Tutoriumsaufgaben. 1. Aufgabe

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Tutoriumsaufgaben. 1. Aufgabe"

Transkript

1 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 Tutoriumsaufgaben 1 Aufgabe Vorbetrachtung: Der eingeprägte Spannungszustand im Element wird durch die Größen σ xx σ yy und τ xy beschrieben Es gelten folgende allgemeine Beziehungen: σ(φ) = 1 (σ xx + σ yy )+ 1 (σ xx σ yy ) cos(φ)+τ xy sin(φ) (1) τ(φ) = 1 (σ xx σ yy )sin(φ)+τ xy cos(φ) () σxx τ max = τxy σ yy + () a) Konstruktion des mohrschen Spannungskreises und graphische Lösung: 1 Koordinatensystem zeichnen: horizontal die σ-achse vertikal die τ-achse σ xx und σ yy auf der σ-achse eintragen τ xy positiv über σ xx und negativ unter σ yy abtragen Die entstandenen Endpunkte miteinander verbinden und diese Strecke als Durchmesser des Kreises identifizieren Der Kreismittelpunkt ist der Mittelpunkt der Strecke zwischen σ xx und σ yy auf der σ-achse Kreisbogen um den Mittelpunkt schlagen 4 Den Winkel φ vom Punkt S (Spannung im Schnitt senkrecht zur x-achse) zum Punkt S im Uhrzeigersinn (mathematisch negativen Drehsinn) um den Mittelpunkt antragen 5 σ und τ am Punkt S ablesen Abb 1: Mohrscher Spannungskreis Der mohrsche Spannungskreis (Mittelpunkt im Durchmesser) kennzeichnet einen bestiten Spannungszustand 1 1 Der Spannungszustand ist objektiv im Material vorhanden unabhängig davon wie der Beobachter sich einen Schnitt durch das Material denkt S 1/8

2 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 Ein bestiter Punkt am Umfang des Kreises bezeichnet die Spannungen im Schnitt unter einem bestiten Schnittwinkel: Der Punkt S mit σ = σ(φ) τ = τ(φ) bezeichnet die Spannungen in einem Schnitt unter dem Winkel φ zur x-achse Hier lesen wir ab: σ(φ = 60 )=15 /m τ(φ = 60 )= 115 /m Die Werte können auch mit den Gl (1) und() berechnet werden ormalspannung: σ(φ) = 1 (σ xx + σ yy )+ 1 (σ xx σ yy ) cos(φ)+τ xy sin(φ) (4) =15 /m (5) Schubspannung: τ(φ) = 1 (σ xx σ yy )sin(φ)+τ xy cos(φ) (6) = 115 /m (7) b) τ max =?; φ(τ max )=?: σxx τ max = τxy σ yy + (8) = 1 /m (9) Der zugehörige Winkel ergibt sich aus der Skizze des mohrschen Spannungskreises bzw aus der Gleichung für die Schubspannung Aus der Skizze: φ(τ max )= 45 Aus der notwendigen Bedingung für ein Extremum erhält man: τ(φ) (φ)! =0 tan(φ) = σ yy σ xx τ xy φ = π ± nπ φ = π 4 ± nπ (10) (11) (1) c) Hauptspannungen Aus der Skizze liest man ab dass die Richtungen unter denen die Schub spannungen verschwinden senkrecht aufeinander stehen Außerdem liest man aus der Skizze Die Spannungen in einem gedachten Schnitt hängen von der Orientierung des gedachten Schnitts bzw der Wahl des Koordinatensystems ab S /8

3 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 ab: σ 1 = σ max = σ xx = 1 /m bei φ = 180 σ = σ min = σ yy = 5 /m bei φ =0 oder σ 1 = σ xx + σ yy σxx ± τxy σ yy + (1) (Hauptspannungen = Mittelpunkt ± Radius) hier: τ xy =0und damit: σ 1 = σ xx und σ = σ yy s o d) Alles nochmals speziell für σ xx = 1 /m σ yy = 5 /m τ xy = 10 /m liefert: σ(φ = 60 ) = 1016 /m (14) τ(φ = 60 )= 166 /m (15) σ 1 = 44 /m (16) σ = 84 /m (17) τ max = 164 /m (18) φ für τ max : φ für σ 1 : tan φ = σ yy σ xx τ xy = 6 0 φ = 61 (19) tan φ = τ xy = 0 σ xx σ yy 6 =077 φ = 1878 (0) Hauptspannungen und zugehörige Winkel wobei der eine zum anderen komplementär ist: (σ min = 84 /m ; 71 ) (1) (σ max = 44 /m ; 188 ) () S /8

4 Mit einem einfachen Syetrieargument teilen wir die Gewichtskraft auf und zerlegen die resultierenden Kraftanteile dann in eine horizontal bzw vertikal angreifende Kraftkomponente wie folgt: FV FV 50 k FV 50 k tan5 FH 714 k F tan H 5 tan5 F V 50 k S 5 F H 714 k 50 k 50 k 714 k x 50k 50 k Q x 486 kcm b M x a 4500 kcm Die horizontale Kraft wirkt als Druckkraft normal zur Traversenquerschnittsfläche die mit S bezeichnete Kraft ist die Seilkraft Es gelingt so unmittelbar die dargestellten ormal- und Querkraftverläufe einzuzeichnen Auf den Verlauf der Biegemomente koen wir noch zurück Das zum Spannungsnachweis relevante Flächenträgheitsmoment folgt aus einer Tabelle: Profil [] Ai zi Ai zi a i z z i S a i Ai I _ i I yy 1691cm Bei der Rechnung wurde folgendes Ergebnis für die Schwerpunktslage verwendet: z S cm 50 Als nächstes errechnen wir die Widerstandsmomente in den in der Skizze angegebenen Punkten:

5 4 I yy 1691 cm W 7 cm y 1 e cm I yy 1691 cm W 1 cm y e cm 4 I yy 1691 cm W 196 cm y e 86 cm Bei der Berechnung der ormalspannungen müssen wir darauf achten dass es sich hier um eine Kombination von Biege- und ormalspannungen handelt was wir in folgender Formel berücksichtigen: F M A W Um die Momentenwirkung richtig zu erfassen benötigen wir den in Abb 515 eingetragenen Exzenterabstand e : e cm 16 cm Damit wird in den mit a und b bezeichneten Punkten : M a F 90 cm 5090 kcm 4500 kcm V kcm 486 kcm M F 90 cm e F b V H Um die Vorzeichen richtig zu erfassen wurde auf die in der Skizze eingezeichnete gestrichelte Linie bezogen Wir erinnern noch an die für und finden: Druck St k cm 714 k 500 cm 714 k 500 cm zulässigen Spannungsdaten: Zug kcm 7 cm 485 kcm 1 cm 485 kcm 196 cm d h die zulässigen Werte werden nicht überschritten Für die Schubspannung in den Schweißnähten folgt: * Q S y cm 4 I b 1691 cm 0 cm yy Dabei wurde von einer Schweißnaht von b 0 cm Tiefe ausgegangen Beachte dass die Daten für das statische Moment S * y aus der ersten Zeile in der Tabelle folgen

6 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 Hausaufgaben Aufgabe Die Belastung ist im Schubmittelpunkt angebracht Deswegen tritt bei diesem Querschnitt keine Verdrehung d h keine Torsionsspannung auf Mit einem Freischnitt und mit Hilfe der Aufziehme thode wird erkannt dass Spannungskomponenten nur wegen des Biegemoments und der Querkraft Abb : Aufziehmethode entstehen (keine ormalkraft kein Torsionsmoment) Um Spannungen auf dem Querschnitt sichtbar zu machen schneiden wir bei x und x + x frei wobei x eine infinitesimale Größe ist Abb : Freischnitt Somit werden die Kräfte sichtbar wobei wir für die Spannungen in der yz-ebene xz-ebene und xy-ebene in x-richtung d h σ xx σ yx und σ zx eine Gleichgewichtsbedingung aufstellen können Ganz allgemein kann man die Kräfte aus dem Spannungstensor mit dem Cauchy schen Fundamen talsatz berechnen: f i = n j σ ji (1) wobei n j die Flächennormale und f i die Kraft bezeichnet Über eine Fläche A ergibt sich also df i = f i da = n j σ ji da () S 4/8

7 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 das wir benutzen werden um Kfräfte aus Spannungen zu ermitteln Abb 4: Freischnitt Mit einem zusätzlichen Schnitt im Flansch erzeugen wir eine Vorderfläche: v n =(1 0 0) eine Hinterfläche: h n =( 100) und eine Seitenfläche: s n =(0 10) Für die Vorderfläche: σ xx σ xy σ xz df i =(df x df y df z )=(100) σ yx σ yy σ yz da =(σ xx daσ xy daσ xz da) () σ zx σ zy σ zz Kräftegleichgewicht in x-richtung an der Stelle x + x: df v x = σ xx (x + xz)da v (4) Für die Hinterfläche: σ xx σ xy σ xz df i =(df x df y df z )=( 100) σ yx σ yy σ yz da =( σ xx da σ xy da σ xz da) (5) σ zx σ zy σ zz diesmal an der Stelle x: df h x = σ xx (xz)da h (6) Für die Seitenfläche: σ xx σ xy σ xz df i =(df x df y df z )=(0 10) σ yx σ yy σ yz da =( σ yx da σ yy da σ yz da) (7) σ zx σ zy σ zz S 5/8

8 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 liefert: df s x = σ yx (xyz)da s (8) Für den Flanschteil ist angenoen worden dass sich die ormalspannungen über der Dicke nicht ändern d h σ xx (xy) Bei der Schubspannung lassen wir es hingegen noch offen: σ yx (xyz) Das Gleichgewicht in x-richtung: Fx =0: df x = dfx v + dfx h + dfx s =0 (9) A A v A h A s liefert drei Beiträge wobei bei der Integration unterschiedliche Flächen zu verwenden sind Für die Vorder- und Hinterfläche bezeichnen wir: A v = A h =: A (10) und gemäß dem Koordinatensystem im Schwerpunkt: zs A zda = da = z A da SA (11) A Mit der Seitenfläche (genauer gesagt bis zum Steganfang) A s := xt (1) und Gl (4) (6) und(8) wirdgl(9) zu: σ xx (x +dxz)da A σ xx (xz)da A σ yx (xyz)da s =0 A s (1) ach dem Mittelwertsatz der Integralrechnung muss es ein (xyz) geben so dass gilt: σ yx (xyz)da s = σ yx (xyz) A s da s = σ yx (xyz) xt A s (14) Demzufolge wird Gl (1) mit der Biegespannungsformel zu: σ yx (xyz) xt= σ yx (xyz) = A M(x + x) z M(x) z da I yy M(x + x) M(x) xti yy Wenn x ier kleiner wird gilt: I yy A zda (15) M(x + x) M(x) lim = dm(x) = Q(x) (16) x 0 x dx Aus der Gl (11) mits (y) =z S A und Gl (15) wird σ yx (xy) = Q(x)S (y) s ti yy (17) S 6/8

9 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 bis zum Steganfang stien Dann wird A sprungartig größer zs wird kleiner und t größer Dieser Teil wird ier vernachlässigt da nach der größten Spannung gesucht wird σ yx muss and der Außenwand verschwinden geht also gegen ull Abb 5: Verlauf σ yx Genau dieselbe Argumentation im Steg diesmal mit einer unteren Fläche und dazugehörigem u n =(001) Abb 6: Freischnitt df u x = σ zx (xyz)da u (18) mit Gl (4) und(6) ergibt das Kräftegleichgewicht Fx =0: σ xx (x + xz)da σ xx (xz)da + σ zx (xyz)da =0 A A A u M(x + x) M(x) σ zx (xyz) = S (z) (19) I yy xt σ zx = Q(x)S (z) (0) I yy t S (z) ist jetzt quadratisch weil A und z sich gleichzeitig ändern Auch σ xx soll nicht vergessen werden wobei wie schon angewendet die Kraft im Hauptachsensystem S 7/8

10 Sekretariat MS Einsteinufer Berlin 15 Übungsblatt-Lösungen Spannungen Mohrscher Kreis WS 01/14 Abb 7: Verlauf σ zx angebracht wurde daher gibt es keine schiefe Biegung und σ xx hängt nur von x und z ab: σ xx = M(x) I yy z Soweit sind drei Komponenten aus neun formelmäßig identifiziert In dem Beispiel ist Q(x) =const d h betragsmäßig sind die σ yx und σ zx über x gleich (spezialer Fall) σ xx tritt am größten bei x = auf wo M(x) maximal wird Abb 8: Verlauf σ xx S 8/8

Spannungszustand

Spannungszustand 1. Spannungszustand 1.1 Spannungsvektor und Spannungstensor 1.2 Hauptspannungen 1.3 Mohrsche Spannungskreise 1.4 Fließbedingung 1.5 Gleichgewichtsbedingungen 1.1-1 1.1 Spannungsvektor und Spannungstensor

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

G1 Kreisprogrammierung beim Fräsen

G1 Kreisprogrammierung beim Fräsen G1 Kreisprogrammierung beim Fräsen 1.2 Angaben im Programmsatz Zur eindeutigen Festlegung eines Kreisbogens (Bild 1) sind folgende Angaben erforderlich: die Ebene der Kreisinterpolation, der Drehsinn des

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem.Modul2

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem.Modul2 Probe-Klausur Mathematik f. Bau-Ing + Chem.Modul. (a) Durch die Punkte und gehe eine Ebene E, die auf der Ebene E : x + y z = 0 senkrecht steht. Bestimmen Sie die Gleichung der Ebene E. (b) Bestimmen Sie

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auszug aus dem Lernmaterial ortbildungslehrgang Staatlich geprüfte Techniker Auszug aus dem Lernmaterial Maschinenbautechnische Grundlagen DAA-Technikum Essen / www.daa-technikum.de, Infoline: 001 83 16

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre

D. Bestle. Arbeitsunterlagen zur Vorlesung. Technische Mechanik I Statik und Festigkeitslehre D. Bestle Technische Mechanik I Statik und Festigkeitslehre Arbeitsunterlagen zur Vorlesung Lehrstuhl Technische Mechanik und Fahrzeugdynamik Prof. Dr. Ing. habil. Hon. Prof. (NUST) D. Bestle 1 Inhalt

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Wahlteil Geometrie/Stochastik B 1

Wahlteil Geometrie/Stochastik B 1 Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Einfluss der Neigung des Messplatzes

Einfluss der Neigung des Messplatzes Klasse 3 Einfluss der Neigung des Messplatzes Datum : (a) 30. 1.1984 (b) 8.8.97 (c) 28.7.06 Verfasser : F. Scheuter Visum Inhalt Blatt 1. Massgebende Kraftrichtung für die Anzeige der Radlastwaage 1 2.

Mehr

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Grundwissen 8 - Lösungen

Grundwissen 8 - Lösungen Grundwissen 8 - Lösungen Bereich 1: Proportionalität 1) Die in den Tabellen dargestellten Größen sind in beiden Fällen proportional. Entscheide, welche Art von Proportionalität jeweils vorliegt und vervollständige

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

Beispiel 1: Querschnittstragfähigkeit

Beispiel 1: Querschnittstragfähigkeit Titel: Querschnittstragfähigkeit Blatt: Seite 1 von 10 Beispiel 1: Querschnittstragfähigkeit Belastung: M y,ed = 190 knm N Ed = 700 kn V z,ed = 100 kn Material: S 235 Nachweis des Querschnitts nach DIN-EN

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

Zentrale Klassenarbeit 2003

Zentrale Klassenarbeit 2003 Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n

Mehr

Füllstand eines Behälters

Füllstand eines Behälters Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Lösungen TM I Statik und Festigkeitslehre

Lösungen TM I Statik und Festigkeitslehre Technische Mechanik I L Lösungen TM I Statik und Festigkeitslehre Modellbildung in der Mechanik N Pa (Pascal). m.4536kg.38slug [a] m, [b] dimensionslos, [c] m, [d] m Dichte: kgm 3.94 3 slugft 3 Geschwindigkeit:

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Inhaltsverzeichnis. I Technische Mechanik 2. Formelsammlung Technische Mechanik für EI Erstelldatum: 12.

Inhaltsverzeichnis. I Technische Mechanik 2. Formelsammlung Technische Mechanik für EI  Erstelldatum: 12. Inhaltsverzeichnis I Technische Mechanik 1 Stereo-Statik 1.1 räftesystem................. 1.1.1 Moment................ 1.1. raftwinder.............. 1.1.3 Statische Gleichgewichtsbedingungen 1. Ebene Statik.................

Mehr

Gestaltfestigkeit einer Welle

Gestaltfestigkeit einer Welle HTL-Kapfenberg Gestaltfestigkeit einer Welle Seite 1 von 9 Franz Hubert Kainz franz.kainz@htl-kapfenberg.ac.at Gestaltfestigkeit einer Welle Mathematische / Fachliche Inhalte in Stichworten: Grundlagen

Mehr

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I

Institut für Maschinenelemente und Konstruktionstechnik Klausur KT1 (alt KT2) SS 2011 Dr.-Ing. S. Umbach I Klausur KT1 (alt KT) SS 011 Dr.-Ing. S. Umbach I 30.08.011 Name, Vorname: Unterschrift: Matrikel- Nr.: Klausurbedingungen: Zugelassene Hilfsmittel sind dokumentenechtes Schreibzeug und Taschenrechner.

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Prüfung in Technischer Mechanik 1

Prüfung in Technischer Mechanik 1 Prüfung in Technischer Mechanik 1 Sommersemester 015 4. August 015, 08:00-10:00 Uhr MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG MUSTERLÖSUNG Bitte beachten Sie die folgenden Punkte: Die Prüfung

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Papierfalten und Algebra

Papierfalten und Algebra Arbeitsblätter zum Thema Papierfalten und Algebra en Robert Geretschläger Graz, Österreich 009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel und Lineal AUFGABE 1 Zeige, dass die x-koordinaten der

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen Klausurvorbereitung Lösungen I. Funktionen Funktionen und ihre Eigenschaften S. 14 Aufg. 2 f(-2)=0,5 f(0,1)=-10 f(78)= 1 78 g(-2)=-7 g(0,1)=-2,8 g(78)=153 h(-2)=57 h(0,1)=23,82 h(78)=11257 D f = R/{0}

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

7.2 Dachverband Achse Pos A1

7.2 Dachverband Achse Pos A1 7.2 Dachverband Achse 1 + 2 Pos A1 Dieser neukonstruierte Dachverband ersetzt den vorhandenen alten Verband. Um die Geschosshöhe der Etage über der Zwischendecke einhalten zu können, wird er auf dem Untergurt

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

STATISCHE BERECHNUNG "Traverse Typ Foldingtruss F52F" Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia Corp.

STATISCHE BERECHNUNG Traverse Typ Foldingtruss F52F Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia Corp. Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ Foldingtruss F52F" Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

1 Technische Mechanik 2 Festigkeitslehre

1 Technische Mechanik 2 Festigkeitslehre Russell C. Hibbeler 1 Technische Mechanik 2 Festigkeitslehre 5., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Nicoleta Radu-Jürgens, Frank Jürgens Fachliche Betreuung und Erweiterungen:

Mehr

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche.

Übungen zu Funktionen mehrerer Veränderlicher. Lösungen zu Übung Betrachten Sie die durch. y 1 + x 2. z = gegebene Fläche. Übungen zu Funktionen mehrerer Veränderlicher 5.1 Betrachten Sie die durch Lösungen zu Übung 5 gegebene Fläche. z = y 1 + x 2 (a) Zeichnen Sie die Höhenlinien in ein Koordinatensystem. (b) Veranschaulichen

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Erstellen eines Dodekaeders.

Erstellen eines Dodekaeders. Erstellen eines Dodekaeders. In CAD.DE gab es in einem Forum ein Tutorial zur Konstruktion eines Dodekaeders. Es wurde jedoch mit einer anderen, als der hier aufgezeigten, Methode gearbeitet. Die folgende

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12 Sachsen-Anhalt neue Aufgabenstruktur - erstmalig 2011/12 SCHRIFTLICHE ABSCHLUSSPRÜFUNG Pflichtteil 2 und Wahlpflichtteil In diesem Teil der Abschlussprüfung sind die Hilfsmittel Taschenrechner und Tafelwerk

Mehr

Wiederholungen aus. MMSM 1 (Statik)

Wiederholungen aus. MMSM 1 (Statik) Wiederholungen aus MMSM 1 (Statik) Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches Rechnen (UZWR) www.uni-ulm.de/uzwr Inhalt Größen, Dimensionen, Einheiten Kraft, Moment, reikörperbild Statisches

Mehr

Statik- und Festigkeitslehre I

Statik- und Festigkeitslehre I 05.04.2012 Statik- und Festigkeitslehre I Prüfungsklausur 2 WS 2011/12 Hinweise: Dauer der Klausur: Anzahl erreichbarer Punkte: 120 Minuten 60 Punkte Beschriften Sie bitte alle Seiten mit und Matrikelnummer.

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr