2. Deskriptive Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Deskriptive Statistik"

Transkript

1 Philipps-Universitat Marburg

2 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten mogliche Werte eines Merkmals: Merkmalsauspragungen Untersuchungseinheit Merkmal Merkmalauspragungen Baum Baumart Eiche, Buche,... arbeitslose Person Schulabschluss keiner, Hauptschule, Realschule, Gymnasium Person Familienstand ledig, verheiratet, geschieden,...

3 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten mogliche Werte eines Merkmals: Merkmalsauspragungen Untersuchungseinheit Merkmal Merkmalauspragungen Baum Baumart Eiche, Buche,... arbeitslose Person Schulabschluss keiner, Hauptschule, Realschule, Gymnasium Person Familienstand ledig, verheiratet, geschieden,...

4 Stichproben Grundgesamtheit = Menge der moglichen Untersuchungseinheiten Stichprobe = zufallig gewonnene, endliche Teilmenge der Grundgesamtheit Stichprobenumfang = Anzahl der erhobenen Daten

5 Datentypen Kategorielle (oder nominale) Daten fur jedes Datum welche Kategorie, z.b. Autotypen, Baumart, Nationalitat Ordinale Daten kategorielle Daten mit geordneten Kategorien, z.b. Noten, Erdbebenstarke auf Richter Skala Zahldaten oder diskrete Daten: Zahlen bestimmter Merkmale, z.b. Anzahl mit Geigerzahler registrierten Zerfalle einer Probe, Stetige (oder kontinuierliche) Daten konnen in Wertebereich { zumindest theoretisch { jeden beliebigen Zahlenwert annehmen, z.b. Groe, Alter, Lange. qualitative Daten: kategorielle und ordinale Daten quantitative oder metrische Daten: Zahldaten und stetige Daten.

6 Datentypen Kategorielle (oder nominale) Daten fur jedes Datum welche Kategorie, z.b. Autotypen, Baumart, Nationalitat Ordinale Daten kategorielle Daten mit geordneten Kategorien, z.b. Noten, Erdbebenstarke auf Richter Skala Zahldaten oder diskrete Daten: Zahlen bestimmter Merkmale, z.b. Anzahl mit Geigerzahler registrierten Zerfalle einer Probe, Stetige (oder kontinuierliche) Daten konnen in Wertebereich { zumindest theoretisch { jeden beliebigen Zahlenwert annehmen, z.b. Groe, Alter, Lange. qualitative Daten: kategorielle und ordinale Daten quantitative oder metrische Daten: Zahldaten und stetige Daten.

7 2.2 Beschreibung kategorieller Daten absolute Haugkeiten: Wieviele Daten in jeder Kategorie! auch Kategorien erwahnen, in die keine Daten fallen. relative Haugkeiten: Anteil der Daten in jeder Kategorie! absolute Haugkeiten / Stichprobenumfang. stets zusammen mit Stichprobenumfang angeben. Visualisierung: relative / absolute Haugkeiten als Balkendiagramme: Stapeldiagramm: nach einzelne Balken ubereinander in einem Balken der Groe Tortendiagramme bzw. Kreisdiagramm: als Kreis / Tortensegmente

8 2.2 Beschreibung kategorieller Daten absolute Haugkeiten: Wieviele Daten in jeder Kategorie! auch Kategorien erwahnen, in die keine Daten fallen. relative Haugkeiten: Anteil der Daten in jeder Kategorie! absolute Haugkeiten / Stichprobenumfang. stets zusammen mit Stichprobenumfang angeben. Visualisierung: relative / absolute Haugkeiten als Balkendiagramme: Stapeldiagramm: nach einzelne Balken ubereinander in einem Balken der Groe Tortendiagramme bzw. Kreisdiagramm: als Kreis / Tortensegmente

9 2.2 Beschreibung kategorieller Daten absolute Haugkeiten: Wieviele Daten in jeder Kategorie! auch Kategorien erwahnen, in die keine Daten fallen. relative Haugkeiten: Anteil der Daten in jeder Kategorie! absolute Haugkeiten / Stichprobenumfang. stets zusammen mit Stichprobenumfang angeben. Visualisierung: relative / absolute Haugkeiten als Balkendiagramme: Stapeldiagramm: nach einzelne Balken ubereinander in einem Balken der Groe Tortendiagramme bzw. Kreisdiagramm: als Kreis / Tortensegmente

10 Visualisierung (Wahlergebnisse) Barplot (rel. Häufigkeit) Stapeldiagramm (rel. Häufigkeit) Pie Chart (rel. Häufigkeit) Relative Häufigkeit Relative Häufigkeit CDU SPD FDP DIELINKE GRÜNE CSU PIRATEN Sonstige FDP SPD DIELINKE GRÜNE CSU PIRATEN Sonstige CDU Sonstige PIRATEN CSU GRÜNE DIELINKE FDP SPD CDU Partei

11 Visualisierung (Simpson Paradoxon) Fraction of Income paid as Taxes in the USA e e e e e e e+09 Income 1974 Taxes Paid 1974 Income 1978 Taxes Paid 1978 <5.000$ $ $ $ > $ Total <5.000$ $ $ $ > $ Total Income Group Income Group

12 2.3 Zusammenfassung numerischer Daten Lagemae: Wo (auf der reellen Achse) benden sich die Daten? Streumae: Wie weit streuen die Daten um ein Lagema? Weiter: Mae fur Schiefe: Sind die Daten symmetrisch um ihr Lagema? Mae fur heavy tails: Gibt es viele Daten, die besonders weit vom Lagema entfernt liegen?

13 2.3 Zusammenfassung numerischer Daten Lagemae: Wo (auf der reellen Achse) benden sich die Daten? Streumae: Wie weit streuen die Daten um ein Lagema? Weiter: Mae fur Schiefe: Sind die Daten symmetrisch um ihr Lagema? Mae fur heavy tails: Gibt es viele Daten, die besonders weit vom Lagema entfernt liegen?

14 Lagemae: Mittelwert Mittelwert: arithmetisches Mittel der Daten. Daten x 1 ; : : : ; x n 2 R, dann x = 1 n nx i=1 x i = x x n ; n gewichtetes Mittel: Gewicht g i > 0 fur Beobachtung x i, dann P n i=1 g i x i P n i=1 g i = g 1x g n x n g g n ;

15 Lagemae: Mittelwert Mittelwert: arithmetisches Mittel der Daten. Daten x 1 ; : : : ; x n 2 R, dann x = 1 n nx i=1 x i = x x n ; n gewichtetes Mittel: Gewicht g i > 0 fur Beobachtung x i, dann P n i=1 g i x i P n i=1 g i = g 1x g n x n g g n ;

16 Lagemae: Median Ordnungsstatistiken: geordneten Werte x (1) : : : x (n), d.h. x (1) kleinste, x (n) grote Wert. Median (lat. medius: der mittlere) einfachste Lagema. med(x) = 8 >< >: x ( n+1 2 ) x ( n 2 ) + x ( n 2 +1) 2 fur n ungerade fur n gerade,! mindestens 50% der Daten und 50% der Daten med(x).

17 Streumae: Standardabweichung x = (x 1 ; : : : ; x n ) beobachtete Daten. Varianz: var(x) = 1 n 1 nx i=1 (x i x) 2 = (x 1 x) (x n x) 2 Standardabweichung (engl. standard deviation) sd(x) = p var(x): n 1

18 Variationskoezient Variationskoezienten: relative Schwankung im Verhaltnis zu ihrem Mittelwert sd(x) jxj Bsp.: Energieumsatzrate

19 Interquartilsabstand Quantile: fur 0 < < 1 q (x) = 8 >< >: x ([n +1]) ; falls n keine ganze Zahl ist, 1 2 x (n ) + x (n +1) ; falls n eine ganze Zahl ist.! mindestens 100% der Daten q (x) und (1 ) 100% der Daten q (x). unteres Quartil: q 0;25 (x), oberes Quartil: q 0;75 (x), Interquartilsabstand IQR(x) = q 0;75 (x) q 0;25 (x):

20 Interquartilsabstand Quantile: fur 0 < < 1 q (x) = 8 >< >: x ([n +1]) ; falls n keine ganze Zahl ist, 1 2 x (n ) + x (n +1) ; falls n eine ganze Zahl ist.! mindestens 100% der Daten q (x) und (1 ) 100% der Daten q (x). unteres Quartil: q 0;25 (x), oberes Quartil: q 0;75 (x), Interquartilsabstand IQR(x) = q 0;75 (x) q 0;25 (x):

21 Ma fur Schiefe Schiefe (engl.: skewness) von x 1 ; : : : ; x n : nx skew(x) = 1 3 xi x : n sd(x)! kennzeichnet Abweichung von symmetrischer Lage um x. Ist skew(x) < 0 : linksschief Ist skew(x) > 0 : rechtsschief. i=1

22 Ma fur Schiefe Schiefe (engl.: skewness) von x 1 ; : : : ; x n : nx skew(x) = 1 3 xi x : n sd(x)! kennzeichnet Abweichung von symmetrischer Lage um x. Ist skew(x) < 0 : linksschief Ist skew(x) > 0 : rechtsschief. i=1

23 Verteilungsschwanze (heavy tails) Kurtosis von x 1 ; : : : ; x n : kurtosis(x) = 1 n nx i=1 4 xi x 3: sd(x)! kennzeichnet Abweichung von Verteilungsschwanzen der Normalverteilung. Ist kurtosis(x) < 0 : low tails Ist kurtosis(x) > 0 : heavy tails. im Vergleich zur Normalverteilung.

24 Verteilungsschwanze (heavy tails) Kurtosis von x 1 ; : : : ; x n : kurtosis(x) = 1 n nx i=1 4 xi x 3: sd(x)! kennzeichnet Abweichung von Verteilungsschwanzen der Normalverteilung. Ist kurtosis(x) < 0 : low tails Ist kurtosis(x) > 0 : heavy tails. im Vergleich zur Normalverteilung.

25 Graphische Darstellung numerischer Daten Boxplot Graphische Darstellung der 5 Zahlen Median, unteres und oberes Quartil, Max. und Min. Box. zwischen q 0:25 und q 0:75, darin Median als Strich Striche (engl. Whiskers) bis Max. und Min. Histogramm Unterteilung des Wertebereichs in disjunkte Intervalle, Plotte Rechtecke auf Intervalle, Hohe: Anzahl (Anteil) Daten in dem Intervall Rug-Plot Erganzend zu Histogramm, Plotte Daten als Striche auf x-achse

26 Graphische Darstellung numerischer Daten Boxplot Graphische Darstellung der 5 Zahlen Median, unteres und oberes Quartil, Max. und Min. Box. zwischen q 0:25 und q 0:75, darin Median als Strich Striche (engl. Whiskers) bis Max. und Min. Histogramm Unterteilung des Wertebereichs in disjunkte Intervalle, Plotte Rechtecke auf Intervalle, Hohe: Anzahl (Anteil) Daten in dem Intervall Rug-Plot Erganzend zu Histogramm, Plotte Daten als Striche auf x-achse

27 Graphische Darstellung numerischer Daten Boxplot Graphische Darstellung der 5 Zahlen Median, unteres und oberes Quartil, Max. und Min. Box. zwischen q 0:25 und q 0:75, darin Median als Strich Striche (engl. Whiskers) bis Max. und Min. Histogramm Unterteilung des Wertebereichs in disjunkte Intervalle, Plotte Rechtecke auf Intervalle, Hohe: Anzahl (Anteil) Daten in dem Intervall Rug-Plot Erganzend zu Histogramm, Plotte Daten als Striche auf x-achse

28 2.4 Transformationen: Linear lineare Transformationen: Fur a; b 2 R; a 6= 0, f (x i ) = ax i + b; i = 1; : : : ; n: Bsp.: Grad Celsius in Grad Kelvin, Euro in Dollar. Standardisierung. f (x i ) = x i x sd x :

29 2.4 Transformationen: Linear lineare Transformationen: Fur a; b 2 R; a 6= 0, f (x i ) = ax i + b; i = 1; : : : ; n: Bsp.: Grad Celsius in Grad Kelvin, Euro in Dollar. Standardisierung. f (x i ) = x i x sd x :

30 Logarithmus und Potenzen Transformation positiver Daten x i > 0. Logarithmieren: f (x i ) = log(x i ).! rechtsschiefe Daten symmetrisch machen. Allgemeiner: Box-Cox-Transformationen fur > 0: f (x i ) = x i 1 ; fur! 0: erhalte Logarithmus. fur 0 < < 1: rechtsschiefe Daten symmetrisch machen. fur 1 < : linksschiefe Daten symmetrisch machen.

31 Logarithmus und Potenzen Transformation positiver Daten x i > 0. Logarithmieren: f (x i ) = log(x i ).! rechtsschiefe Daten symmetrisch machen. Allgemeiner: Box-Cox-Transformationen fur > 0: f (x i ) = x i 1 ; fur! 0: erhalte Logarithmus. fur 0 < < 1: rechtsschiefe Daten symmetrisch machen. fur 1 < : linksschiefe Daten symmetrisch machen.

32 Visualisierung (Deutschland Daten) Histogram of BIP 1992 Boxplot of BIP 1992 Frequency BIP92 Histogram of log(bip 1992) Boxplot of log(bip 1992) Frequency lbip92

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Kreisdiagramm, Tortendiagramm

Kreisdiagramm, Tortendiagramm Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Statistik SS Deskriptive Statistik. Bernhard Spangl 1. Universität für Bodenkultur. March 1, 2012

Statistik SS Deskriptive Statistik. Bernhard Spangl 1. Universität für Bodenkultur. March 1, 2012 Statistik SS 2012 Deskriptive Statistik Bernhard Spangl 1 1 Institut für angewandte Statistik und EDV Universität für Bodenkultur March 1, 2012 B. Spangl (Universität für Bodenkultur) Statistik SS 2012

Mehr

Univariate explorative Datenanalyse in R

Univariate explorative Datenanalyse in R Univariate explorative Datenanalyse in R Achim Zeileis, Regina Tüchler 2006-10-03 1 Ein metrisches Merkmal Wir laden den Datensatz: R> load("statlab.rda") und machen die Variablen direkt verfügbar: R>

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine Universität Düsseldorf 14. Oktober 2010 Übungen Aufgabenblatt 1 wird heute Nachmittag auf das Weblog gestellt. Geben Sie die Lösungen dieser

Mehr

Der Mittelwert (arithmetisches Mittel)

Der Mittelwert (arithmetisches Mittel) Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten!

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten! Inhaltsverzeichnis Inhaltsverzeichnis VII 1 Erst mal locker bleiben: Es fängt ganz einfach an! 1 1.1 Subjektive Wahrscheinlichkeit - oder warum...?..... 4 1.2 Was Ethik mit Statistik zu tun hat - Pinocchio

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele

Teil VII. Deskriptive Statistik. Woche 5: Deskriptive Statistik. Arbeitsschritte der Datenanalyse. Lernziele Woche 5: Deskriptive Statistik Teil VII Patric Müller Deskriptive Statistik ETHZ WBL 17/19, 22.05.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Statistik und Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Im ersten Schritt werden wir die Daten nur beschreiben:

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Beispiele aus dem täglichen Leben Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische

Mehr

I.V. Methoden 2: Deskriptive Statistik WiSe 02/03

I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 Vorlesung am 04.11.2002 Figures won t lie, but liars will figure. General Charles H.Grosvenor Dr. Wolfgang Langer Institut für Soziologie Martin-Luther-Universität

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Das harmonische Mittel

Das harmonische Mittel Das harmonische Mittel x H := 1 1 n n 1 x i Das harmonische Mittel entspricht dem Mittel durch Transformation t 1 t Beispiel: x 1,..., x n Geschwindigkeiten, mit denen konstante Wegstrecken l zurückgelegt

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal

Mehr

Univariate explorative Datenanalyse in R

Univariate explorative Datenanalyse in R Univariate explorative Datenanalyse in R Achim Zeileis 2009-02-20 1 Grundlegende Befehle Zunächst laden wir den Datensatz (siehe auch Daten.pdf ) BBBClub R> load("bbbclub.rda") das den "data.frame" BBBClub

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge 4., aktualisierte Auflage STUDIUM 4y Springer Spektrum Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Ruediger.Braun@uni-duesseldorf.de Heinrich-Heine Universität Düsseldorf Mathematik für Biologen p. 1 Hinweise Internetseite zur Vorlesung: http://blog.ruediger-braun.net

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das auszuwertende Merkmal

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

1 Verteilungen metrischer Daten

1 Verteilungen metrischer Daten 1 Verteilungen metrischer Daten Um statistische Qualität zu kontrollieren und sicherzustellen, interessiert im Rahmen eines Forschungsvorhabens von der Testkonstruktion bis zur statistischen Analyse in

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 25. November 2009 Bernd

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

2 Häufigkeitsverteilungen

2 Häufigkeitsverteilungen 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation An n Einheiten ω 1,,ω n sei das Merkmal X beobachtet worden x 1 = X(ω 1 ),,x n = X(ω n ) Also

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Ferienkurse Mathematik Sommersemester 2009

Ferienkurse Mathematik Sommersemester 2009 Ferienkurse Mathematik Sommersemester 2009 Statistik: Grundlagen 1.Aufgabenblatt mit praktischen R-Aufgaben Aufgabe 1 Lesen Sie den Datensatz kid.weights aus dem Paket UsingR ein und lassen sie die Hilfeseite

Mehr

Stochastik und Statistik

Stochastik und Statistik Stochastik und Statistik p. 1/44 Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2012/2013 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher, Dr. Stan Lai Physikalisches Institut Westbau 2 OG Markus.Schumacher@physik.uni-freiburg.de

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Keine Panik vor Statistik!

Keine Panik vor Statistik! Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen.

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen. Department of Sport Science and Kinesiology Block 1 Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Gerda Strutzenberger Block I Mittwoch 15.2.2012 13:00 bis 14:50 Grundlagen, Skalenniveau

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

Eine Einführung in R: Deskriptive Statistiken und Graphiken

Eine Einführung in R: Deskriptive Statistiken und Graphiken Eine Einführung in R: Deskriptive Statistiken und Graphiken Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 27. Oktober 2011 Bernd

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Nachtrag zu Mittelwerten und Maßen der Dispersion

Nachtrag zu Mittelwerten und Maßen der Dispersion dur [ms] 40 60 80 100 120 140 160 Modul G.1 WS 06/07: Statistik 15.11.2006 1 Nachtrag zu Mittelwerten und Maßen der Dispersion Consonant duration Darstellungsmethode Boxplot Strich innerhalb der Boxen:

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Streuungsmaße. Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre Varianz (empirische) Varianz (Streuung) s 2 = 1 n

Streuungsmaße. Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre Varianz (empirische) Varianz (Streuung) s 2 = 1 n Streuungsmaße Diskrete Stetige Die angegebenen Maßzahlen sind empirisch, d.h. sie sind Schätzungen für die wahre (empirische) (Streuung) s 2 = 1 n (X i X) 2 n 1 i=1 s 2 n var(x) Warum Division durch (n

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten 10 4. Lageparameter 1

Mehr

STATISIK. LV Nr.: 0021 WS 2005/06 11.Oktober 2005

STATISIK. LV Nr.: 0021 WS 2005/06 11.Oktober 2005 STATISIK LV Nr.: 0021 WS 2005/06 11.Oktober 2005 1 Literatur Bleymüller, Gehlert, Gülicher: Statistik für Wirtschaftswissenschaftler, Verlag Vahlen Hartung: Statistik. Lehr- und Handbuch der angewandten

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr