Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke"

Transkript

1 Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme, Flächeninhalt, Kongruenz) 4. Winkelsumme im Dreieck Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle egründung in der Schule: Durch Parkettierung experimentell Durch Punktspiegelung Durch Winkel an Parallelen edeutung+winkelsumme 1

2 Satz 4.1 Die Winkelsumme im n-eck beträgt (n-) 180. n = (n ) 180 (n ) 180 Winkelsumme

3 4.3 esondere Linien und Punkte im Dreieck Satz 4. (Satz vom Mittendreieck) Verbindet man die Seitenmitten eines Dreiecks, so liegen die Seiten des entstehenden Dreiecks parallel zu Seiten des usgangsdreiecks und sind halb so lang. eweis trivial mit Hilfe der Strahlensätze ( Übungen) eweis ohne Strahlensätze (Schule): usgangsdreieck, Mittendreieck. Spiegle das Mittendreieck an seinen Seitenmitten Ma, Mb, Mc.. ei Punktspiegelung gilt: ildstrecke Originalstrecke. Hinweis: Eigentlich wird so nur bewiesen, dass man, ausgehend von ein Dreieck erhält, dessen Mittendreieck ist. Es wäre zu zeigen, dass man - ausgehend von und dessen Mittendreieck - durch diese Spiegelung wieder zu gelangt. ' Ma' ' Mc' Mb' ' esondere Punkte im Dreieck 1

4 Satz 4.3 (esondere Linien im Dreieck, hat ein Dreieck eine Mitte?) In einem Dreieck schneiden sich a) die Mittelsenkrechten im Umkreismittelpunkt U; Dreieck spitzwinklig: U innerhalb des Dreiecks Dreieck rechtwinklig: U auf der längsten Dreiecksseite Dreieck stumpfwinklig: U außerhalb des Dreiecks b) die Winkelhalbierenden im Inkreismittelpunkt; c) die Seitenhalbierenden im Schwerpunkt S; dieser teilt die Seitenhalbierenden im Verhältnis :1; d) die Höhen im Höhenschnittpunkt. esondere Punkte im Dreieck

5 Umkreismittelpunkt Wo liegen die Mittelpunkte aller Kreise, die durch und gehen? Wo liegen die Mittelpunkte aller Kreise, die durch und gehen? Mittelsenkrechte von b a Ma Mittelsenkrechte von Mc c Der Mittelpunkt des Kreises, der durch alle Eckpunkte geht, ist der Schnittpunkt der Mittelsenkrechten. Umkreismittelpunkt

6 Inkreismittelpunkt Wo liegen die Mittelpunkte aller Kreise, die die Seiten b und c berühren? Wo liegen die Mittelpunkte aller Kreise, die die Seiten a und c berühren? Winkelhalbierende Winkelhalbierende b a c Der Mittelpunkt des Kreises, der alle Seiten berührt, ist der Schnittpunkt der Winkelhalbierenden. Inkreismittelpunkt

7 Höhenschnittpunkt Mittelsenkrechte Die Mittelsenkrechten von Dreieck gehen durch einen Punkt b h a c H h h b c a Mittelsenkrechte Die Höhen von Dreieck gehen durch einen Punkt Mittelsenkrechte Höhenschnittpunkt

8 Schwerpunkt Schwerpunkt M b s a S M c sb M a M b s a S M c s b M a s a und s b sind zwei Seitenhalbierende. Zeichne zu s a Parallelen durch, M b, M c und. Diese haben alle den gleichen bstand, sie teilen daher die Seitenhalbierende s b im Verhältnis :1 M b s c M a M b s c M a S sb s a S s b M c M c Zeichne zur Seitenhalbierenden s c Parallelen durch, M b, M a und. uch diese haben alle den gleichen bstand und teilen die Seitenhalbierende s b im Verhältnis :1. Damit müssen alle drei Seitenhalbierenden durch den gleichen Punkt S auf s b verlaufen..

9 Euler-Gerade Umkreismittelpunkt U, Schwerpunkt S und Höhen-Schnittpunkt H liegen auf einer Geraden. Diese heißt Euler-Gerade. Es ist SH = US. Fb Mb H S Fa U Ma geht durch Streckung mit Zentrum S und Streckfaktor -½ in M a M b M c über. Die Höhen von gehen dabei in die Höhen M a M b M c über. Fc Mc Diese sind die Mittelsenkrechten von. Damit geht H durch Streckung mit Zentrum S und Streckfaktor -½ in U über. Euler-Gerade

10 4.4 Kongruenzsätze Die Kongruenzsätze haben wir zu eginn als xiome in der folgenden Form vorausgesetzt: Stimmen zwei Dreiecke in den drei Seiten (sss), den zwei an eine Seite anliegenden Winkeln (wsw), zwei Seiten und dem eingeschlossenen Winkel (sws), zwei Seiten und dem der größeren Seite gegenüber liegenden Winkel (Ssw), überein, dann stimmen sie in allen Maßen überein. Kongruenzsätze 1

11 Wir haben in den vorangehenden Kapiteln gezeigt: Je zwei in allen estimmungsstücken übereinstimmenden Dreiecke können durch genau eine Kongruenzabbildung aufeinander abgebildet werden. Damit wird der Sachverhalt als richtiger Kongruenzsatz formuliert: Stimmen zwei Dreiecke in den drei Seiten (sss), den zwei an eine Seite anliegenden Winkeln (wsw), zwei Seiten und dem eingeschlossenen Winkel (sws), zwei Seiten und dem der größeren Seite gegenüber liegenden Winkel (Ssw), überein, dann können sie durch eine Kongruenzabbildung aufeinander abgebildet werden. Kongruenzsätze

12 4.5 Ähnliche Figuren und Ähnlichkeitssätze Definition 4.1 Zwei Figuren heißen ähnlich, wenn sie in den Längenverhältnissen aller einander entsprechenden Linien und in allen einander entsprechenden Winkeln übereinstimmen. emerkung: Wir werden später (nach der ehandlung von zentrischen Streckungen) Ähnlichkeit mit Hilfe von Ähnlichkeitsabbildungen exakter definieren. Ähnliche Figuren 1

13 emerkung: Wir betrachten auch Figuren, die nicht nur durch Strecken begrenzt werden. Die Gleichheit von Längenverhältnissen gilt dann nicht nur für Längen von Strecken sondern auch für die Längen nicht geradliniger Linien (z.. Kreisbögen usw.) eispiel: Kreissektoren a α b k a α k b Um die Ähnlichkeit von Dreiecken nachzuweisen benutzt man häufig die Ähnlichkeitssätze für Dreiecke. Man gewinnt sie unmittelbar aus den entsprechenden Kongruenzsätzen für Dreiecke. Ähnliche Figuren

14 Ähnlichkeitssatz entsprechender Kongruenzsatz Zwei Dreiecke sind zueinander ähnlich, wenn sie übereinstimmen in Zwei Dreiecke sind kongruent, wenn sie übereinstimmen in den Verhältnissen der drei Seiten zwei Winkeln den Verhältnissen von zwei Seiten und dem eingeschlossenen Winkel den Verhältnissen von zwei Seiten und dem der größeren Seite gegenüber liegenden Winkel den drei Seiten (sss) einer Seite und den anliegenden Winkeln (wsw) zwei Seiten und dem eingeschlossenen Winkel (sws) zwei Seiten und dem der größeren Seite gegenüber liegenden Winkel (Ssw) Ähnliche Figuren 3

15 4.6 Geometrische Orte Gegeben: Dreieck. Die Seite wird festgehalten. wird so bewegt, dass der Flächeninhalt, der Umfang, der Winkel γ unverändert bleibt. uf welcher Linie läuft? n welchem Ort befindet sich? Man nennt diese Kurven (Punktmengen) den geometrischen Ort der Punkte mit einer gewissen Eigenschaft. Geometrische Orte 1

16 ufgabe Definieren Sie die folgenden Kurven jeweils als geometrischen Ort : Der Kreis mit Mittelpunkt M und Radius r. Die Mittelsenkrechte der Strecke. Die Winkelhalbierende des Winkels h f, h g h f, h g als Schenkel. mit den Halbgeraden Die Seitenhalbierende s c zur Seite c im Dreieck. Welche Definition einer Ellipse als Ortslinie ergibt sich aus der. Eigenschaft der eispiele der vorangehenden Seite? Geometrische Orte

17 4.7 Winkelsätze: Umfangwinkelsatz Satz 4.5 a) Die Umfangswinkel ( Peripherie-Winkel ) über einem Kreisbogen sind alle gleich groß (und ½ so groß wie der zugehörende Mittelpunktswinkel) b) Die Scheitel aller Dreiecke mit gleichem Winkel π bei über einer Strecke liegen auf einem Kreisbogen, der durch und verläuft. Kurz: Der geometrische Ort aller Punkte, für die die Strecke unter dem gleichen Winkel π erscheint, ist ein Kreisbogen durch die Punkte und. Sonderfall: Satz des Thales c) Der Winkel zwischen der Sehne und der Tangente in (Sehnen-Tangenten-Winkel) ist ebenso groß wie der Peripheriewinkel π (und ½ so groß wie der zugehörende Mittelpunktswinkel). Winkelsätze 1

18 4.7 Winkelsätze: Umfangwinkelsatz zu (a): α α π γ β λ ogen δ λ/ β π Zu (b) Sei K der Kreis über zum Winkel π aus (a). Für Punkte außerhalb des Kreises K ist der Winkel bei kleiner als π, für innerhalb von K größer als π. egründung? Winkelsätze Umfangswinkel = π = α + β Mittelpunktswinkel = λ α+γ = 180 β+δ = 180 λ = γ - δ = (180 -α) - (180 -β) = α + β Umfangswinkel = 1/ λ konstant! ndere Lagen des Punktes?

19 4.8 Flächensätze: Satzgruppe des Pythagoras Satz 4.6 Im rechtwinkligen Dreieck ist ein Kathetenquadrat so groß wie das Rechteck aus Hypotenuse und anliegendem Hypotenusenabschnitt, ist das Hypotenusenquadrat so groß wie die Summe der Kathetenquadrate, ist das Quadrat über der Höhe so groß wie das Rechteck aus den beiden Hypotenusenabschnitten. Flächensätze

20 c c c Der klassische eweis des Kathetensatzes D b a Das Quadrat über der Kathete wird durch Scherung in eine flächengleiches Parallelogramm überführt. Grundseite des Parallelogramms ist D,die Höhe ist ebenso lang wie die Seite. D q b a c Das Parallelogramm wird um 90 um die Ecke gedreht. q c Das Parallelogramm kann wieder durch Scherung in das flächengleiche Rechteck mit den Seitenlängen q und c überführt werden. b q D a c eweis Kathetensatz

21 Der klassische eweis des Satzes des Pythagoras aus dem Kathetensatz Der Satz des Pythagoras folgt unmittelbar aus der nwendung des Kathetensatzes auf die beiden Kathetenquadrate. b a b a eweis Pythagoras

22 eweis des Höhensatzes aus dem Satz des Pythagoras p a h = q b h = q p b a h + = ) ( q p q p + = q p pq q p + + = = pq pq h = eweis Höhensatz

23 nwendung des Höhensatzes: Umwandlung eines Rechtecks in ein flächengleiches Quadrat mit Zirkel und Lineal. ufgabe Gegeben ist ein beliebiges Rechteck mit den Seitenlängen a und b. Gesucht ist ein flächengleiches Quadrat. Zur Strecke mit der Länge a+b wird der Thaleskreis K konstruiert und das Lot h in F c errichtet. hc Der Schnittpunkt von K mit H ist die Ecke eines rechtwinkligen Dreiecks mit der Höhe h c. Es gilt h c = ab bzw. h c = ab b Fc a nwendung Höhensatz

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

I. Zugänge zum Satz des Pythagoras in der Schule

I. Zugänge zum Satz des Pythagoras in der Schule Prof. S. Krauter FD Geometrie. Pythagoras-Thales.doc 1 I. Zugänge zum Satz des Pythagoras in der Schule 0. Vorübungen: Inhaltsgleiche Flächenstücke Warum sind die folgenden Flächenstücke (rot schraffiert

Mehr

Begründen in der Geometrie

Begründen in der Geometrie Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

4 Ähnlichkeitsabbildungen

4 Ähnlichkeitsabbildungen EINFÜHRUNG IN DIE GEOMETRIE SS 05 41 DEISSLER 4 Ähnlichkeitsaildungen eispiele Verkleinerungen, Vergrößerungen ijektive, geradentreue ildungen, ei denen die Winkel erhalten werden, aer nicht notwendig

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

3. Ähnlichkeitsabbildungen

3. Ähnlichkeitsabbildungen 3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen.

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Geometrie Begriffe und Formeln

Geometrie Begriffe und Formeln Geometrie Begriffe und Formeln Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres Universums

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen

Mehr

Geometrie: I. Vorkenntnisse Übungenn

Geometrie: I. Vorkenntnisse Übungenn Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

DOWNLOAD. Konstruieren von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner

DOWNLOAD. Konstruieren von Figuren. Kopiervorlagen zum Grundwissen Ebene. Grundwissen Ebene Geometrie. Michael Körner DOWNLOAD Michael Körner Konstruieren von Figuren Kopiervorlagen zum Grundwissen Ebene Michael Körner Grundwissen Ebene Geometrie 5. 10. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel:

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Geometrie. Grundwissenskatalog G8-Lehrplanstandard

Geometrie. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Geometrie Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen 3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

2. Kongruenzsätze (SWS und SSS) ohne Parallelen. 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Satz von Pythagoras. Ich mache eine saubere, klare Konstruktionszeichnung und markiere das Resultat (rot)

Satz von Pythagoras. Ich mache eine saubere, klare Konstruktionszeichnung und markiere das Resultat (rot) Mathplan 8.8.1 Geometrie Dreiecke Satz von Pythagoras Name: Hilfsmittel : Geometrie Zeitvorschlag: Wochen von: Lernkontrolle am: bis c M b s b Probe 8.8.1 a Wichtige Punkte: Ich mache eine saubere, klare

Mehr

Merkwürdige Punkte und Geraden am Dreieck

Merkwürdige Punkte und Geraden am Dreieck Merkwürdige Punkte und Geraden am Dreieck Von Florian Modler Juli 2006 Der Satz von Ceva Der Satz von Menelaus Merkwürdige Punkte und Linien im Dreieck Punkte und Geraden am Dreieck Thema I Florian Modler

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8

Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8 Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8 Lisa Sauermann März 2013 Geometrie ist ein wichtiges Gebiet bei der Olympiade, das neben viel Kreativität und einem geübtem Auge auch einige

Mehr

Wie heißen die römischen Zahlzeichen für 1, 5, 10, 50, 100, 500 und 1000?

Wie heißen die römischen Zahlzeichen für 1, 5, 10, 50, 100, 500 und 1000? Wie heißen die Teile der Addition? Summand plus Summand = Summe Wie heißen die Teile der Subtraktion? Minuend minus Subtrahend = Differenz Wie heißen die Teile der Multiplikation? Multiplikand mal Multiplikator

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 DIE MERKWÜRDIGEN PUNKTE DES DREIECKS REITSLTT 14 1) Der Höhenschnittpunkt DIE MERKWÜRDIGEN PUNKTE DES DREIECKS Definition: Unter einer Höhe versteht man eine Normale auf eine Seite zum gegenüberliegenden Eckpunkt. Die Höhe h c steht also

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 999 Runde ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000 . Landeswettbewerb Mathematik ayern. Runde 999/000 ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Weitere geometrische Abbildungen

Weitere geometrische Abbildungen Weitere geometrische Abbildungen Anna Wegener, Matthias Wegen, Daniel Kretschmer 15.01.2015 1 / 38 Affinitätsabbildungen - Motivation Kongruenzabbildungen Ähnlichkeitsabbildungen Affinitätsabbildungen

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

LEHRSÄTZE der elementaren GEOMETRIE

LEHRSÄTZE der elementaren GEOMETRIE Lehrsätze der elementaren Geometrie. Ein PAUMEDIA-Projekt Herbert Paukert. 1 LEHRSÄTZE der elementaren GEOMETRIE Version 2.0 Herbert Paukert Grundlagen der Abbildungsgeometrie [ 02 ] Das Koordinatensystem

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

Geometrie am Computer Werkstattposten

Geometrie am Computer Werkstattposten 2 Höhen im Dreieck Erleben, wie Höhenschnittpunkt aus dem Innern des Dreiecks über eine Ecke ins Gebiet ausserhalb des Dreiecks want. Flächenberechnungen im Dreieck. 1. Konstruiere die Höhen in einem spitzwinkligen

Mehr

G e o m e t r i e Ähnlichkeit

G e o m e t r i e Ähnlichkeit G e o m e t r i e Ähnlichkeit uf Java und Bali in Indonesien hat das Schattenspiel, das Wayang kulit (wayang = Theater, kulit = Haut) eine jahrhundertealte Tradition. Im Wayang kulit wird in hinduistischen

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil

3 Mit geometrischen. Figuren arbeiten. der Drachen. der Baseball. das Hüpfkästchen. das Gummiseil Mit geometrischen Figuren arbeiten der aseball der Drachen das Hüpfkästchen das Gummiseil Was machen die Kinder auf dem ild? Schreibe drei bis fünf Sätze in dein Heft. Welche geometrischen Figuren siehst

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016

Stoffplan Mathematik G9. Klasse 5. Zahlen. Größen. ebene Geometrie. Terme. Flächen und Körper. Stand 5/2016 Stoffplan Mathematik G9 Stand 5/2016 Klasse 5 Zahlen natürliche Zahlen, Anordnung auf dem Zahlenstrahl. Vorgänger, Nachfolger. Stellenwertsystem. Grundrechenarten, schriftliche Verfahren. Begriffe: Summand/Summe,

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Dreieckskonstruktionen und Kongruenzsätze

Dreieckskonstruktionen und Kongruenzsätze Dreieckskonstruktionen und Kongruenzsätze 27. Oktober 2009 Vertr. Prof. Dr. Katja Krüger Universität Paderborn Didaktik der Geometrie II (Klasse 7-10) 1 Inhalt Was sollen eigentlich Figuren sein? Kongruente

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)

Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P) SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

LÖSUNG ELEMTARGEOMETRIE AUFGABE 1 P''' P'' -1 1

LÖSUNG ELEMTARGEOMETRIE AUFGABE 1 P''' P'' -1 1 LÖSUNG ELEMTRGEOMETRIE UFGE 1 GHS/LT, THEM I, UFGE ; RL/LT, THEM I, UFGE ; SOPÄD/NEU, THEM I, UFGE ; GHS/NEU, THEM I, UFGE ; RL/NEU, THEM I, UFGE UFGE Entsprechend bbildung 1 wird der Punkt der Reihe nach

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 00 Runde ufgabe Yannick besitzt gleichseitige reiecke, Quadrate sowie regelmäßige Sechs- und chtecke, die alle dieselbe Seitenlänge haben. Er legt damit ohne Lücken und Überlappungen regelmäßige Muster.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse

Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse k mam 1. näher bei M als bei A (Entfernung von 2 Punkten) 2. weniger als 35mm von A entfernt (Entf. von

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

3 Längenmessung, Flächeninhalt, Ähnlichkeit

3 Längenmessung, Flächeninhalt, Ähnlichkeit 28 3 Längenmessung, Flächeninhalt, Ähnlichkeit 3.1 Längenmessung von Strecken Durch das Axiom (D1) haben wir jeder (nicht zu einem Punkt entarteten) Strecke eine positive reelle Zahl zugewiesen, die wir

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr