen a x = b Wenn hier a 0 ist, können wir beide Seiten

Mehr

Logarithmen. 1 Logarithmenbegriff

Logarithmen. 1 Logarithmenbegriff Logarithmen 1 Logarithmenbegriff Beispiel Lösung Zeichnen Sie den Graphen der Funktion f: y = 2 x - 8 und bestimmen Sie die Nullstelle. Wertetabelle x - 2-1 0 1 2 3 4 y - 7,8-7,5-7 - 6-4 0 8 Bestimmung

Mehr

Exponentielles Wachstum und Logarithmus

Exponentielles Wachstum und Logarithmus Eigenschaften der Exponentialfunktionen Die Funktion nennt man Exponentialfunktion mit der Basis a. Ist neben der Potenz noch ein Faktor im Funktionsterm vorhanden, spricht man von einer allgemeinen Exponentialfunktion:

Mehr

Logarithmen. Gesetzmäßigkeiten

Logarithmen. Gesetzmäßigkeiten Logarithmen Gesetzmäßigkeiten Einführung Als erstes muss geklärt werden, für was ein Logarithmus gebraucht wird. Dazu sollte folgendes einführendes Beispiel gemacht werden. Beispiel 1: 2 x = 8 Wie an diesem

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion 1/22 Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 2/22 Inhalt Exponential- und Logarithmusfunktion

Mehr

Inhaltsverzeichnis. Mathematische Zeichen und Abkürzungen 9

Inhaltsverzeichnis. Mathematische Zeichen und Abkürzungen 9 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 9 1 Zahlenmengen und Anordnung der Zahlen auf der Zahlengeraden 11 1.1 Die Menge IN 0 der natürlichen Zahlen einschließlich der Null 11 1.2 Die

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik September/Oktober 2017 1 / 74 Ein paar Tipps vorab Be gritty

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Einführung in die Potenzrechnung

Einführung in die Potenzrechnung .2.0.. Mathematische Grundlagen II Einführung in die Potenzrechnung Bei der Multiplikation haben wir festgestellt, dass aa 2 eine andere Schreibweise von aa aa und aa eine andere Schreibweise aa aa aa

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur

Mehr

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium Algebra-Training Theorie & Aufgaben Serie 2 Potenzen und Wurzeln Theorie und Aufgaben: Ronald Balestra, Katharina Lapadula VSGYM / Volksschule Gymnasium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen

Mehr

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -

Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 - - Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit

Mehr

Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Summenzeichen. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Summenzeichen Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 2011 Inhaltsverzeichnis 1 Grundlagen: Summenzeichen 1 1.1 Der Aufbau des Summenzeichens................ 1 1.1.1 Aufgaben.........................

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/ Vorkurs Mathematik Anni Schmalz Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing HWS 2015/2015 14. 18.09.2015 2 Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Lösung zur Übung 6. Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x).

Lösung zur Übung 6. Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x). zur Übung 6 Aufgabe ) Die Umkehrfunktion zur sinus hyperbolicus Funktion y = sinh(x) ist die area sinus hyperbolicus Funktion y = ar sinh(x). a) Man zeige: y(x) = ar sinh(x) = ln(x + x + ) durch einsetzen

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr