Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007"

Transkript

1 Der Laser Florentin Reiter 23. Mai 2007

2 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur Lichtverstärkung Realisierung einer einzigartigen monochromatischen Lichtquelle, dem Laser ( Light Amplification by Stimulated Emission of Radiation )

3 Zugrunde liegendes Modell: Zwei-Energieniveau-Schema mit E U und E L Dipolübergang mit ω = E U E L gültig für Atome, Moleküle u. v. m.

4 Übergangswahrscheinlichkeit des Abregungsprozesses: p(u L) = A UL + B UL W (ω) A UL : Wahrscheinlichkeit für spontane Emission (pro Zeit) ohne jede Einwirkung von Licht B UL : Einstein-Koeffizient für stimulierte (induzierte) Emission Prozess proportional zur Intensität des einfallenden Lichtes W (ω)

5 Absorption Einführung Übergangswahrscheinlichkeit des Anregungsprozesses: p(l U) = B LU W (ω) B LU : Einstein-Koeffizient für Absorption ebenfalls proportional zur Intensität des einfallenden Lichtes W (ω)

6 Entartung Einführung Für nicht entartete Eigenzustände E U und E L gilt B UL = B LU und für entartete g U B UL = g L B LU im Folgenden aber Beschreibung ohne Entartung zudem: B UL = B und A UL = A

7 Leistung bei Emission und Absorption Für N L Atome im unteren Niveau lautet die absorbierte Leistung pro Zeit: P abs = ω B W (ω) N L Für N U Atome im oberen Niveau lautet die emittierte Leistung pro Zeit: P emi = ω [A + B W (ω)] N U

8 Besetzung der Niveaus Befindet sich das System bei T im thermischen Gleichgewicht ergibt sich mit der Boltzmann-Verteilung N U = N L exp( ω k B T ), also N U < N L (wichtig!) Gleichgewicht zwischen Atomen und Schwarzkörperstrahlung W (ω) = W th (ω) Emittierte und absorbierte Leistung sind gleich P abs = P emi Man erhält W th (ω) = A B N U N L N U Verwenden der Verteilung: W th (ω) = A B 1 exp( ω k B T ) 1

9 Vergleich mit der Störungstheorie Wahrscheinlichkeit für Emission eines Photons p(u L) = (n + 1) A Wahrscheinlichkeit für Absorption eines Photons p(l U) = n A Energiedichte der Strahlung für im Schnitt n Photonen pro Mode W (ω) = m(ω) n ω

10 Vergleich mit der Störungstheorie Einsetzen für n ergibt p(u L) = p(l U) = A W (ω) + A m(ω) ω A W (ω) m(ω) ω Vergleich mit den zu Beginn aufgestellten A UL und B UL B = A m(ω) ω Verwenden der Modendichte A ω3 = m(ω) ω = B π 2 c 3 Einsetzen in W th = A 1 ergibt B exp( ω ) 1 k B T W th (ω) = ω3 π 2 c 3 1 exp( ω k B T ) 1

11 Deutung des Ergebnisses Es ergibt sich das Plancksche Strahlungsgesetz W th (ω) = ω3 π 2 c 3 1 exp( ω k B T ) 1 Entsteht sonst aus der Forderung, dass Photonen einer kanonischen Verteilung für Bosonen folgen Entsteht hier durch Annahme, dass Photonen sich mit Boltzmann-verteilten Atomen im Gleichgewicht befinden Dies bestätigt nicht nur Quantenhypothese, sondern auch das Vorhandensein von spontaner und stimulierter Emission bei angeregten Atomen

12 Weitere Interpretationen Absorption und stimulierte Emission nur in der einen Mode ω des einfallenden Lichtes spontane Emission dagegen in allen m(ω)dω Moden innerhalb von dω unter Vernachlässigung aller anderen Niveaus: nur monochromatisches Licht der Frequenz ω für andere Frequenzen keine Interaktion mit den Atomen (A = B = 0) Atom-System ist also sonst perfekt transparent alles in allem: Lichtverstärkung machbar!... selbst für eine kontinuierliche Verteilung von ω

13 Lichtverstärkung durch stimulierte Emission nur möglich bei Besetzungsinversion (N U > N L ) Pumpen nötig Fabry-Perot-Resonator schließt Energie ein, geringe Auskopplung selektiert eine Frequenz und eine Richtung

14 Mehr-Niveau-Systeme

15 Formulierung Der Laser im stationären Zustand Ziel: Emissionscharakteristik des Lasers Man weiß: diese ist bedingt durch Interaktion zwischen Licht und Atomen Die Theorie der Ratengleichungen behandelt... die Atome quantenmechanisch... das Licht als Energie ohne Phase und beschreibt so zeitliche Veränderung der atomaren Population, der Lichtenergie und der Photonenzahl während des Laserbetriebs

16 Ratengleichungen des Lasers Formulierung Der Laser im stationären Zustand Atome des Lasermediums im Feld der Energiedichte W Laserübergang E 2 E 1 mit der Frequenz ω dn 2 dt dn 1 dt = Φ 2 γ 2 N 2 (N 2 N 1 ) B(ω) W = Φ 1 γ 1 N 1 + (N 2 N 1 ) B(ω) W Φ 1,2 : Anregungsraten, γ 1,2 : Relaxationsraten Optische Energiedichte des Resonators dw dt = 2κ W + ω (N 2 N 1 ) B(ω) W Man erhält die drei Grundgleichungen der Theorie der Ratengleichungen

17 Besetzungsinversion Formulierung Der Laser im stationären Zustand Besetzung ohne Laserleistung W = 0 (Pumpen) N (0) 2 = Φ 2 γ 2 und N (0) 1 = Φ 1 γ 1 Für thermisches Gleichgewicht nur thermische Anregung Verhältnis der thermischen Anregung und der Relaxation ( Φ 2 γ 2 ) T exp( E 2 k B T ), ( Φ 1 γ 1 ) T exp( E 1 k B T ) Verhältnis der atomaren Besetzung N 2 N 1 = exp( E 2 E 1 k B T ) Besetzungsinversion N (0) N (0) 2 N (0) 1 Bedingung zum Anschwingen des Lasers ( dw = 0) dt N th = 2κ ω B(ω)

18 Formulierung Der Laser im stationären Zustand Der Laser im stationären Zustand Ratengleichungen dn 2 dt dn 1 dt dw dt = 0 = Φ 2 γ 2 N 2 (N 2 N 1 ) B(ω) W = 0 = Φ 1 γ 1 N 1 + (N 2 N 1 ) B(ω) W = 0 = 2κ W + ω (N 2 N 1 ) B(ω) W Man erhält N (0) N 2τ N B(ω) W = 0 mit N = N 2 N 1 und τ = 1 2 ( 1 γ γ 1 ) N Umstellen ergibt N = (0) 1+2τ B(ω) W Wiederum Schwelle bei N = 2κ = N ω B(ω) th

19 Formulierung Der Laser im stationären Zustand Der Laser im stationären Zustand Anschwingen erfolgt bei N th Einsetzen ergibt optische Energiedichte W s W s = ω ( N (0) N (0) 4κτ th ) = 1 ( N(0) 1) 2τB(ω) N (0) th

20 Semiklassische Beschreibung Quantenmechanische Beschreibung Nachteile der Ratengleichungen und Abhilfe Vernachlässigung der Phase des elektromagnetischen Feldes verhindert Beschreibung vieler Phänomene der Laserschwingung (z. B. Multi-Moden-Schwingung) Abhilfe: Richtige Semiklassische Theorie unter Berücksichtigung der Phase des elektromagnetischen Feldes Betrachtung nicht mehr nur der Wahrscheinlichkeit stimulierter Emission, sondern auch kohärenter, nichtlinearer Wechselwirkung von Atomen und Licht mit Hilfe der zeitabhängigen Störungstheorie

21 Semiklassische Theorie Semiklassische Beschreibung Quantenmechanische Beschreibung Vorgehen: Formulierung von EM-Wellen passend zu Schwingungsmoden mit Polarisation; Maxwellgleichungen ergeben Amplitude und Frequenz Es ergeben sich Grundgleichungen der Semiklassik Beide semiklassischen Herangehensweisen konsistent: Annahme nur einer Schwingungsmode führt auf das selbe Ergebnis wie die Ratengleichungen Darüber hinaus weitere Erkenntnisse: Multi-Moden-Schwingungen

22 Semiklassische Beschreibung Quantenmechanische Beschreibung Quantenmechanische Beschreibung Semiklassik vernachlässigt Fluktuation des elektromagnetischen Feldes und daher Effekte wie Laser Noise und bietet keine Diskussion von Photonenstatistik und Korrelationen höherer Ordnung Vorgehen: quantisieren des Strahlungsfeldes quantenmechanische Beschreibung berücksichtigt Wechselwirkungen zwischen Laser und Pumpquelle, sowie Kopplung des Lasers mit der Außenwelt Letztenendes wird der Laser als offenes und nichtlineares Nicht-Gleichgewichtssystem beschrieben Quantenmechanische Beschreibung ermöglicht Ansätze, die in der Semiklassik fehlende Elemente in guter Übereinstimmung mit dem Experiment beschreiben

23 Quellen & Literatur Semiklassische Beschreibung Quantenmechanische Beschreibung K. Shimoda, Introduction to Laser Physics, Springer (1984) K. Shimoda, T. C. Wang, C. H. Townes: Phys. Rev. 102, 1308 (1956) M. O. Scully & M. S. Zubairy, Quantum Optics, Cambridge University Press (1997)

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation Light Amplification by Stimulated Emission of Radiation Licht: a) Elektromagnetische Welle E = E 0 sin(-kx) k = 2 p/l E = E 0 sin(t) = 2 p n = 2 p/t c = l n c = Lichtgeschwindigkeit = 2,99792458 10 8 m/s

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Vortragsfolien.

Vortragsfolien. Vortragsfolien http://llp.ilt.fhg.de/physikwoche.htm Physikwoche für Schüler Wie entsteht Laserlicht? H.-J. Kull, RWTH Aachen Aufbau eines Lasers Aktives Medium Gas, Festkörper, Plasma, Elektronenstrahl

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag

Weber/Herziger LASER. Grundlagen und Anwendungen. Fachbereich S Hochschule Darmstad«Hochschulstraßa 2. 1J2QOI Physik Verlag Weber/Herziger LASER Grundlagen und Anwendungen Fachbereich S Hochschule Darmstad«Hochschulstraßa 2 1J2QOI Physik Verlag Inhaltsverzeichnis 1. licht und Atome 1 1.1. Welleneigenschaften des Lichtes 1 1.1.1.

Mehr

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Laserdiode & Faraday-Effekt (V39)

Laserdiode & Faraday-Effekt (V39) Laserdiode & Faraday-Effekt (V39) 1. Laser Prinzip und Eigenschaften Optisches Pumpen Laserverstärkung Lasermoden und Selektion 2. Halbleiter-Laser pn-übergang Realisierung Kennlinien 3. Faradayeffekt

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

Von der Kerze zum Laser: Die Physik der Lichtquanten

Von der Kerze zum Laser: Die Physik der Lichtquanten Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie

Grundlagen. Erzeugung ultrakurzer Lichtpulse Bedeutung der spektralen Bandbreite Lasermoden und Modenkopplung. Optische Ultrakurzpuls Technologie Grundlagen Vorlesung basiert auf Material von Prof. Rick Trebino (Georgia Institute of Technology, School of Physics) http://www.physics.gatech.edu/gcuo/lectures/index.html Interaktive Plattform Femto-Welt

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der

Mehr

9. Theodore H. Maiman und der Laser

9. Theodore H. Maiman und der Laser 9. Theodore H. Maiman und der Laser Neben der Entdeckung der Spaltung des Atomkerns haben von allen physikalischen Entdeckungen und Erfindungen des 20. Jahrhunderts mit Sicherheit der Transistor und der

Mehr

Spektrale Eigenschaften von Halbleiterlasern (SPEK)

Spektrale Eigenschaften von Halbleiterlasern (SPEK) C! C SPEK/ Spektrale Eigenschaften von Halbleiterlasern (SPEK) In diesem Kapitel werden die spektralen Eigenschaften von Halbleiterlasern behandelt. Die Spektren von index- und gewinngeführten Lasern (vergl.

Mehr

2.2 Elektronentransfer (Dexter)

2.2 Elektronentransfer (Dexter) Experimentelle Bestimmung der Transferrate: 1. Messung der Fluoreszenzintensitäten von Donor (F D ) und Akzeptor (F A ): F A E t = F D + F A 2. Messung der Fluoreszenzintensität des Donors ohne Akzeptor

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 4 Emission und Absorption elektromagnetischer Strahlung Stephan Huber, Markus Kotulla, Markus Perner 01.09.2011 Inhaltsverzeichnis 1 Emission und Absorption elektromagnetischer

Mehr

Medical Laser Technology

Medical Laser Technology Medical Laser Technology 2 SWS 447.188 Schröttner J. E-Mail: schroettner@tugraz.at Tel.: 873/7395 Institut für Health Care Engineering mit Europaprüfstelle für Medizinprodukte www.hce.tugraz.at Kopernikusgasse

Mehr

Laser. Light Amplification by Stimulated Emission of Radiation

Laser. Light Amplification by Stimulated Emission of Radiation Laser Light Amplification by Stimulated Emission of Radiation Grundlagen F 4.1 Nach Einstein existieren 3 mögliche Wechselwirkungsmechanismen zwischen Atom und elektromagnetischer Strahlung: - Absorption:

Mehr

2. Max Planck und das Wirkungsquantum h

2. Max Planck und das Wirkungsquantum h 2. Max Planck und das Wirkungsquantum h Frequenzverteilung eines schwarzen Strahlers Am 6. Dezember 1900, dem 'Geburtsdatum' der modernen Physik, hatte Max Planck endlich die Antwort auf eine Frage gefunden,

Mehr

Das Jaynes-Cummings-Modell

Das Jaynes-Cummings-Modell Das Jaynes-Cummings-Modell Brem Samuel Hauer Jasper Lachmann Tim Taher Halgurd Wächtler Christopher Projekt in Quantenmechanik II - WS 2014/15 12. Februar 2015 Brem, Hauer, Lachmann, Taher, Wächtler Das

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik

Institut für Elektrische Messtechnik und Messignalverarbeitung. Laser-Messtechnik Strahlungsquellen Laser-Messtechnik Thermische Strahlungsquellen [typ. kont.; f(t)] Fluoreszenz / Lumineszenzstrahler [typ. Linienspektrum; Energieniv.] Laser Gasentladungslampen, Leuchtstoffröhren Halbleiter-Dioden

Mehr

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie

Chemistry Department Cologne University. Photochemie 1 PC 2 SS Chemistry Department Cologne University. Photochemie Photochemie 1 PC 2 2016 Photochemie 2 PC 2 2016 1 Wichtige photophysikalische Prozesse 3 PC 2 2016 Der Grundzustand Boltzmann Verteilung: Alle Moleküle sind im elektronischen Grundzustand (0) chwingungsgrundzustand

Mehr

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek).

31-1. R.W. Pohl, Bd. III (Optik) Mayer-Kuckuck, Atomphysik Lasertechnik, eine Einführung (Physik-Bibliothek). 31-1 MICHELSON-INTERFEROMETER Vorbereitung Michelson-Interferometer, Michelson-Experiment zur Äthertheorie und Konsequenzen, Wechselwirkung von sichtbarem Licht mit Materie (qualitativ: spontane und stimulierte

Mehr

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany

Moderne Themen der Physik. Photonik. Dr. Axel Heuer. Exp. Quantenphysik, Universität Potsdam, Germany Moderne Themen der Physik Photonik Dr. Axel Heuer Exp. Quantenphysik, Universität Potsdam, Germany Übersicht 1. Historisches und Grundlagen 2. Hochleistungslaser 3. Diodenlaser 4. Einzelne Photonen 2 LASER

Mehr

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves

Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie

Mehr

Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung

Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung Photonik 1: Fragenkatalog und Hinweise zur mündlichen Prüfung Prof. Reider Stand: 27. August 2011 1. Licht als elektromagnetische Welle 1.1 (S.8) Brechungsindex(zahl) in der Optik Allgemein Warum haben

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

Grundlagen der LASER-Operation. Rolf Neuendorf

Grundlagen der LASER-Operation. Rolf Neuendorf Grundlagen der LASER-Operation Rolf Neuendorf Inhalt Grundlagen der Lasertechnik Nichtlineare optische Effekte Frequenzvervielfachung parametrische Prozesse sättigbare Absorption Erzeugung von Laserpulsen

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

Versuch P3: Laserresonator. Protokoll. Von Jan Oertlin und Ingo Medebach Gruppe 242

Versuch P3: Laserresonator. Protokoll. Von Jan Oertlin und Ingo Medebach Gruppe 242 Versuch : Laserresonator Protokoll Von Jan Oertlin und Ingo Medebach Gruppe 242 8. Dezember 2010 Inhaltsverzeichnis 1 Theoretische Grundlagen 5 1.1 Funktionsweise eines Laser..................................

Mehr

Die Stoppuhren der Forschung: Femtosekundenlaser

Die Stoppuhren der Forschung: Femtosekundenlaser Die Stoppuhren der Forschung: Femtosekundenlaser Stephan Winnerl Institut für Ionenstrahlphysik und Materialforschung Foschungszentrum Rossendorf Inhalt Femtosekunden Laserpulse (1 fs = 10-15 s) Grundlagen

Mehr

Bericht zum Versuch Physik und Technik des Helium-Neon-Lasers

Bericht zum Versuch Physik und Technik des Helium-Neon-Lasers Bericht zum Versuch Physik und Technik des Helium-Neon-Lasers Michael Goerz, Anton Haase 15. Januar 2007 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: C. Frischkorn Inhalt 1 Einführung

Mehr

Laserresonator. Versuch Nr. 6 Vorbereitung Januar Ausgearbeitet von Martin Günther und Nils Braun

Laserresonator. Versuch Nr. 6 Vorbereitung Januar Ausgearbeitet von Martin Günther und Nils Braun Laserresonator Versuch Nr. 6 Vorbereitung - 21. Januar 2013 Ausgearbeitet von Martin Günther und Nils Braun 1 Vorwort Im Folgenden Versuch wird ein vormontierter Titan-Saphir-Laser justiert und in den

Mehr

Zweiphotoneninterferenz

Zweiphotoneninterferenz Zweiphotoneninterferenz Patrick Bürckstümmer 11. Mai 2011 Einführung: Gewöhnliche Interferometrie Übersicht Theorie der 2PHI für monochromatische Photonen Das Experiment von Hong,Ou und Mandel (1987) Versuchsaufbau

Mehr

VL 18. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 18

VL 18. VL16. Hyperfeinstruktur Hyperfeinstruktur Kernspinresonanz VL Elektronenspinresonanz Kernspintomographie VL 18 VL 18 VL16. Hyperfeinstruktur VL 17 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz 17.1. Elektronenspinresonanz 17.2. Kernspintomographie VL 18 18.1. Laser (Light Amplification by Stimulated Emission of

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

Vorbereitung. Wärmestrahlung. Versuchsdatum:

Vorbereitung. Wärmestrahlung. Versuchsdatum: Vorbereitung Wärmestrahlung Carsten Röttele Stefan Schierle Versuchsdatum: 15.5.212 Inhaltsverzeichnis Theoretische Grundlagen 2.1 Wärmestrahlung................................ 2.2 Plancksches Strahlungsgesetz.........................

Mehr

Laser als Strahlungsquelle

Laser als Strahlungsquelle Laser als Strahlungsquelle Arten v. Strahlungsquellen Thermische Strahlungsquellen typisch kontinuierliches Spektrum, f(t) Fluoreszenz / Lumineszenzstrahler typisch Linienspektrum Wellenlänge def. durch

Mehr

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen

Laserlicht Laser. Video: Kohärenz. Taschenlampe. Dieter Suter Physik B Grundlagen Dieter Suter - 423 - Physik B2 6.7. Laser 6.7.1. Grundlagen Das Licht eines gewöhnlichen Lasers unterscheidet sich vom Licht einer Glühlampe zunächst dadurch dass es nur eine bestimmte Wellenlänge, resp.

Mehr

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg

Quantenlithographie. Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Scheinseminar: Optische Lithographie Wintersemester 2008/09 FAU Erlangen-Nürnberg Vortragender: Imran Khan Betreuer: Dr. Christine Silberhorn, Dipl. Phys. Andreas Eckstein Datum: Gliederung 1. Einführung

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik. 1.5 Laser

Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik. 1.5 Laser Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.5 Laser Stichwörter: Laser, stimulierte Emission, Photon, Resonator, aktives Medium, Besetzungsinversion, Kohärenz, Beugung am Spalt. 1

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

6.2 Schwarzer Strahler, Plancksche Strahlungsformel

6.2 Schwarzer Strahler, Plancksche Strahlungsformel 6. Schwarzer Strahler, Plancsche Strahlungsformel Sehr nappe Herleitung der Plancschen Strahlungsformel Ziel: Berechnung der Energieverteilung der Strahlung im thermischen Gleichgewicht bei der Temperatur

Mehr

WLT Short Course Das Grundprinzip des Lasers

WLT Short Course Das Grundprinzip des Lasers WLT Short Course Das Grundprinzip des Lasers Prof. Dr. phil. nat. Thomas Graf Institut für Strahlwerkzeuge (IFSW), Universität Stuttgart Pfaffenwaldring 43, 70569 Stuttgart www.ifsw.uni-stuttgart.de Diskrete

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #15 am 01.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

Wellenausbreitung mit Überlichtgeschwindigkeit

Wellenausbreitung mit Überlichtgeschwindigkeit Wellenausbreitung mit Überlichtgeschwindigkeit Samo Jordan Physik-Institut der Universität Zürich Wellenausbreitung mit Überlichtgeschwindigkeit p.1/39 Inhalt Überlichtgeschwindigkeit und Kausalität Theorie:

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #16 am 0.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Atominterferometrie. Atominterferometrie. Humboldt- Universität zu Berlin. Institut für Physik. Seminar Grundlagen der Quantenphysik

Atominterferometrie. Atominterferometrie. Humboldt- Universität zu Berlin. Institut für Physik. Seminar Grundlagen der Quantenphysik Seminar Grundlagen der Quantenphysik www.stanford.edu/group/chugr oup/amo/interferometry.html 1 Gliederung Humboldt- Universität zu Berlin 1. Allgemeines 2. Theorie 2.1 Prinzip 2.2 Atominterferometer 2.3

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

Kapitel 4: Wechselwirkung zwischen Strahlung und Materie

Kapitel 4: Wechselwirkung zwischen Strahlung und Materie Kapitel 4: Wechselwirkung zwischen Strahlung und Materie Übersicht: 4.1 Einführung 4.2 Eigenschaften elektromagnetischer Strahlung 4.3 Lambert-Beer-Gesetz 4.4 Kinetik von Absorptions- und Emissionsprozessen:

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

Grundlagen der Laserphysik Licht und seine Gewebewirkungen. Dr.med.dent.. G. Mettraux, Bern

Grundlagen der Laserphysik Licht und seine Gewebewirkungen. Dr.med.dent.. G. Mettraux, Bern Grundlagen der Laserphysik Licht und seine Gewebewirkungen Dr.med.dent.. G. Mettraux, Bern Jan 2010 1 L A S E R Light Amplification by Stimulated Emission of Radiation Lichtverstärkung durch stimulierte

Mehr

Miguel Ángel Palacios Lázaro (Autor) Theorie und Simulation des Doppelstreifen-Lasers

Miguel Ángel Palacios Lázaro (Autor) Theorie und Simulation des Doppelstreifen-Lasers Miguel Ángel Palacios Lázaro (Autor) Theorie und Simulation des Doppelstreifen-Lasers https://cuvillier.de/de/shop/publications/499 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg

Mehr

LASER - Kristalle und Keramiken. Karin Schulze Tertilt Christine Rex Antje Grill

LASER - Kristalle und Keramiken. Karin Schulze Tertilt Christine Rex Antje Grill LASER - Kristalle und Keramiken Karin Schulze Tertilt Christine Rex Antje Grill 1 Inhalt Was ist ein Laser?» Definition» Aufbau» Vergleich mit anderen Lichtquellen Theorie des Lasers Festkörperlaser» Nd:YAG»

Mehr

Der Laser. 1.: Begriff, Geschichte des Lasers. 2.: Aufbau siehe Folie. 3.: Wirkungsweise

Der Laser. 1.: Begriff, Geschichte des Lasers. 2.: Aufbau siehe Folie. 3.: Wirkungsweise Der Laser 1. Begriff 2. Aufbau 3. Wirkungsweise 4. Eigenschaften 5. Anwendung 6. Quellen 1.: Begriff, Geschichte des Lasers Abkürzung für englisch Light Amplification by Stimulated Emission of Radiation

Mehr

Wie funktioniert ein Laser? Der He-Ne Laser

Wie funktioniert ein Laser? Der He-Ne Laser Wie funktioniert ein Laser? Der He-Ne Laser Michael Hartwig 19. November 1998 Inhaltsverzeichnis 1 Allgemeine Grundlagen 1 1.1 Zweiniveau-Systeme................................ 2 1.2 Emission und Absorption

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

5. Lichtkräfte und Laserkühlung. 5.1 Lichtkräfte 5.2 Dopplerkühlung 5.3 Konservative Kräfte

5. Lichtkräfte und Laserkühlung. 5.1 Lichtkräfte 5.2 Dopplerkühlung 5.3 Konservative Kräfte Inhalt 5. Lichtkräfte und Laserkühlung 5.1 Lichtkräfte 5.2 Dopplerkühlung 5.3 Konservative Kräfte Kräfte und Potenzial E d F Impulsübertrag E = hω p = hk k E = 0 p = 0 experimentelle Situation Absorption

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ

Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Merke: Zwei Oszillatoren koppeln am stärksten, wenn sie die gleiche Eigenfrequenz besitzen. RESONANZ Viele Kerne besitzen einen Spindrehimpuls. Ein Kern mit der Spinquantenzahl I hat einen Drehimpuls (L)

Mehr

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind.

Zwei-Niveau-System. Laser: light amplification by stimulated emission of radiation. W ind.absorption = n 1 ρ B. Laserbox. W ind. Laser: light amplification by stimulated emission of radiation W ind.absorption = n 1 ρ B Laserbox 8πhν = B c A W ind.emission = n ρ B Besetzungs-Inversion notwendig Zwei-Niveau-System 1,0 Besetzung des

Mehr

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17

VL 17. VL16. Hyperfeinstruktur. 16.1. Elektronspinresonanz 16.2. Kernspinresonanz VL 17 VL16. Hyperfeinstruktur VL 17 VL 18 VL 17 16.1. Elektronspinresonanz 16.2. Kernspinresonanz 17.1. Laser (Light Amplification by Stimulated t Emission i of Radiation) Maser = Laser im Mikrowellenbereich,

Mehr

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz

Die Natriumlinie. und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Die Natriumlinie und Absorption, Emission, Dispersion, Spektren, Resonanz Fluoreszenz, Lumineszenz Absorption & Emissionsarten Absorption (Aufnahme von Energie) Atome absorbieren Energien, z.b. Wellenlängen,

Mehr

Optische Systeme (3. Vorlesung)

Optische Systeme (3. Vorlesung) 3.1 Optische Systeme (3. Vorlesung) Uli Lemmer 06.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 3.2 1. Grundlagen der Wellenoptik 1.1 Die Helmholtz-Gleichung 1.2 Lösungen der Helmholtz-Gleichung:

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

Photonen-Echos. Protokolle für Festkörper-Quantenspeicher: Seminar: Optische Quantenspeicher. Pascal Notz

Photonen-Echos. Protokolle für Festkörper-Quantenspeicher: Seminar: Optische Quantenspeicher. Pascal Notz Seminar: Optische Quantenspeicher Protokolle für Festkörper-Quantenspeicher: Photonen-Echos Pascal Notz 28. November 2012 Institut für Angewandte Physik AG Nichtlineare Optik/Quantenoptik Pascal Notz 1

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

3.13 Quantisierung des em. Feldes

3.13 Quantisierung des em. Feldes 3.13. Quantisierung des em. Feldes Kapitel 3. Grundlagen QM 3.13 Quantisierung des em. Feldes Die Quantisierung des elektromagnetischen (em.) Feldes gibt es nicht. Gleichwohl lauten viele Überschriften

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

13 Laser Einführung Literatur Anwendungen von Lasern

13 Laser Einführung Literatur Anwendungen von Lasern 13.1 Einführung 13.1.1 Literatur Es gibt eine Reihe von guten Lehrbüchern und Nachschlagewerken, welche Teile des hier behandelten Stoffes abdecken. Ohne den Anspruch der Vollständigkeit können folgende

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Bellsche Ungleichungen

Bellsche Ungleichungen Bellsche Ungleichungen Christoph Meyer Seminar - Grundlagen der Quantenphysik Christoph Meyer Bellsche Ungleichungen 1 / 20 Inhaltsverzeichnis 1 Einführung Das EPR-Paradoxon Verborgene Variablen 2 Herleitung

Mehr

Erzeugung durchstimmbarer Laserstrahlung. Laser. Seminarvortrag von Daniel Englisch

Erzeugung durchstimmbarer Laserstrahlung. Laser. Seminarvortrag von Daniel Englisch Erzeugung durchstimmbarer Laserstrahlung Seminarvortrag von Daniel Englisch Laser 11.01.12 Institute of Applied Physics Nonlinear Optics / Quantum Optics Daniel Englisch 1 Motivation - Anwendungsgebiete

Mehr

Wellenlängenspektrum der elektromagnetischen Strahlung

Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängen- / Frequenzabhängigkeit Richtungsabhängigkeit Eigenschaften der von Oberflächen emittierten Strahlung Einfallende Strahlung α+ ρ+ τ=

Mehr

Frequenzmischung. Vortrag von Denis Nordmann am Physikalische Technik, 6. Semester. Dozent: Prof. Dr. Behler

Frequenzmischung. Vortrag von Denis Nordmann am Physikalische Technik, 6. Semester. Dozent: Prof. Dr. Behler Frequenzmischung Vortrag von Denis Nordmann am 20.06.2011 Physikalische Technik, 6. Semester Dozent: Prof. Dr. Behler Kurzwiederholung Lineare Polarisation Elektromagnetisches Feld einer Lichtwelle übt

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

Gequetschte Zustände beim harmonischen Oszillator

Gequetschte Zustände beim harmonischen Oszillator Seminar zur Theorie der Atome, Kerne und kondensierten Materie Gequetschte Zustände beim harmonischen Oszillator Melanie Kämmerer 16. Oktober 011 1 1 Wiederholung Die Wellenfunktion eines kohärenten Zustandes

Mehr

Max Planck: Das plancksche Wirkungsquantum

Max Planck: Das plancksche Wirkungsquantum Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr