Bivariate Verteilungen [bivariate data]

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bivariate Verteilungen [bivariate data]"

Transkript

1 Bivariate Verteilungen [bivariate data] Zwei Variablen X, Y werden gemeinsam betrachtet, d.h. an jedem Objekt i werden zwei Merkmale beobachtet. Beobachtungswerte sind Paare/Kombinationen von Merkmalsausprägungen (x i, y i ). Beispiele: Alter Körpergewicht berufliche Qualifikation Einkommen Wahlabsicht der selben Person vor und nach einer Diskussion der SpitzenkanditatInnen Beide Variablen können unterschiedliches Skalenniveau haben; dies ist bei der Auswertung zu beachten. 1

2 Fragestellungen: Zusammenhang: ja / nein? Stärke eines evtl. vorhandenen Zusammenhangs Richtung oder Typ eines evtl. vorliegenden Zusammenhangs Antworten sind jeweils nur für spezielle Situationen möglich. Kausalität muss in der Regel die Fachwissenschaft klären. Tabellen, grafische Methoden und ein großes Spektrum von Maßzahlen (Koeffizienten) und Modellen wurden zur Bewertung von Zusammenhängen entwickelt. 2

3 Darstellung bivariater Verteilungen Urliste für zwei Variablen: Versuchsperson Ausprägung von Merkmal (Objekt) X Y 1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3

4 Beispiel (Studium): In einer Befragung von StudentInnen wurden das Geschlecht und eine Selbstbewertung der psychischen Lage erfasst (studium.sav): X Variable: sex Geschlecht (nominal, dichotom) Y Variable: psyche Selbstbewertung der psychischen Lage (ordinal) Zunächst Variablen einzeln untersuchen (univariate Statistik) und dann gemeinsam analysieren (bivariate Statistik). Frage: Besteht ein Zusammenhang zwischen dem Geschlecht (Einflussgröße) und der Bewertung der psychischen Lage (abhängige Größe)? Gibt es eine Kausalstruktur? 4

5 Kontingenztafel [contingency table] (Kreuztabelle, Kreuztafel) Darstellung der absoluten Häufigkeiten für alle möglichen Beobachtungspaare (bei metrischen Variablen in der Regel zunächst Klasseneinteilung vornehmen) Merkmal X mit k Ausprägungen (Kategorien) a 1,..., a k Merkmal Y mit l Ausprägungen (Kategorien) b 1,..., b l h ij bezeichnet die absolute Häufigkeit des gleichzeitigen Auftretens der Ausprägung a i und der Ausprägung b j, also des Paares (a i, b j ). Die Kontingenztafel ist die Darstellung der gemeinsamen Häufigkeitsverteilung der Merkmale X und Y, d.h. der empirischen Verteilung des bivariaten Merkmales (X, Y ). 5

6 Absolute Häufigkeiten X Y b 1... b j... b l a 1 h h 1j... h 1l h a i h i1... h ij... h il h i..... a k h k1... h kj... h kl h k h 1... h j... h l h mit h i := l h ij h j := j=1 k h ij h := i=1 k l h ij = n i=1 j=1 6

7 Es gilt h = k h i = l h j = k l h ij = n i=1 j=1 i=1 j=1 Bezeichnungen: (h 11,...,h 1l, h 21,......,h k1,...,h kl ) heißt gemeinsame absolute Häufigkeitsverteilung von (X, Y ). h 1,..., h k heißen absolute Randhäufigkeiten, (h 1,..., h k ) heißt absolute Randverteilung von X. h 1,..., h l heißen absolute Randhäufigkeiten, (h 1,..., h l ) heißt absolute Randverteilung von Y. Die absolute Randverteilung von X bzw. Y entspricht der univariaten absoluten Häufigkeitsverteilung von X bzw. Y. 7

8 Relative Häufigkeiten f ij := h ij n f i := h i n f j := h j n Es gilt f i = l f ij f j = j=1 k f ij f = i=1 k l f ij = 1 i=1 j=1 Bezeichnungen: (f 1,..., f k ) heißt (relative) Randverteilung von X. (f 1,..., f l ) heißt (relative) Randverteilung von Y. 8

9 Exkurs: Bedingte Verteilungen ( h1j,..., h ij,..., h ) kj h j h j h j heißt bedingte Verteilung von X unter Y = b j. ( hi1,..., h ij,..., h ) il h i h i h i heißt bedingte Verteilung von Y unter X = a i. In SPSS werden die bedingten Verteilungen (in %) als Spalten- bzw. Zeilenprozente bezeichnet. 9

10 Grafische Veranschaulichung gestapeltes [stacked bar chart] oder gruppiertes Balkendiagramm für die absoluten oder relativen gemeinsamen bzw. bedingten Häufigkeiten (Prozentsätze) Eine Prozentuierung sollte bei klarer Kausalstruktur immer in Richtung auf die vermuteten Einflussgröße erfolgen ( Vergleich der Verteilungen der abhängigen Größe für verschiedene Ausprägungen der Einflussgröße! ). bei metrischen Variablen: Erst Klasseneinteilung vornehmen (sonst Tabelle unsinnig), Informationsverlust durch Vergröberung beachten. 3 D Balkendiagramm 10

11 Bei metrischen Einzeldaten: Streudiagramm (Scatterplot, Punktwolke): Die Beobachtungspaare (x i, y i ), i = 1,..., n, werden als Punkte mit den Koordinaten x i und y i in der Ebene dargestellt. Erkennen von Strukturen z.b. das Erahnen funktionaler Abhängigkeiten, z.b. y = ax + b y = ax 2 + bx + c y = a sin(bx) + c y = f(x) Die lineare Abhängigkeit (metrischer Variablen) wird als Korrelation bezeichnet (Unterschied zur Umgangssprache). 11

12 Beispiele: (a) Variablen extrem korreliert, Korrelation positiv (b) Variablen stark korreliert, Korrelation positiv (c) Variablen schwach korreliert, Korrelation positiv (d) Variablen nahezu unkorreliert (e) Variablen negativ korreliert (f) Variablen extrem korreliert, Korrelation negativ (g) Variablen nahezu unkorreliert, jedoch starker (perfekter) funktionaler Zusammenhang Quantifizierung der Stärke der Korrelation Korrelationskoeffizient (siehe nächster Abschnitt) 12

13 Abhängigkeitsmaße bivariater Verteilungen Der Zusammenhang zwischen zwei Variablen/Merkmalen soll durch (numerische) Kenngrößen beschrieben werden. Es gibt ein breites Spektrum solcher Kenngrößen für verschiedene Skalenniveaus der beteiligten Merkmale: nominal z.b. Kontingenzkoeffizient ordinal z.b. Rangkorrelationskoeffizient metrisch z.b. Korrelationskoeffizient (Pearson) Unterschiede in der Qualität der Aussagen über mögliche Zusammenhänge: abhängig, monoton abhängig, linear abhängig gemischte Skalenniveaus Literatur 13

14 Nominale Daten Grundlage: absolute Häufigkeiten h ij für das Auftreten der Merkmalskombination (a i, b j ) zweier Merkmale X und Y ( Kontingenztafel, Kreuztabelle) Beispiel (Lehrvertrag): Zusammenhang zwischen der Spezialisierung im Abitur X (naturwiss., sprachlich, Spezialgymnasium) und der Chance für Lehrvertrag als Bankkauffrau/-mann Y (sofort angenommen, sofort abgelehnt, Warteposition) 14

15 Zugehörige Kreuztabelle in allgemeiner Form: Y angen. warten abgel. naturw. h 11 h 12 h 13 h 1 X sprachl. h 21 h 22 h 23 h 2 spezial h 31 h 32 h 33 h 3 h 1 h 2 h 3 h = n 15

16 Annahme: Nur die Randverteilungen seien bekannt: 7 angenommen, 21 Warteposition, 14 abgelehnt (1:3:2) 12 naturwiss., 24 sprachlich, 6 spezial (2:4:1) Y angen. warten abgel. naturw. h 11 h 12 h X sprachl. h 21 h 22 h spezial h 31 h 32 h

17 Angenommen, es besteht kein Zusammenhang zwischen X und Y, dann müssten sich diese Verhältnisse in jeder Zeile (1:3:2) bzw. Spalte (2:4:1) widerspiegeln. Die bedingten Verteilungen von Y unter den verschiedenen Ausprägungen von X sind dann gleich und also unabhängig von X und entsprechen alle der (unbedingten) Randverteilung von Y. Die folgende Tabelle zeigt die im Falle der Unabhängigkeit zu erwartenden Zellhäufigkeiten, die sich aus den vorgegebenen Randverteilungen ergeben: 17

18 Y angen. warten abgel. rel. Randh. naturw /7 X sprachl /7 spezial / rel. Randh. 1/6 3/6 2/6 1 18

19 Unabhängigkeit (bei vorgegebenen Randverteilungen) bedeutet demnach: Der Inhalt h ij einer Zelle ist jeweils proportional zu den relativen Randhäufigkeiten und zur Gesamtzahl der Fälle: 6 = =

20 Bestimmen der bei Unabhängigkeit zu erwartenden Häufigkeiten (erwartete Häufigkeiten, Idealwerte bei Unabhängigkeit) h ij : h ij := h i h j n = h i n h j n n Die Tabelle mit den Werten h ij heißt Indifferenztabelle (weil die bedingten Verteilungen nicht differieren). Vergleiche mit den beobachteten Häufigkeiten h ij liefern Hinweise auf evtl. vorliegende Abhängigkeiten unterschiedlicher Stärke. Bei (näherungsweiser) Gleichheit der beobachteten und erwarteten Häufigkeiten: Merkmale X und Y sind (näherungsweise) empirisch unabhängig. 20

21 Achtung: Auch für in der Grundgesamtheit offensichtlich unabhängige Merkmale können sich bei der Erhebung von Daten (Ziehung einer Stichprobe) Kreuztabellen ergeben, die auf Abhängigkeiten hindeuten! 21

22 Maßzahl für die Abweichung von der Unabhängigkeit unter Einbeziehung der Differenzen h ij h ij : χ 2 := i,j (h ij h ij ) 2 h ij chi Quadrat Summe über alle i, j Abstand der beobachteten Kreuztabelle von der zugehörigen Indifferenztabelle χ 2 ist sehr gut für den Nachweis der Signifikanz einer beobachteten Abhängigkeit geeignet ( schließende Statistik). Die Größe χ 2 - also der entsprechende Abstand - lässt sich aber oft nur schwer interpretieren. 22

23 Kontingenzkoeffizient [contingency coefficient] χ C := 2 χ 2 + n C = 0: empirische Unabhängigkeit Weitere Koeffizienten auf der Basis von χ 2 Literatur bzw. Statistik II 23

24 Beispiel (Studium): Betrachtung von beobachteten und (bei Unabhängigkeit) erwarteten Häufigkeiten (absolut oder prozentual) grafische Methode: gestapelte Balkendiagramme zum Vergleich der Antwortverteilung von Frauen und Männern (also der bedingten Verteilungen) Empirische Unabhängigkeit würde bedeuten: Gleiche Verteilung der Selbsteinstufung der psychischen Lage bei männlichen und weiblichen Befragten; also Balken sehen gleich aus für beide Geschlechter auch möglich: gruppierte Balkendiagramme 24

25 Metrische Daten Gegeben: n Beobachtungspaare (x i, y i ), i = 1, 2,..., n, zweier Merkmale X und Y Kovarianz: cov(x, Y ) := 1 n 1 n i=1 (x i x)(y i ȳ) Interpretation: Gehören zu großen/kleinen x i häufig große/kleine (kleine/große) y i, so ist das Vorzeichen von (x i x)(y i ȳ) häufig + ( ) und die Summe wird groß (klein); bei annähernder Unabhängigkeit ergibt sich ein Wert nahe 0. Nachteil: cov(x, Y ) ist von der Skaleneinteilung bei der Messung der Merkmale abhängig (z.b. Euro oder Dollar, C oder F) 25

26 Rechenformel: cov(x, Y ) = = 1 n 1 1 n 1 ( n i=1 ( n i=1 x i y i x i y i ) n xȳ ( n 1 n i=1 x i ) ( n i=1 y i )) 26

27 Korrelationskoeffizient (nach Pearson) [Pearson s product moment correlation coefficient]: ( X X r XY := cov, Y Y ) = cov(x, Y ) s X s Y s X s Y Der Korrelationskoeffizient ist durch die Standardisierung unabhängig von der Maßeinheit, und es gilt 1 r XY 1 27

28 Rechenformel: r XY = = ( n i=1 n n (x i x)(y i ȳ) i=1 ) ( n ) (x i x) 2 (y i ȳ) 2 i=1 n x i y i n xȳ i=1 x 2 i n x 2 i=1 i=1 n yi 2 nȳ 2 28

29 Besteht zwischen den Merkmalen X und Y ein deterministischer linearer Zusammenhang y i = a + b x i, b 0, i = 1,..., n dann gilt r XY = 1, wenn b > 0 1, wenn b < 0 und umgekehrt. r XY r XY = 0: empirische Unkorreliertheit ist nur ein Maß für die Stärke eines linearen Zusammenhanges und liefert nur einen Anhaltspunkt, ob die Bestimmung einer Ausgleichsgerade sinnvoll ist (Streudiagramm ansehen; Regressionsanalyse). 29

30 Ordinale Daten Gegeben: n Beobachtungspaare (x i, y i ), i = 1, 2,..., n, zweier Merkmale X und Y. Annahme: Für jedes Merkmal tritt keine Beobachtung mehrfach auf (keine Bindungen). Rangkorrelationskoeffizient (nach Spearman) [Spearman rank correlation coefficient]: R XY := 1 6 n(n 2 1) n i=1 d 2 i mit d i :=Rg(x i ) Rg(y i ) (Differenz der Ränge). R XY ist ein Maß für die Stärke eines monotonen (gleichläufigen oder gegenläufigen) Zusammenhanges; d.h. X wächst oder fällt gleichzeitig mit Y. 30

31 Es gilt 1 R XY 1 Summe klein bei etwa gleichlaufenden Reihen (d i 0, also R XY 1), Summe groß bei gegenläufigen Reihen (Normierung so, dass dann R XY 1). R XY stimmt mit dem Korrelationskoeffizienten nach Pearson, berechnet für (Rg(x i ),Rg(y i )), i = 1,..., n, überein; R XY erfasst also die lineare Abhängigkeit der Folgen der Ränge der Daten und damit bei eigentlich metrischen Daten die monotone Abhängigkeit der Originaldaten. Wenn Rangplätze mehrfach auftreten (Bindungen): korrigierter Rangkorrelationskoeffizient Literatur 31

32 Hinweis: Bei sehr vielen Bindungen die häufig bei Merkmalen mit nur wenigen möglichen verschiedenen Ausprägungen zu beobachten sind sollten andere Kenngrößen verwendet werden. Literatur bzw. Statistik II 32

33 Beispiel (Soziale Position): Zusammenhang zwischen Leistung (X) und sozialer Position (Y ) in der Gruppe (n=6) i Rg(x i ) Rg(y i ) d i d 2 i Summe (0) 8 33

34 Damit erhalten wir R XY = 1 = n(n 2 1) n i=1 6 6 (36 1) 8 d 2 i Es besteht also ein ausgeprägter gleichläufiger Zusammenhang zwischen der Bewertung der Leistung und der Bewertung der sozialen Position in der untersuchten Gruppe. 34

35 Andererseits erhalten wir i Rg(x i ) Rg(y i ) Rg(x i ) 2 Rg(y i ) 2 Rg(x i ) Rg(y i ) Summe

36 Daraus berechnen wir den Korrelationskoeffizient nach Pearson von (Rg(x i ),Rg(y i )) (also nicht aus den Originaldaten): r Rg(X)Rg(Y ) = 1 (87 1 ) (91 1 ) (91 1 ) = 1 (87 1 ) (91 1 ) =

37 Hinweis: Bei Kreuztabellen kommen auch PRE Maße zum Einsatz. PRE steht für proportional reduction in error. Derartige Maße bewerten die Reduktion von Fehlern bei Vorhersagen. Verglichen wird z.b. die Vorhersage (der Verteilung) der abhängigen Größe ohne Kenntnis (der Verteilung) der Ausprägungen der Einflussgröße mit einer Vorhersage bei Kenntniss (der Verteilung) der Einflussgröße. Derartige Kenngrößen reflektieren also direkt die Reduktion eines Fehlerprozentsatzes und lassen sich entsprechend gut interpretieren ( Literatur bzw. Statistik II, in SPSS: Kreuztabellen Statistiken z.b. Lambda und Unsicherheitskoeffizient). 37

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)?

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)? 3 Beschreibende Statistik 3.1. Daten, Datentypen, Skalen Daten Datum, Daten (data) das Gegebene Fragen über Daten Datenerhebung: Was wurde gemessen, erfragt? Warum? Wie wurden die Daten erhalten? Versuchsplanung:

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten: Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen

Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen 5.1 Darstellung der Verteilung zweidimensionaler Merkmale 5.2 Maßzahlen für den Zusammenhang zweier nominaler Merkmale 5.3 Maßzahlen

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 11 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 5. Januar 2009 1 / 22 Online-Materialien Die Materialien

Mehr

Bivariate Verteilungen

Bivariate Verteilungen Bivariate Verteilungen Tabellarische Darstellung: Bivariate Tabellen entstehen durch Kreuztabulation zweier Variablen. Beispiel: X Y Student(in) Herkunft Fakultät 0001 Europa Jura 000 Nicht-Europa Medizin

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Einführung in die sozialwissenschaftliche Statistik

Einführung in die sozialwissenschaftliche Statistik Einführung in die sozialwissenschaftliche Statistik Sitzung 4 Bivariate Deskription Heinz Leitgöb in Vertretung von Katrin Auspurg Sommersemester 2015 04.05.2015 Überblick 1. Kontingenztabellen 2. Assoziationsmaße

Mehr

5 Assoziationsmessung in Kontingenztafeln

5 Assoziationsmessung in Kontingenztafeln 5 Assoziationsmessung in Kontingenztafeln 51 Multivariate Merkmale 51 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt zur Beschreibung

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Statistik I. Sommersemester 2009

Statistik I. Sommersemester 2009 I Sommersemester 2009 I χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay: Kapitel 8.1-8.4 Gehring/Weins: Kapitel 7.1 Schumann:

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Statistik I. Sommersemester 2009

Statistik I. Sommersemester 2009 I Sommersemester 2009 I Wiederholung/Einführung χ 2 =?!? I Wiederholung/Einführung χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay:

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Eigene MC-Fragen (Teil II) "Kap. 9 Zusammenhangsmaße

Eigene MC-Fragen (Teil II) Kap. 9 Zusammenhangsmaße Eigene MC-Fragen (Teil II) "Kap. 9 Zusammenhangsmaße 1. Kreuze die richtige Aussage an! positiv sind, ist r stets identisch mit s xy. negativ sind, ist r stets identisch mit s xy. positiv sind, ist das

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 04.06.2013 Zweidimensionale Datensätze 1. Kontingenztabelle

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Voraussetzung für statistische Auswertung: jeder Fall besitzt in bezug auf jedes Merkmal genau eine Ausprägung

Voraussetzung für statistische Auswertung: jeder Fall besitzt in bezug auf jedes Merkmal genau eine Ausprägung Rohdaten Urliste oder Rohdaten sind die auszuwertenden Daten in der Form, wie sie nach der Datenerhebung vorliegen. Dimensionen der Urliste sind die Fälle, Merkmale und ihre Ausprägungen. Voraussetzung

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

6. Multivariate Verfahren Übersicht

6. Multivariate Verfahren Übersicht 6. Multivariate Verfahren 6. Multivariate Verfahren Übersicht 6.1 Korrelation und Unabhängigkeit 6.2 Lineare Regression 6.3 Nichtlineare Regression 6.4 Nichtparametrische Regression 6.5 Logistische Regression

Mehr

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Zusammenhangsmaße II

Zusammenhangsmaße II Sommersemester 2009 Wiederholung/ Eine nominale und eine intervallskalierte Variable χ 2 =?!? Übung von Simone Reutzel Heute im HS1, altes ReWi-Haus Zum Nachlesen Agresti/Finlay: Kapitel 8.5, 9.4 Gehring/Weins:

Mehr

V a r i a b l e X x 1 x 2 x 3 x 4 Σ y y y Σ Variable Y. V a r i a b l e X

V a r i a b l e X x 1 x 2 x 3 x 4 Σ y y y Σ Variable Y. V a r i a b l e X Ausgangsüberlegung: Verschiedene Kontingenztabellen bei gleicher Randverteilung und gleichem Stichprobenumfang n sind möglich. Beispiel: Variable Y V a r i a b l e X x 1 x x 3 x 4 Σ y 1 60 60 y 0 0 y 3

Mehr

Lösungen zur Klausur zur Statistik Übung am

Lösungen zur Klausur zur Statistik Übung am Lösungen zur Klausur zur Statistik Übung am 28.06.2013 Fabian Kleine Staatswissenschaftliche Fakultät Aufgabe 1 Gegeben sei die folgende geordneten Urliste des Merkmals Y. 30 Punkte Y : 5 5 5 5 10 10 10

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Kreuztabellenanalyse. bedingte Häufigkeiten

Kreuztabellenanalyse. bedingte Häufigkeiten Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse bedingte Häufigkeiten 07. Dezember 2007 Michael Tiemann, Bundesinstitut für Berufsbildung,

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

5 Beschreibung und Analyse empirischer Zusammenhänge

5 Beschreibung und Analyse empirischer Zusammenhänge 5 Beschreibung und Analyse empirischer Zusammenhänge 132 5 Beschreibung und Analyse empirischer Zusammenhänge 5.1 Zusammenhänge zwischen kategorialen Merkmalen 137 5.1.1 Kontingenztabellen 137 Verteilungen

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Biometrieübung 11 Kontingenztafeln

Biometrieübung 11 Kontingenztafeln Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es systematische Zusammenhänge oder Abhängigkeiten

Mehr

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

2. Zusammenhangsmaße

2. Zusammenhangsmaße 2. Zusammenhangsmaße Signifikante χ²-werte von Kreuztabellen weisen auf die Existenz von Zusammenhängen zwischen den zwei untersuchten Variablen X und Y hin. Für die Interpretation interessieren jedoch

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Bivariate Statistik: Kreuztabelle

Bivariate Statistik: Kreuztabelle Bivariate Statistik: Kreuztabelle Beispiel 1: Im ALLBUS wurde u.a. nach dem Nationalstolz und nach dem Gefühl der Überfremdung gefragt: Würden Sie sagen, dass Sie sehr stolz, ziemlich stolz, nicht sehr

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

Statistik ohne Angst vor Formeln

Statistik ohne Angst vor Formeln Statistik ohne Angst vor Formeln Das Studienbuch für Wirtschaftsund Sozialwissenschaftler 4., aktualisierte Auflage Andreas Quatember 1.3 Kennzahlen statistischer Verteilungen 1.3.4 Kennzahlen des statistischen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch): Leseprobe Michael Sachs Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen ISBN (Buch): 978-3-446-43797-5 ISBN (E-Book): 978-3-446-43732-6 Weitere Informationen oder Bestellungen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

3.1 Zusammenhang zwischen einem qualitativen und einem quantitativen Merkmal

3.1 Zusammenhang zwischen einem qualitativen und einem quantitativen Merkmal Kapitel 3 Bivariate Analyse In Kapitel 2 haben wir gesehen, wie man ein Merkmal auswertet. Mit Hilfe statistischer Verfahren kann man aber auch untersuchen, ob zwischen mehreren Merkmalen Abhängigkeiten

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

3 Bivariate Deskription und Exploration von Daten

3 Bivariate Deskription und Exploration von Daten 3 Bivariate Deskription und Exploration von Daten In diesem Kapitel werden Methoden zur Darstellung der gemeinsamen Verteilung von zwei (oder mehreren) verschiedenen Merkmalen behandelt. Von besonderer

Mehr

Name Vorname Matrikelnummer Unterschrift

Name Vorname Matrikelnummer Unterschrift Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am 26.10.2007 Gruppe

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Übungsblatt 3: Bivariate Deskription I (Sitzung 4)

Übungsblatt 3: Bivariate Deskription I (Sitzung 4) 1 Übungsblatt 3: Bivariate Deskription I (Sitzung 4) Aufgabe 1 Eine Kreuztabelle beinhaltet unterschiedliche Verteilungen. a) Geben Sie an, wie diese Verteilungen heißen und was sie beinhalten. b) Welche

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 1. Ziel der Kreuztabellierung 2. Übersicht CROSSTABS - Syntax 3. 2x2 Kreuztabellen Überblick

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit 121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Es können von den Antwortmöglichkeiten alle, mehrere, eine oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Eigene MC-Fragen SPSS

Eigene MC-Fragen SPSS Eigene MC-Fragen SPSS 1. Welche Spalte ist in der Variablenansicht unbedingt festzulegen? [a] Variablenlabel [b] Skala [c] Name [d] Typ [e] Wertelabel 2. Wie heißt das Standardfenster von SPSS? [a] Dialogfenster

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrscheinlichkeitsrechnung und Statistik Für Ingenieurstudenten an Fachhochschulen von Michael Sachs erweitert Wahrscheinlichkeitsrechnung und Statistik Sachs schnell und portofrei erhältlich bei beck-shopde

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei gleichzeitiger Beobachtung von 2 Merkmalen für jeden Merkmalsträger stellt sich auch im Bereich der deskriptiven

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

8. Kreuztabellenanalyse

8. Kreuztabellenanalyse 8. Kreuztabellenanalyse In den bislang dargestellten Beispielen wurde in der Regel der Mittelwert eines Merkmals ausgewertet. Meistens ist man aber nicht nur an der Verteilung eines einzigen Merkmals oder

Mehr

Gemeinsame Wahrscheinlichkeitsverteilungen

Gemeinsame Wahrscheinlichkeitsverteilungen Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen

Mehr