LINGO: Eine kleine Einführung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "LINGO: Eine kleine Einführung"

Transkript

1 LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach formuliert und gelöst werden können. Das Programm kann beim Hersteller 1 als Studentenversion heruntergeladen werden, diese Version ist in der Anzahl Variablen und Nebenbedingungen limitiert. Anhand des folgenden Beispiels werden wir nun den Formulierungs- und Lösungsprozess mit LINGO darstellen. 1 Ein Beispielproblem Eine Firma produziert ein Produkt, für das in den folgenden 4 Wochen eine Nachfrage von 20, 30, 40 und 35 Einheiten besteht. Pro Woche können maximal 36 Einheiten produziert werden, die Nachfrage kann aber auch durch Produktion vorhergehender Wochen erfüllt werden, d.h. es steht ein Lager zur Verfügung. Im Moment ist der Vorrat dort 10. Die Lagerhaltungskosten betragen 30 EUR für jede Einheit, die beim Übergang in die nächste Woche fällig wird, und jede produzierte, aber nicht direkt verkaufte Einheit wird gelagert. Die Produktionskosten pro Einheit betragen 200, 180, 175 und 190 EUR in Woche 1,2,3 bzw. 4. Ziel ist, die Nachfrage mit minimalen Kosten zu erfüllen. 2 Modellierung mit LINGO Entscheidungsvariablen: prod(i): Einheiten, die in Woche i produziert werden; i = 1, 2, 3, 4 lager(i): Einheiten, die zwischen Woche i und i + 1 im Lager sind; i = 1, 2, 3 In LINGO: SETS: WOCHE/1..4/: prod, lager; ENDSETS 1 1

2 Lineare und Ganzzahlige Optimierung, WS 2009/10 2 Hiermit hat jede Woche (1, 2, 3, 4) die Variablen prod(i) und lager(i). (Die Variable lager(4) ist nicht unbedingt nötig, sie ist aber im nachfolgenden Modell sinnvoll.) Will man den Wochen andere Namen geben, ist dies auch möglich: WOCHE/w19, w20, w21, w22/: prod, lager; Zielfunktion: mit min 4 pcost(i)prod(i) + i=1 3 lcost(i)lager(i) i=1 pcost = (200, 180, 175, 190) und lcost = (30, 30, 30). In LINGO: Wir verändern die Sets in WOCHE/1..4/: prod, lager, pcost, lcost; und fügen die Zielfunktion MIN pcost(i)*prod(i) + lcost(i)*lager(i)); sowie die Werte DATA: pcost = 200,180,175,190; lcost = 30,30,30,0; ENDDATA der Beschreibung hinzu. Die letzten 4 Zeilen legen für die Variablen pcost und lcost Werte fest, und diese werden nun als Konstanten, d.h. Koeffizienten, angesehen. (Durch lcost(4)=0 bleibt das Modell korrekt! Alternativ kann auch die Zielfunktion durch MIN pcost(i)*prod(i)) i #LE# 3: lcost(i)*lager(i)); definiert werden. Nebenbedingungen: prod(i) 36; i = 1, 2, 3, 4 lager(1) =prod(1) nachfrage(1) + 10 lager(i) =prod(i)+lager(i 1) nachfrage(i); i = 2, 3, 4 prod(i) 0; i = 1, 2, 3, 4 lager(i) 0; i = 1, 2, 3, 4 In LINGO: Wir verändern die Sets in WOCHE/1..4/: prod, lager, pcost, lcost, nachfrage; und fügen die Werte nachfrage = 20, 30, 40, 35; in DATA hinzu.

3 Lineare und Ganzzahlige Optimierung, WS 2009/10 3 Die Nebenbedingungen sind prod(i) <= 36); lager(1) = i #GE# 2: lager(i) = prod(i) + lager(i-1) - prod(i) >= lager(i) >= 0); Bei den letzten beiden Nebenbedingungen kommt eine Besonderheit von LINGO zum Tragen: standardmäßig wird davon ausgegangen, dass alle Variablen nichtnegativ sind (wie man dies umgeht wird später noch behandelt). Die letzten zwei Zeilen sind also streng genommen überflüssig.... die komplette Modellbeschreibung: MODEL: SETS: WOCHE/1..4/: prod, lager, pcost, lcost, nachfrage; ENDSETS MIN pcost(i)*prod(i) + prod(i) <= 36); lager(1) = i #GE# 2: lager(i) = prod(i) + lager(i-1) - nachfrage(i)); DATA: pcost = 200,180,175,190; lcost = 30,30,30,0; nachfrage = 20, 30, 40, 35; ENDDATA END 3 Generierung des (I)LPs und dessen Lösung LINGO Generate Display model liefert das entsprechende (I)LP-Modell: MODEL: [ 1] MIN= 200 * PROD * LAGER * PROD * LAGER * PROD * LAGER * PROD 4 ; [ 2] PROD 1 <= 36 ; [ 3] PROD 2 <= 36 ; [ 4] PROD 3 <= 36 ; [ 5] PROD 4 <= 36 ; [ 6] - PROD 1 + LAGER 1 = - 10 ; [ 7] - LAGER 1 - PROD 2 + LAGER 2 = - 30 ;

4 Lineare und Ganzzahlige Optimierung, WS 2009/10 4 [ 8] - LAGER 2 - PROD 3 + LAGER 3 = - 40 ; [ 9] - LAGER 3 - PROD 4 + LAGER 4 = - 35 ; END Nach der Lösungsberechnung (CTRL-U oder LINGO Solve) erscheint ein LINGO Solver Status -Fenster, das Auskunft über den Prozess gibt, und ein solution report, der die Werte der Entscheidungsvariablen, Zielfunktion und weitere nützliche Informationen enthält. Für das Beispiel sieht dieser Report wie folgt aus: Global optimal solution found. Objective value: Total solver iterations: 1 Variable Value Reduced Cost PROD( 1) PROD( 2) PROD( 3) PROD( 4) LAGER( 1) LAGER( 2) LAGER( 3) LAGER( 4) PCOST( 1) PCOST( 2) PCOST( 3) PCOST( 4) LCOST( 1) LCOST( 2) LCOST( 3) LCOST( 4) NACHFRAGE( 1) NACHFRAGE( 2) NACHFRAGE( 3) NACHFRAGE( 4) Row Slack or Surplus Dual Price

5 Lineare und Ganzzahlige Optimierung, WS 2009/ Standardmäßig wird von nichtnegativen, rationalen Variablen ausgegangen. Soll im obigen Modell eine Variable als ganzzahlig deklariert werden, so prod(i))); hinzu (prod(i) sind jetzt nichtnegativ und ganzzahlig). Weitere Möglichkeiten für ganzzahlig, nichtnegativ ( frei (kann sowohl positiv, als auch negativ sein) 4 Weitere Tipps LINGO ist nicht case-sensitive: SUM, SuM, sum oder sum ist das gleiche. Jede Zeile wird mit einem Semikolon (;) beendet, außer SETS, DATA, ENDSETS und ENDDATA. Kommentar beginnen mit Ausrufungszeichen und enden mit Semikolon:! Dies ist ein Kommentar ; Es können auch Matrizen (mehrdimensionale Vektoren ) als Variablen definiert werden: TYP/1..5/; LINK(WOCHE,TYP): prod; definiert eine 2-dimensionalen 4 5 Matrix prod (WOCHE hatte 1..4 als Länge). Sind bei obiger Matrix prod nicht alle Kombinationen von WOCHE und TYP erlaubt, kann man diesen Vektor auch einschränken: LINK(WOCHE,TYP)/1,2 1,3 1,4 2,1 2,4 3,4 4,2 4,4 5,1/: prod prod(1,1) gibt es also nicht, und beim Aufbau des Modells wird dies auch entsprechend berücksichtigt. Um Indizes einzuschränken sind auch logische Operatoren vorhanden: #EQ#: gleich (equal) #NE#: ungleich (not equal) #GE#: größer gleich (greater than or equal) #GT#: größer (greater than) #LE#: kleiner gleich (less than or equal) #LT#: kleiner (less than) #AND#: logisches und #OR#: logisches oder

6 Lineare und Ganzzahlige Optimierung, WS 2009/10 6 LINGO kennt zwei Dateitypen,.lng und.lg4. Erstgenannte sind reine Textdateien, welche die Modellbeschreibung enthalten, und können mit jedem Editor bearbeitet werden.

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Rechnerpraktikum zur Optimierung III

Rechnerpraktikum zur Optimierung III TU München Lehrstuhl Mathematische Optimierung Prof. Dr. M. Ulbrich Dipl.-Math. Florian Lindemann Sommersemester 2007 Teil I Rechnerpraktikum zur Optimierung III P1. Durchhängenes Seil Die senkrechten

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

Modellieren mit AMPL

Modellieren mit AMPL Modellieren mit AMPL Elisabeth Gassner Mathematische Modelle in den Wirtschaftswissenschaften Prof. R. E. Burkard 27. April 2007 E. Gassner (Mathematische Modelle) AMPL 27. April 2007 1 / 21 Überblick

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben

Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Autor: Michael Spahn Version: 1.0 1/10 Vertraulichkeit: öffentlich Status: Final Metaways Infosystems GmbH

Autor: Michael Spahn Version: 1.0 1/10 Vertraulichkeit: öffentlich Status: Final Metaways Infosystems GmbH Java Einleitung - Handout Kurzbeschreibung: Eine kleine Einführung in die Programmierung mit Java. Dokument: Autor: Michael Spahn Version 1.0 Status: Final Datum: 23.10.2012 Vertraulichkeit: öffentlich

Mehr

Als Instanz für das p-median Problem wählen wir das Netzwerk von Abbildung 1-1 des Buches auf Seite 6.

Als Instanz für das p-median Problem wählen wir das Netzwerk von Abbildung 1-1 des Buches auf Seite 6. Übung zum p-median Problem Prof. Dr. R. Vahrenkamp, Universität Kassel Als Instanz für das p-median Problem wählen wir das Netzwerk von Abbildung 1-1 des Buches auf Seite 6. Abbildung1 1: Ausschnitt aus

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lösungen zu den Übungsaufgaben aus Kapitel 5

Lösungen zu den Übungsaufgaben aus Kapitel 5 Lösungen zu den Übungsaufgaben aus Kapitel 5 Ü5.1: Die entsprechende Bellman sche Funktionalgleichung kann angegeben werden als: Vct (, ) = max qt D { r rt t ( min{ q t, c} ) min{ q t, c} Vc ( min{ q t,

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Felder, Rückblick Mehrdimensionale Felder. Programmieren in C

Felder, Rückblick Mehrdimensionale Felder. Programmieren in C Übersicht Felder, Rückblick Mehrdimensionale Felder Rückblick Vereinbarung von Feldern: typ name [anzahl]; typ name = {e1, e2, e3,..., en} Die Adressierung von Feldelementen beginnt bei 0 Die korrekte

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Excel Funktionen durch eigene Funktionen erweitern.

Excel Funktionen durch eigene Funktionen erweitern. Excel Funktionen durch eigene Funktionen erweitern. Excel bietet eine große Anzahl an Funktionen für viele Anwendungsbereiche an. Doch es kommt hin und wieder vor, dass man die eine oder andere Funktion

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 8. Mai 2009 8. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Datentransformationsbefehle (III) 1.a. If 1.b. Count 2. Grafiken (II) 2.a.

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 25. August 2009 25. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 1. Datentransformation (Befehle IF und COUNT) 2. Grafiken (Teil 2) Überblick: 2 Überblick:

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Eine kurze Beschreibung zu AMPL und CPLEX

Eine kurze Beschreibung zu AMPL und CPLEX Welchen Kuchen backt Bernd Brezel? Lineare Optimierung Eine kurze Beschreibung zu AMPL und CPLEX Prof. Dr. Andrea Walther Institut für Mathematik Universität Paderborn 1 1 Das allgemeines Vorgehen Zur

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Künstliches binäres Neuron

Künstliches binäres Neuron Künstliches binäres Neuron G.Döben-Henisch Fachbereich Informatik und Ingenieurwissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Erwin Grüner 09.02.2006

Erwin Grüner 09.02.2006 FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log():

R-Tutorial. R bietet zahlreiche Hilfe-Funktionen an. Informiere Dich über die Funktion log(): Statistik für Bioinformatiker SoSe 2005 R-Tutorial Aufgabe 1: Hilfe. Logge Dich ein. Username und Passwort stehen auf dem Aufkleber am jeweiligen Bildschirm. Öffne eine Shell und starte R mit dem Befehl

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Name, Vorname Matrikelnummer Probeklausur zur Vorlesung Einführung in die Programmierung WS 2008/09 Dauer: 2 Stunden Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf dieses Deckblatt und

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Studiengang «StudG» Klausur Marketing & Management Science WS 2012/2013. Studienfach: Abschluss:

Studiengang «StudG» Klausur Marketing & Management Science WS 2012/2013. Studienfach: Abschluss: Univ.-Prof. Dr. Jost Adler Univ.-Prof. Dr. Gertrud Schmitz Studiengang «StudG» Klausur Marketing & Management Science WS 202/203 Datum: «Datum» Beginn/Ort: «Beginn» / «Ort» Bearbeitungszeit: 60 Minuten

Mehr

Fehlermeldung, wenn Anzahl der %do der %end entspricht - was läuft falsch?

Fehlermeldung, wenn Anzahl der %do der %end entspricht - was läuft falsch? News Artikel Foren Projekte Links Über Redscope Join List Random Previous Next Startseite Foren Allgemeine Fragen zu SAS Fehlermeldung, wenn Anzahl der %do der %end entspricht - was läuft falsch? 14 April,

Mehr

WCF Services in InfoPath 2010 nutzen

WCF Services in InfoPath 2010 nutzen WCF Services in InfoPath 2010 nutzen Abstract Gerade wenn man schreibend von InfoPath aus auf eine SQL-Server Datenbank zugreifen will, kommt man quasi um einen Web Service nicht herum. In diesem Post

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03

Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen

Mehr

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik)

Modellierung biologischer. Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Modellierung biologischer Prozesse Christian Maidorfer Thomas Zwifl (Seminar aus Informatik) Überblick Einführung Arten von Modellen Die stochastische Pi-Maschine Warum Modelle Die Biologie konzentriert

Mehr

Grundlagen der Programmierung in C++ Arrays und Strings, Teil 1

Grundlagen der Programmierung in C++ Arrays und Strings, Teil 1 Grundlagen der Programmierung in C++ Arrays und Strings, Teil 1 Wintersemester 2005/2006 G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Das C++ Typsystem simple structured integral enum

Mehr

Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen

Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen Katharina Witowski (DYNAmore GmbH) Peter Reithofer (4a engineering GmbH) Übersicht Problemstellung Parameteridentifikation

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Eine Kurzanleitung zu Mathematica

Eine Kurzanleitung zu Mathematica MOSES Projekt, GL, Juni 2003 Eine Kurzanleitung zu Mathematica Wir geben im Folgenden eine sehr kurze Einführung in die Möglichkeiten, die das Computer Algebra System Mathematica bietet. Diese Datei selbst

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Einfaches Datenmanagement in R

Einfaches Datenmanagement in R Einfaches Datenmanagement in R Achim Zeileis 2009-02-20 1 Daten einlesen Datensätze werden in R typischerweise als Objekte der Klasse "data.frame" dargestellt. In diesen entsprechen die Zeilen den Beobachtungen

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter

Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Informatik 2 Labor 2 Programmieren in MATLAB Georg Richter Aufgabe 3: Konto Um Geldbeträge korrekt zu verwalten, sind zwecks Vermeidung von Rundungsfehlern entweder alle Beträge in Cents umzuwandeln und

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

7down Zusatzaufgaben. Mathias Ziebarth und Joachim Breitner. 13. März 2008

7down Zusatzaufgaben. Mathias Ziebarth und Joachim Breitner. 13. März 2008 7down Zusatzaufgaben Mathias Ziebarth und Joachim Breitner 13. März 2008 1 Problem 1 Unser Programm hat folgende Lösungen berechnet: Testfall 1 153131 141441 973493 330529 869017 876927 Testfall 2 279841

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

1.4.12 Sin-Funktion vgl. Cos-Funktion

1.4.12 Sin-Funktion vgl. Cos-Funktion .4. Sgn-Funktion Informatik. Semester 36 36.4.2 Sin-Funktion vgl. Cos-Funktion Informatik. Semester 37 37 .4.3 Sqr-Funktion Informatik. Semester 38 38.4.4 Tan-Funktion Informatik. Semester 39 39 .5 Konstanten

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Wichtig... Mittags Pommes... Praktikum A 230 C 207 (Madeleine) F 112 F 113 (Kevin) E

Mehr

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02)

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02) Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang Aufgabenblatt 3 (KW 44) (30.10.02) Aufgabe 1: Preisdiskriminierung dritten Grades (20 Punkte) Ein innovativer Uni-Absolvent plant,

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Nützliche Tipps im Umgang mit Word

Nützliche Tipps im Umgang mit Word Nützliche Tipps im Umgang mit Word Im Folgenden möchten wir einige Funktionen von Word beschreiben, von denen wir denken, dass Sie euch das Erstellen einer schriftlichen Arbeit erleichtern. Dazu gehören:

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Unterprogramme, Pointer und die Übergabe von Arrays

Unterprogramme, Pointer und die Übergabe von Arrays Unterprogramme, Pointer und die Übergabe von Arrays Unterprogramme Wie schon im Abschnitt über Funktionen erwähnt, versteht man unter einem Unterprogramm im engeren Sinn eine Prozedur, welche die Werte

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Oracle SQL Tutorium - Wiederholung DB I -

Oracle SQL Tutorium - Wiederholung DB I - Oracle SQL Tutorium - Wiederholung DB I - (Version 2.6 vom 24.2.2015) Einleitung Im Folgenden sind zur Wiederholung eine Reihe von SQL-Übungsaufgaben zu lösen. Grundlage für die Aufgaben ist die Mondial

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

Bauteilattribute als Sachdaten anzeigen

Bauteilattribute als Sachdaten anzeigen Mit den speedikon Attributfiltern können Sie die speedikon Attribute eines Bauteils als MicroStation Sachdaten an die Elemente anhängen Inhalte Was ist ein speedikon Attribut?... 3 Eigene Attribute vergeben...

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

5 DATEN. 5.1. Variablen. Variablen können beliebige Werte zugewiesen und im Gegensatz zu

5 DATEN. 5.1. Variablen. Variablen können beliebige Werte zugewiesen und im Gegensatz zu Daten Makro + VBA effektiv 5 DATEN 5.1. Variablen Variablen können beliebige Werte zugewiesen und im Gegensatz zu Konstanten jederzeit im Programm verändert werden. Als Variablen können beliebige Zeichenketten

Mehr

Einführung in die Lineare Optimierung

Einführung in die Lineare Optimierung Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1 Universität Bern Kurt Schmidheiny / Manuel Wälti Doing Economics with the Computer Sommersemester 2002 Excel Solver 1 Mit dem Solver unterstützt Excel eine Funktion, mit der u.a. komplex verschachtelte

Mehr

Veranstaltung und Übung: Optimierungssysteme Modelle, Software, Praxisanwendungen. Uwe Suhl Veronika Waue SS 2008

Veranstaltung und Übung: Optimierungssysteme Modelle, Software, Praxisanwendungen. Uwe Suhl Veronika Waue SS 2008 Veranstaltung 10033025 und 101053 Übung: Optimierungssysteme Modelle, Software, Praxisanwendungen Uwe Suhl Veronika Waue SS 2008 Organisatorisches Veronika Waue Sprechstunde Mi.11h-12h (R214) E-mail: veronika@waue.net

Mehr

MVC-II Schematische Aufzeichnung Des MVC (model-2), bei dem zwei Modelle zum Zuge kommen:

MVC-II Schematische Aufzeichnung Des MVC (model-2), bei dem zwei Modelle zum Zuge kommen: MVC im Web-Context bedeutet, dass es einen Controller gibt, welcher verschiedene Views kommandiert. Informationen an die Views kann der Controller per Models übergeben. Die Komplexität und das Multithreading

Mehr

Übung 7: Xylophon, Modalanalyse, ANSYS

Übung 7: Xylophon, Modalanalyse, ANSYS Übung 7: Xylophon, Modalanalyse, ANSYS Teil I: Modellierung der Eigenfrequenzen und Eigenmoden des Xylophon Tons Fis Wir betrachten ein einfaches handelsübliches Xylophon mit Tonstäben aus Stahl. Durch

Mehr

Optimierung in R. Michael Scholz

Optimierung in R. Michael Scholz N Optimierung in R Fortgeschrittene Mathematik: Optimierung (WiSe 09/10) Michael Scholz Institut für Statistik und Ökonometrie Georg-August-Universität Göttingen Fortgeschrittene Mathematik: Optimierung

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr