Konzentrationsanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Konzentrationsanalyse"

Transkript

1 Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher Aalyse. D (Absolute ud relatve Kozetrato) Vo eer absolute Kozetrato wrd gesproche, we e Großtel des gesamte Merkmalbetrages auf ee klee Zahl a Merkmalsträger etfällt. Vo eer relatve Kozetrato wrd gesproche, we e Großtel des gesamte Merkmalbetrages auf ee klee Atel der Merkmalsträger etfällt. BS. 5.. De 000 rechste Budesbürger erzele 0% der Ekomme (absolute Kozetrato). De % rechste Budesbürger erzele 30% der Ekomme (relatve Kozetrato). B (Absolute Kozetratosmaße) Herzu gehöre: - Kozetratosrate - Herfdahlde D. 5.. (Kozetratosrate) Gegebe se e metrsch messbares Merkmal X mt de Beobachtugswerte Als Kozetratosrate k ter Ordug bezechet ma: k = k : =, =, 2,..., = C k.

2 ( C k gbt a, we groß der Atel der Merkmalssumme st, der auf deege Merkmalsträger mt de k größte Auspräguge etfällt.) BS Gegebe see ver verschedee Märkte A, B, C ud D, dee ewels füf Uterehme tätg sd. De Größeverhältsse der Uterehme gemesse am Umsatz [Mllo ] sd folgeder Tabelle dargestellt: Vertelug Uterehme A B C D Isgesamt Zu bereche se de Kozetratosrate 2. Ordug. Lösug: A: C2 = = B: C2 = = C: C2 = = D: C2 = = Damt st de Kozetratosrate be Vertelug A mt 00% am höchste ud be Vertelug D mt 40% am edrgste. De adere Verteluge lege dazwsche. D (Kozetratoskurve) Zechet ma für 0,, 2,...,, = de Pukte ( ) C e Koordatesystem ud verbdet ma de Pukte durch ee leare Streckezug, so erhält ma de Kozetratoskurve. B (Egeschafte der Kozetratoskurve). Je rascher sch de Kozetratoskurve dem Ordatewert ähert, umso größer st de absolute Kozetrato. 2. Es legt mamale Kozetrato vor, falls =, = =... = =0 ud damt berets C =. 2 3 = 3. Es legt mmale Kozetrato vor, falls 2

3 = 2 =... = = =. De Kozetratoskurve st da ee Gerade 4. De Kozetratoskurve st kokav. BS (Fortsetzug) Zeche Se de Kozetratoskurve für de Vertelug B. Lösug: Arbetstabelle = C C B (Eschätzug der Kozetratosrate) a) Vortele:. Efache Berechebarket 2. Lechte Dateverfügbarket b) Nachtele: k wrd wllkürlch gewählt. 2. Iformatoe der kleere Merkmalsträger werde cht berückschtgt. 3

4 (Im obge Bespel st be k = 2 de Kozetratosrate 72% ud be Vertelug C 70%.Würde ma aber k = wähle, da wäre Vertelug B mt 44% weger stark kozetrert als Vertelug C mt 50%.) D (Herfdahl-Koeffzet) 2 H : = mt : = = = K p p, B (Egeschafte des Herfdahl-Koeffzete). K H 2. Es glt K H = geau da, we mmale Kozetrato vorlegt. 3. Es glt K H = geau da, we mamale Kozetrato vorlegt. 4. Es glt 2 K H = ( v + ). BS (Fortsetzug) Arbetstabelle 2 p p K : = H B (Eschätzug des Herfdahl-Koeffzete) a) Vortele: Der Herfdahl-Koeffzet. verwedet sämtlche Iformatoe. 2. berückschtgt de Azahl der Merkmalsträger. 3. st uabhägg gegeüber proportoaler Veräderug aller Werte, 4

5 b) Nachtele:. De Quadrerug st wllkürlch 2. Iformatoe über kleere Merkmalsträger sd otwedg. B (Relatve Kozetratosmaße) Herzu gehöre: - de Lorezkurve - der G-Koeffzet. D (Lorezkurve) Gegebe se e metrsch messbares Merkmal X mt de Beobachtugswerte Als Lorezkurve bezechet ma e Streckezug, der durch de Pukte( u, v), = 0,,..., läuft. Dabe sd für:. E chtgruppertes Datemateral 0 für = 0 u : = für =, 2,..., 0 für = 0 v : =. = für =,2,..., = 2. E gruppertes Datemateral 0 für = 0 u : = h für =,2,..., = 0 für = 0 _ H v : =. = für =, 2,..., p _ H = 5

6 B Häufg werde u ud v mt 00 multplzert um ewels de prozetuale Atel zu erhalte. 2. Fehle de Iformatoe _, so werde se durch B (Egeschafte der Lorezkurve) De Lorezkurve m ersetzt.. gbt Abwechug gegeüber der Glechvertelug (Dagoale) a (Dspartät). 2. legt zwsche de Etreme der mmale Dspartät (absolute Glechhet) ud der mamale Dspartät (absolute Uglechhet). 3. verläuft rgedwo oberhalb der Dagoale. 4. st stückwese lear, streg mooto wachsed ud kove. We sch zwe Lorezkurve cht schede, west de höhere Lorezkurve edeutg weger Dspartät auf als de edrgere. Be praktsche Probleme schede sch vele Fälle. I solche Fälle st ke edeutger Dspartätsverglech möglch. E Ausweg betet sch da der Dspartätsverglech durch ee Ide, z.b. durch de G-Ide (sehe weter ute!). BS (Fortsetzug) Zeche Se de Lorezkurve für de Vertelug B. Lösug: Arbetstabelle u v , v u 6

7 BS Für e Verbrauchsstudo wurde de Nettoahresekomme vo 00 Mäer we folgt festgestellt: Ekomme [Tsd. ] Azahl vo bs uter Stelle Se de etsprechede Lorezkurve auf. Lösug: Arbetstabelle g G H h = h m m H = m H m H m H = = p 0.8 v u D (G-Koeffzet bzw. G-Ide.) Ihalt der Fläche zwsche der Dagoale ud Lorezkurve G : = Ihalt der Fläche uterhalb der Dagoale 7

8 B (G-Koeffzet: (Berechugsformel)) Folgede Formel lasse sch zur Berechug des G-Koeffzete herlete:. Nchtgruppertes Datemateral 2 + = G= = 2 = v = 2, 0 G. 2. Gruppertes Datemateral p G= H v + v p = ( ) h( v v), 0 G = + = H p. B. 5.. (Egeschafte des G-Koeffzete).. Es glt G= 0 geau da, we mmale Dspartät (absolute Glechhet) vorlegt. 2. Es glt G= geau da, we mamale Dspartät (absolute Uglechhet) vorlegt. 8

9 D (Normerter (bzw. Stadardserter ) G-Koeffzet) Gs : = G, 0 G. s (De Berechug des ormerte G-Koeffzete st ur be klee Gesamthete svoll.) BS (Fortsetzug) Bereche Se de G-Koeffzete für de Verteluge: A - D. Lösug: A: G= = 0.800, B: C: G= = 0.424, G= = 0.408, D: G= = BS (Fortsetzug) Bereche Se de G-Koeffzete ud de ormerte G-Koeffzete. Lösug: G= ( ) = G s = = B (Eschätzug des G-Koeffzete) a) Vortel Der G-Koeffzet betet ee Verglechsmöglchket m Falle, dass sch de Lorezkurve schede 9

10 b) Nachtel. Uterschedlche Lorezkurve köe zu demselbe G-Koeffzete führe. 2. Es besteht ee starke Abhäggket des G-Koeffzete vo der Zahl der ebezogee statstsche Ehete. Weglasse vo klee Merkmalswerte verrgert de G-Koeffzete. B (Statsche ud dyamsche Kozetrato) Mestes bezeht sch der Kozetratosbegrff auf ee gegebee Vertelug, d. h. es wrd de Kozetrato ees Bestades utersucht (statsche Kozetrato). Uter dyamscher Kozetrato dagege versteht ma de zuehmede Kozetrato des Bestades m Zetablauf, d. h. also ee Kozetratosprozess. (De Problematk wrd her cht behadelt.) 0

11 (Letzte Aktualserug: )

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen Modul 0: Kozetratosmesssug Modul 0: Kozetratosmessug Kozetrato absolute Kozetrato (Kozetrato. e. S.) Kozetratoskurve - Kozetratosrate - Herfdahl sches Kozetratosmaß Vsualserug statstsche Kezahle relatve

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel.

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel. J SCHIRA, C MÜLLER / Statstk I / SS 005 Maßzahle 6 Maßzahle Arthmetsches Mttel Das für quattatve Merkmale am häufgste verwedete Lokalsatosmaß st das arthmetsche Mttel Defto: De Größe := = heßt arthmetsches

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Maßzahlen zur Beschreibung von Verteilungen

Maßzahlen zur Beschreibung von Verteilungen Programmcode: Lagemaße Maßzahle zur Beschrebug vo Verteluge > c(0,,5,6,3,0,-) > mea() [] > meda() [] > table() - 0 3 5 6 kee drekte Modusfukto 0 zwemal Uvarate Deskrpto ud Eplorato vo Date - Maßzahle zur

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

STATISIK. LV Nr.: 0021 WS 2005/06 13.Oktober 2005

STATISIK. LV Nr.: 0021 WS 2005/06 13.Oktober 2005 STATISIK LV Nr.: 00 WS 005/06 3.Oktober 005 Streuugsmaße Varaz Stadardabwechug Varatoskoeffzet Mttlere absolute Abwechug Spawete Quartlsabstad Schefe Wölbug Varaz Beobachtugswerte a,...,a (metrsch skalert)

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Deskriptive Statistik behaftet.

Deskriptive Statistik behaftet. De Statstk beschäftgt sch mt Masseerscheuge, be dee de dahterstehede Ezeleregsse mest zufällg sd. Statstk beutzt de Methode der Wahrschelchketsrechug. Fudametalregel: Statstsche Aussage bezehe sch e auf

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Formelsammlung Statistik

Formelsammlung Statistik Gesudhets- ud Toursmusmaagemet Formelsammlug Statstk Dpl. Mathematker (FH) Rolad Geger Rosestr. 23 7263 Achtal cs.geger@t-ole.de www.cs-geger.de Grudlage Bezechuge x h N H Ω ezele Messergebsse eer Stchprobe

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

Probleme mit mehreren Zielen. Probleme mit mehreren Zielen. Probleme mit mehreren Zielen

Probleme mit mehreren Zielen. Probleme mit mehreren Zielen. Probleme mit mehreren Zielen Probleme mt mehrere Zele Bespel (Dkelbach) E Reseder muss sch vor Ort vo ver Hotels für ees etschede. Dabe verfolgt er folgede Zele: - Bestmöglche Ruhe - Qualtät des Frühstücks - Sauberes Bad - Scherer

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap )

Vorkurs, Teil 1. (3) Matrizen, lineare Gleichungssysteme, Determinanten (Lehrbuch Kap ) Vorkurs, Tel Lehrbuch: Sydsaeter / Hammod, Mathematk für Wrtschaftswsseschaftler, Pearso Studum, ISBN 978-3-873-73-9 Skrpt vo Sevtap Kestel Ihalt () Eführug: Zahle, Fuktoe Potezfukto, Expoetalfukto (Lehrbuch

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Eplzte Defto Reursve Defto 4. Gleder eer vorher deferte Folge bereche E Gled Mehrere Gleder 6 4 5 4.3 Ee Folge defere ud ege hrer

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D: Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete 483 83, 83, 83, 388 13, 13, 96, 11 4, 4,

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr