Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013

Größe: px
Ab Seite anzeigen:

Download "Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013"

Transkript

1 Forschunsprojekte und Independent Coursework Prof. Dr. Christian Herta 29. Januar 2013

2 Forschungsgebiete Suchtechnologie, Text- und Webmining Verarbeitung unstrukturierter Daten, insbesondere Text Large scale Data-Analysis Hadoop-Ökosystem, Spark Maschinelles Lernen, Neuronale Netze, Deep Learning

3 Ziel: Aufbau eines Informationssystem Lehre/Lernen Datenbasis Webseiten, insbesondere Crawling der deutschen Hochschulwebseiten Skripte im pdf-format, etc. Anleitungen weitere Wissenbasen Soziale Interaktion Empfehlungen, Einstufen des Niveaus der Scripte

4 Module - Forschungsthemen Im Rahmen des Forschungsprojektes: Module entwickeln Klassifikation Erzeugung von Metadaten zur Verbesserung der Suche

5 Ziel: Entwicklung von wiederverwendbaren Modulen Verwendung von vorgegebenen Technologien/Frameworks Programmiersprache Java, Buildsystem maven Solr, UIMA, Gate, OpenNLP, libsvm

6 Forschungsprojekte

7 Autoverschlagwortung Kandidatenerzeugung Nomen (POS-Tagging) Nominalphrasen (regex auf POS-Tags) Ranking mittels maschinelles Lernen (libsvm etc.) Klassifikationsentscheidung Zweiklassenproblem: yes/no

8 Hierarchische Dokumenten-Klassifikation mit Hilfe von Ontologien Aufbau eine Taxonony im RDF(S)/OWL Format (z.b. mit Protege) für eine oder mehrere Fachdomänen der Lehre, wie Informatik, BWL... Automatische Einordnung von (gespiderten) Dokumenten (Hochschulcrawl) in die Taxonomie

9 Web Wrapping Beschränkung auf: Extraktion von relevanten Text aus HTML-Webseiten am Beispiel eines Hochschulcrawls Technologie: UIMA, Bibliotheken des maschinellen Lernens, wie libsvm, opennlp oder Entwicklung eines Informationsextraktionsystems mittels XPath, etc für feste Hosts Entwicklungslastig wichtig saubere, generische Umsetzung

10 Autoencoder basierend auf Neuronalen Netzen zur Ähnlichkeitsberechnung Beispieldatensatz: Xing Crawl Ich biete C++, Java, Programmieren,.. Berechung Buchhaltung, Controlling Input: Tag-Cloud Ähnlichste Begriffe zur Tag-Cloud Bestehender Code-Basis Assoziert mit Deep Learning

11 Automatischer Aufbau von Domänen-Vokabular (am Beispiel: Fachdomäne der Lehre, wie Informatik, BWL...) Phrasenerkennung (Nominalphrasen) mit computerlinguistischen und statistischen Methoden (POS-Tagging etc.) Erzeugung von Domänenvokabular unter Verwendung von statistischen oder informationstheoretischen Maßen (Term- Häufigkeitsverteilungen, Vergleichskorpora) oder mittels maschinellen Lernens (wie opennlp)

12 Entwicklung einer webbasierten Nutzerschnittstelle für das Lehr-/Lerninformationssystem auch als Kleingruppenarbeit inkl. Bewertungen und soziale Interaktion Technologie: Backend: JavaEE 6 oder Spring DI/MVC/Security/Data Persistenz und Suche: JPA, Solr und NoSql Datenbanken Viewtechnologie und Client: Vaadin, Freemarker, JSF, JSP, JQuery

13 Big Data und Online-Abfragen auf großen textuellen Datenquellen Datenhaltung in Dokumentendatenbanken, Columnstores, spezielle Datenstrukturen zur schnellen Abfrage Abfragen mittels Hearstpattern Spark zur Analyse von textuellen Daten Pig Latin Korpus z.b. Wikipedia und Crawls.. neben Text auch Linkgraph, Kategoriensystem etc. Vorverarbeitung: UIMA-Pipeline

14 Untersuchung und Vergleich verschiedener Verteilungsplattformen in Bezug auf die Anwendbarkeit im Data-Mining -speziell auf Deep Learning von Neuronalen Netzen. Hadoop Apache Hama Spark Nephele/PACT (TU Berlin) SciDB (Stonebraker)

15 Randbedingungen für Forschungsprojekt Programmiersprache: Java, Scala, (Groovy, Clojure) Verwenden von vorgegebenen Infrastrukturkomponenten und Bibliotheken, wie UIMA, Solr, Softwarequalität TDD Projektorganisation Regelmäßige Treffen (2-Wochen Rhythmus) Zielsetzung und Vorstellung der Ergebnisse

16 Independent Cousework Idealerweise assoziert zu den Forschungsprojekten als Independent Study Independent Production (z.b. Prototyp für Scriptbewertungen) auch in Verbindung mit Lehrbuch und korrespondierendem Beispielcode, wie Bücher Algorithms of the intelligent web, collective intelligence in action, groovy for domain specific languages Medienanalyse Monitoring of the social Web Trenderkennung, Opinion Mining Evaluation und Beipielprojekt mit Apache Stanbol

Logo MIA. Ein cloud basierter Marktplatz für Informationen und Analysen auf dem deutschsprachigen Web

Logo MIA. Ein cloud basierter Marktplatz für Informationen und Analysen auf dem deutschsprachigen Web Logo MIA Ein cloud basierter Marktplatz für Informationen und Analysen auf dem deutschsprachigen Web MIA Konsortium Ausgangslage Das deutschsprachige Web mit derzeit mehr als sechs Milliarden Webseiten

Mehr

Historisches Forschungsnetz. Eine virtuelle Forschungsumgebung. Daniel Burckhardt / Thomas Meyer, Humboldt-Universität zu Berlin

Historisches Forschungsnetz. Eine virtuelle Forschungsumgebung. Daniel Burckhardt / Thomas Meyer, Humboldt-Universität zu Berlin Historisches Forschungsnetz Eine virtuelle Forschungsumgebung Daniel Burckhardt / Thomas Meyer, Humboldt-Universität zu Berlin (Virtuelle) Forschung (Virtuelle) Forschung in Geschichtswissenschaften Arbeitstechniken

Mehr

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Textanalyse mit UIMA und Hadoop Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Über mich seit 2014: Big Data Scientist @ Inovex 2011-2013: TU Darmstadt, UKP Lab Etablierung der Hadoop-Infrastruktur Unterstützung

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit!

Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit! Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit! Unser Angebot Praktikant/Werkstudent (m/w) im Bereich CRM-Client-Entwicklung Praktikant/Werkstudent

Mehr

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG DB Fernverkehr AG Dr.-Ing. Axel Schulz, Dr. Matthias Platho P.FMB 2, DB Fernverkehr AG Frankfurt, 22.05.2015 Motivation An meinem

Mehr

INFORMATIONSLOGISTIK VERSUS SUCHE. Wie die aktive Bereitstellung von Informationen hilft, Zeit zu sparen und Ziele zu erreichen

INFORMATIONSLOGISTIK VERSUS SUCHE. Wie die aktive Bereitstellung von Informationen hilft, Zeit zu sparen und Ziele zu erreichen INFORMATIONSLOGISTIK VERSUS SUCHE Wie die aktive Bereitstellung von Informationen hilft, Zeit zu sparen und Ziele zu erreichen 2 Informationslogistik versus Suche Inhalt Seite Thema 3 Suchen 3 Grundlegende

Mehr

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer

Semantic Web. Anwendungsbereiche & Entwicklungen. http://www.know-center.at. Dr. Michael Granitzer Semantic Web Anwendungsbereiche & Entwicklungen Dr. Michael Granitzer - gefördert durch das Kompetenzzentrenprogramm Agenda Die Vision und warum das Semantic Web Sinn macht Grundlagen: Wissensrepräsentation

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

design kommunikation development

design kommunikation development http://www.dkd.de dkd design kommunikation development Apache Solr - A deeper look Stefan Sprenger, Developer dkd Olivier Dobberkau, Geschäftsführer dkd Agenda Einführung Boosting Empfehlungen Ausblick

Mehr

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818

Text Mining Praktikum. Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Text Mining Praktikum Durchführung: Andreas Niekler Email: aniekler@informatik.uni-leipzig.de Zimmer: Paulinum (P) 818 Rahmenbedingungen Gruppen von 2- (max)4 Personen Jede Gruppe erhält eine Aufgabe Die

Mehr

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN T-SYSTEMS MULTIMEDIA SOLUTIONS GMBH, 16. FEBRUAR 2012 1. Schlüsselworte Semantic Web, Opinion Mining, Sentiment Analysis, Stimmungsanalyse,

Mehr

Diplomarbeit: GOMMA: Eine Plattform zur flexiblen Verwaltung und Analyse von Ontologie Mappings in der Bio-/Medizininformatik

Diplomarbeit: GOMMA: Eine Plattform zur flexiblen Verwaltung und Analyse von Ontologie Mappings in der Bio-/Medizininformatik Diplomarbeit: GOMMA: Eine Plattform zur flexiblen Verwaltung und Analyse von Ontologie Mappings in der Bio-/Medizininformatik Bearbeiter: Shuangqing He Betreuer: Toralf Kirsten, Michael Hartung Universität

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Rainer Klapper QS solutions GmbH

Rainer Klapper QS solutions GmbH Rainer Klapper QS solutions GmbH Der Handlungsbedarf Die CRM-Welt ist umgeben von Social Media Foren Communities Netzwerke CRM Blogs Fehlende Prozessintegration wird zunehmend zum Problem Wir bauen Brücken

Mehr

BRANCHENSCHWERPUNKTE Energiewirtschaft Customer Relationship Management

BRANCHENSCHWERPUNKTE Energiewirtschaft Customer Relationship Management PROFIL (KURZFORM) MARTIN LÜHRING FACHLICHE SCHWERPUNKTE Fachliche Anforderungsanalyse und Konzeption von Geschäftsprozessen Technische Konzeption und Implementierung von komplexen Datenbankbankanwendungen

Mehr

Von der digitalisierten zur analysierten Welt

Von der digitalisierten zur analysierten Welt Von der digitalisierten zur analysierten Welt CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Die digitalisierte Welt Auf dem Weg in die digitalisierte Welt Der Kunde

Mehr

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Iryna Gurevych Sprachtechnologie-Feuerwerk: Aktuelle Anwendungsbeispiele und Zukunftsvisionen

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur

Suchmaschinen. Anwendung RN Semester 7. Christian Koczur Suchmaschinen Anwendung RN Semester 7 Christian Koczur Inhaltsverzeichnis 1. Historischer Hintergrund 2. Information Retrieval 3. Architektur einer Suchmaschine 4. Ranking von Webseiten 5. Quellenangabe

Mehr

Smart Content Creation and Annotation (SCCA)

Smart Content Creation and Annotation (SCCA) Smart Content Creation and Annotation (SCCA) Statusmeeting, 7. Oktober 2014 Agenda 1) Einleitung 2) Text Mining bei Neofonie 3) Text Mining für Unternehmen 4) Aufbau von Fachlexika 5) Big-Data-Technologien

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.

Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....

Mehr

MICHAEL RÜGER. Abschluss Diplom Fach Informatik. Geburtsjahr 1985 Profil-Stand April 2015

MICHAEL RÜGER. Abschluss Diplom Fach Informatik. Geburtsjahr 1985 Profil-Stand April 2015 MICHAEL RÜGER Abschluss Diplom Fach Informatik Geburtsjahr 1985 Profil-Stand April 2015 Triona Information und Technologie GmbH Wilhelm-Theodor-Römheld-Str. 14 55130 Mainz Fon +49 (0) 61 31 9 21-122 Fax

Mehr

Datenanalyse im Web. Einführung in das Thema. Prof. Dr. Ingo Claÿen. Beispiele für Daten im Web. Extraktion und Aggregation von Informationen

Datenanalyse im Web. Einführung in das Thema. Prof. Dr. Ingo Claÿen. Beispiele für Daten im Web. Extraktion und Aggregation von Informationen Datenanalyse im Web Einführung in das Thema Prof. Dr. Ingo Claÿen Hochschule für Technik und Wirtschaft Berlin Beispiele für Daten im Web Extraktion und Aggregation von Informationen Datenanalyse im Web

Mehr

Was Forschung von Lehre lernen kann Metadaten-Management im E-Learning

Was Forschung von Lehre lernen kann Metadaten-Management im E-Learning Was Forschung von Lehre lernen kann Metadaten-Management im E-Learning Prof. Dr.-Ing. habil. Ulrike Lucke Maximaler Raum für Titelbild (wenn kleiner dann linksbündig an Rand angesetzt) 1 Warum Metadaten?

Mehr

09.06.2003 André Maurer andre@maurer.name www.andre.maurer.name Wirtschaftsinformatik FH 3.5 Fachhochschule Solothurn, Olten

09.06.2003 André Maurer andre@maurer.name www.andre.maurer.name Wirtschaftsinformatik FH 3.5 Fachhochschule Solothurn, Olten Aktuelle Themen der Wirtschaftsinformatik Zusammenfassung 09.06.2003 André Maurer andre@maurer.name www.andre.maurer.name Wirtschaftsinformatik FH 3.5 Fachhochschule Solothurn, Olten 1 Serverseitige Webprogrammierung

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

C O C O O N. Wo ist Cocoon in die Apache Projekte einzureihen?

C O C O O N. Wo ist Cocoon in die Apache Projekte einzureihen? C O C O O N ein Web-Framework der Apache Software Foundation http://www.apache.org Wo ist Cocoon in die Apache Projekte einzureihen? Apache Server sehr leistungsfähiger HTTP-Server Tomcat Server Referenzimplementierung

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

5. Programmierschnittstellen für XML

5. Programmierschnittstellen für XML 5. Programmierschnittstellen für Grundlagen Dr. E. Schön FH Erfurt Sommersemester 2015 Seite 135 Programmierschnittstelle Notwendigkeit: Zugriff auf -Daten durch Applikationen wiederverwendbare Schnittstellen

Mehr

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher:

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher: Quellen: Towards a Human Computer InteractionPerspective von B.K. & B.K. LV: Visuelle Sprachen (03-763) Universität Bremen WS 2001/02 Visual Language Theory: Towards a Human- Computer Perspective; N. Hari

Mehr

Forschungsprojekt SS 2009

Forschungsprojekt SS 2009 Forschungsprojekt SS 2009 Programmierung verteilter Systeme Institut für Informatik Universität Augsburg 86135 Augsburg Tel.: +49 821 598-2118 Fax: +49 821 598-2175 Web: www.ds-lab.org Gliederung n Ziel

Mehr

5. Programmierschnittstellen für XML

5. Programmierschnittstellen für XML 5. Programmierschnittstellen für für Medientechnologen Dr. E. Schön Wintersemester 2015/16 Seite 146 Notwendigkeit: Programmierschnittstelle Zugriff auf -Daten durch Applikationen wiederverwendbare Schnittstellen

Mehr

Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit!

Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit! Finden Sie Ihr IT-Wunschpraktikum oder eine engagieren Sie sich bei uns mit einer längerfristigen Werkstudentätigkeit! Unser Angebot Werkstudent (m/w) im Bereich Sales und Account Management Werkstudent/in

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH USER CASE: 2. Scout User Group Meeting eclipsecon Unconference 2015 LUDWIGSBURG, 2. NOVEMBER 2015» DAVID KLEIN, ENRION GMBH Content 1. Kurzvorstellung Enrion 2. Die Suche nach einem passenden Framework

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

ShopBot, ein Software-Agent für das Internet

ShopBot, ein Software-Agent für das Internet Software-Agenten p.1/20 ShopBot, ein Software-Agent für das Internet Eine Einführung in (Software-)Agenten Madeleine Theile Software-Agenten p.2/20 Aufbau des Vortrags grundlegende Theorie Definition Autonomy,

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Prof. Dr. Udo Hahn. Seminar im Modul M-GSW-09 WiSe 2015/2016

Prof. Dr. Udo Hahn. Seminar im Modul M-GSW-09 WiSe 2015/2016 Seminar im Modul M-GSW-09 WiSe 2015/2016 Prof. Dr. Udo Hahn Lehrstuhl für Angewandte Germanistische Sprachwissenschaft / Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität

Mehr

Rechnernetze Projekt SS 2015

Rechnernetze Projekt SS 2015 30/03/15 Seite 1 Aspektorientierte Programmierung logische Aspekte (Concerns) im Programm separieren Crosscutting Concerns (Ziel: generische Funktionalitäten über mehrere Klassen hinweg zu verwenden -

Mehr

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Boreas

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Boreas Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Boreas Ansprechpartner/in: Frau Nadine Fend Tel. +49 (5341) 29359-13 E-Mail: n.fend@aw-systems.net Website: www.aw-systems.net AW-SYSTEMS GmbH Moränenweg 90

Mehr

Existierende Systeme I Bibliotheken & Frameworks

Existierende Systeme I Bibliotheken & Frameworks Projektgruppe: Generierung von Webanwendungen aus visuellen Spezifikationen Existierende Systeme I Bibliotheken & Frameworks Von Christian Schneider Paderborn, den 18.06.2004 Übersicht Motivation Dynamische

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Kooperatives Forschungsprojekt Online-Brief-Datenbank. Ein Beispiel für disziplinspezifische Anwendungen

Kooperatives Forschungsprojekt Online-Brief-Datenbank. Ein Beispiel für disziplinspezifische Anwendungen Kooperatives Forschungsprojekt Online-Brief-Datenbank. Ein Beispiel für disziplinspezifische Anwendungen Hochschule Darmstadt Hartmut Vinçon Uta Störl Editions- und Forschungsstelle Frank Wedekind Fachbereich

Mehr

Integration von ecodicology in die DARIAH Dienstewelt

Integration von ecodicology in die DARIAH Dienstewelt Integration von ecodicology in die DARIAH Dienstewelt Danah Tonne, Rainer Stotzka KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Bereiche der KI. KI und das Web Eine Übersicht. Allgemeines zur KI. Einfluss der KI auf die Informatik. Herausforderungen im Web

Bereiche der KI. KI und das Web Eine Übersicht. Allgemeines zur KI. Einfluss der KI auf die Informatik. Herausforderungen im Web Bereiche der KI KI und das Web Eine Übersicht Web Site Engineering, Vorlesung Nr. 13 Neuronale Netze Suchverfahren Expertensysteme Fallbasiertes Schließen (Case-Based Reasoning) Planen Maschinelles Lernen

Mehr

Data Warehousing 0-1. DBS-Module

Data Warehousing 0-1. DBS-Module Data Warehousing Sommersemester 2014 Prof. Dr. E. Rahm Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de 0-1 DBS-Module Master-Studium Informatik 10-202-2215 Moderne Datenbanktechnologien

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Text-Mining: Einführung

Text-Mining: Einführung Text-Mining: Einführung Claes Neuefeind Fabian Steeg 22. April 2010 Organisatorisches Was ist Text-Mining? Definitionen Anwendungsbeispiele Textuelle Daten Aufgaben u. Teilbereiche Literatur Kontakt Sprechstunde:

Mehr

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen zusätzliche Informationen, Registrierung, Upload, Übungsblätter Aufgaben aus dem Bereich Data-, Text- und Web-Mining Crawling, Textanalyse, Textklassifizierung,

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen Big Data Modewort oder echter Mehrwert freenet Group Dr. Florian Johannsen freenet Group 2 Titel der Präsentation 07.07.2015 Mobilfunkgeschäft der freenet Group Austausch von Daten und Informationen Im

Mehr

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse?

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Ein Beispiel Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Dipl.-Kfm. Claus Häberle WS 2015 /16 # 42 XML (vereinfacht) visa

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion

Web Information Retrieval. Zwischendiskussion. Überblick. Meta-Suchmaschinen und Fusion (auch Rank Aggregation) Fusion Web Information Retrieval Hauptseminar Sommersemester 2003 Thomas Mandl Überblick Mehrsprachigkeit Multimedialität Heterogenität Qualität, semantisch, technisch Struktur Links HTML Struktur Technologische

Mehr

Datenbanken-Themen im OS "Data Mining" SS 2010

Datenbanken-Themen im OS Data Mining SS 2010 Prof. Dr.-Ing. Thomas Kudraß HTWK Leipzig, FIMN Datenbanken-Themen im OS "Data Mining" SS 2010 Die Vorträge sollten eine Dauer von 60 Minuten (Einzelvortrag) bzw. 45 Minuten (Doppelvortrag) haben. Nachfolgend

Mehr

Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale?

Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale? Text Welche Textklassifikationen gibt es und was sind ihre spezifischen Merkmale? Textklassifikationen Natürliche bzw. unstrukturierte Texte Normale Texte ohne besondere Merkmale und Struktur Semistrukturierte

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

SharePoint 2013 als Wissensplattform

SharePoint 2013 als Wissensplattform SharePoint 2013 als Wissensplattform Daniel Dobrich & Darius Kaczmarczyk 29.11.2012 7. SharePoint UserGroup Hamburg Treffen 1 Themen Verwaltete Metadaten in SharePoint 2013 Was sind verwaltete Metadaten

Mehr

CitStorm. TU Berlin - Fachbereich CIT Kay Fleischmann Fridtjof Sander Gert Geidel Michael Thomas Constantin Gaul Thomas Misch. April, 09.

CitStorm. TU Berlin - Fachbereich CIT Kay Fleischmann Fridtjof Sander Gert Geidel Michael Thomas Constantin Gaul Thomas Misch. April, 09. CitStorm TU Berlin - Fachbereich CIT Kay Fleischmann Fridtjof Sander Gert Geidel Michael Thomas Constantin Gaul Thomas Misch April, 09. 2014 Projektbeschreibung ZIELSETZUNG Operatoren mit Twitter Storm

Mehr

Scandio SEBOL Search

Scandio SEBOL Search : : :, München Inhalt 1. Was ist SEBOL?...3 2. Index-Server...4 2.1. Warteschlange zur Indizierung...4 2.2. Plugin-Abarbeitung...4 2.3. Erweiterte Lucene-Indizierung...4 2.4. Index-Verteilung und Management...5

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Freiberuflicher IT Berater

Freiberuflicher IT Berater Freiberuflicher IT Berater Dipl. Informatiker André Winkler Festnetz: 040-76 75 16 24 Mobil: 0176-48 57 90 88 Email: mail@andre-winkler.de Anschrift: Mensingstr 29a, 21079 Hamburg ANDRE WINKLER Freiberuflicher

Mehr

Java für Computerlinguisten

Java für Computerlinguisten Java für Computerlinguisten 4. Computerlinguistische Anwendungen Christian Scheible Institut für Maschinelle Sprachverarbeitung 30. Juli 2009 Christian Scheible Java für Computerlinguisten 30. Juli 2009

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr

Ontologiegestützte Suche in unstrukturierten Daten

Ontologiegestützte Suche in unstrukturierten Daten Ontologiegestützte Suche in unstrukturierten Daten Veranstalter: Prof. Dr. Lausen Betreuer: Kai Simon, Thomas Hornung (Team) Projekt Anforderungen Bachelor (6 ECTS) [entsprechen 180 Stunden] Softwareentwicklung

Mehr

Technische Aspekte einer Videosuchmaschine. Björn Wilmsmann, CEO - MetaSieve GmbH

Technische Aspekte einer Videosuchmaschine. Björn Wilmsmann, CEO - MetaSieve GmbH Technische Aspekte einer Videosuchmaschine Björn Wilmsmann, CEO - MetaSieve GmbH 1 Über MetaSieve http://www.metasieve.com Softwareentwicklung Internet Software Spezialisiert auf Suchmaschinentechnologie

Mehr

Data Mining mit RapidMiner

Data Mining mit RapidMiner Motivation Data Mining mit RapidMiner CRISP: DM-Prozess besteht aus unterschiedlichen Teilaufgaben Datenvorverarbeitung spielt wichtige Rolle im DM-Prozess Systematische Evaluationen erfordern flexible

Mehr

Semantic Web Praktikum..und andere Praktika... WS 2004/05

Semantic Web Praktikum..und andere Praktika... WS 2004/05 Semantic Web Praktikum..und andere Praktika... WS 2004/05 Robert Baumgartner, Jürgen Dorn, Georg Gottlob, Marcus Herzog KFK Semantic Web Kernfachkombination Wirtschaftsinformatik Vertiefendes Wahlfach

Mehr

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr.

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Florian Johannsen AGENDA 1. Big Data Projekt der freenet Group Dr. Florian Johannsen

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Full Text Search in Databases

Full Text Search in Databases Full Text Search in Databases Verfasser: Stefan Kainrath (0651066) h0651066@wu-wien.ac.at 0664/1327136 Betreuer: Dipl.-Ing. Mag. Dr. Albert Weichselbraun Inhaltsverzeichnis 1 Motivation... 3 2 Anforderungen...

Mehr

Von genial bis kriminell: Semantik und das Überleben im Web 2.0

Von genial bis kriminell: Semantik und das Überleben im Web 2.0 Von genial bis kriminell: Semantik und das Überleben im Web 2.0 Thomas Servatius Head of Hosting & Domains Europe and Shopping LYCOS Europe GmbH eco Kongress 2008_BEYOND THE BORDERS 11.09.2008 Agenda Einführung

Mehr

neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR

neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR neofonie DER SPEZIALIST FÜR IHRE INFORMATIONSARCHITEKTUR Suchportale der nächsten Generation Dr. Thomas Schwotzer Leiter Forschung, neofonie Suche eine Folien Geschichte 1993: Beginn der HTML-Ära 1993

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Projekt zur Lehrveranstaltung Informationssysteme

Projekt zur Lehrveranstaltung Informationssysteme Prof. Dr.-Ing. Thomas Kudraß Dipl.-Math. Dörte König HTWK Leipzig, F IMN Projekt zur Lehrveranstaltung Informationssysteme Das Projekt ist in drei Teile aufgeteilt, die den Phasen eines Data-Warehouse-Projekts

Mehr

DSHL7: Eine Domain Specific Language für HL7v3 in Scala

DSHL7: Eine Domain Specific Language für HL7v3 in Scala DISL Seven DSHL7: Eine Domain Specific Language für HL7v3 in Scala Markus Gumbel, Ahmet Gül Institut für Medizinische Informatik Überblick Motivation: Warum eine DSL für HL7v3? Ansätze für eine DSL Beispiel:

Mehr

Java für C++ Programmierer

Java für C++ Programmierer Java für C++ Programmierer Alexander Bernauer bernauer@inf.ethz.ch Einführung in die Übungen zu Informatik II (D ITET) FS2010 ETH Zürich Ziel Allgemeiner Überblick Kennenlernen der Suchbegriffe Warum Java?

Mehr

Entwicklung einer Probandenverwaltung im Rahmen der SHIP-Studie in Greifswald

Entwicklung einer Probandenverwaltung im Rahmen der SHIP-Studie in Greifswald Entwicklung einer Probandenverwaltung im Rahmen der SHIP-Studie in Greifswald Dörte Radke Institut für Community Medicine, Universitätsmedizin Greifswald 12. Juni 2013 Überblick 1 SHIP-Probandenmanagement

Mehr

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04.

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04. Folie Retargeting intelligent Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Big Data Analytics Roadshow Düsseldorf, 24.04.2012 Nils Grabbert Director Data Science Der Retargeting

Mehr

Programmierung von Java- Webanwendungen. paluno

Programmierung von Java- Webanwendungen. paluno Programmierung von Java- Webanwendungen Gliederung 1 Vorstellung und Einführung 2 Basiswissen Web 3 XML und JSF- Einführung 4 JSF- Komponenten und RichFaces 5 Wiederholung der ersten Woche 6 JSF- Konzepte

Mehr

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Boreas

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Boreas Softwaremanufaktur AW-SYSTEMS Kompetenzprofil Boreas Ansprechpartner/in: Frau Nadine Fend Tel. +49 (5341) 29359-13 E-Mail: n.fend@aw-systems.net Website: www.aw-systems.net AW-SYSTEMS GmbH Moränenweg 90

Mehr

EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN

EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN Isabella Eckel, BMW Group Dr. Christian Winkler, mgm technology partners GmbH EXPLORATION VON GEOSPATIALEN AUTOMOTIVE-DATEN VISUALISIERUNG VON FAHRZEUG-SENSORDATEN WISSENSEXTRAKTION AUS FAHRZEUG-SENSORDATEN

Mehr

Semantische Infomationsintegration à la carte?

Semantische Infomationsintegration à la carte? Semantische Infomationsintegration à la carte? Ziele und Herausforderungen der Anwendung des CIDOC CRM. Historisch-Kulturwiss. Informationsverarbeitung, Universität Köln 1. Oktober 2010 1 Ein User Scenario

Mehr

Modulhandbuch für das BA Kombinationsfach Angewandte Informatik Multimedia

Modulhandbuch für das BA Kombinationsfach Angewandte Informatik Multimedia Modulhandbuch für das BA Kombinationsfach Angewandte Informatik Multimedia Kenntnisse im Programmieren für das World Wide Web mit der Programmiersprache JAVA werden vermittelt, ebenso das Erstellen von

Mehr

Expertise. Diplom-Informatiker (FH) Matthias Strolz. Ausbildung. Sprachen. Programmiersprachen. Betriebssysteme. Server. Zertifizierungen.

Expertise. Diplom-Informatiker (FH) Matthias Strolz. Ausbildung. Sprachen. Programmiersprachen. Betriebssysteme. Server. Zertifizierungen. Diplom-Informatiker (FH) Matthias Strolz Geboren am: 12.07.1978, in Karlsruhe Reismühle 11 22087 Hamburg Telefon: 0163-409 444 8 E-Mail: mail@matthias-strolz.de Homepage: http://www.matthias-strolz.de

Mehr

Erfahrungen und Erkenntnisse. Klaus Richarz, HBT GmbH

Erfahrungen und Erkenntnisse. Klaus Richarz, HBT GmbH Erfahrungen und Erkenntnisse Klaus Richarz, HBT GmbH Java Enterprise Edition 5.0 JBoss Seam Konsequenzen für Realisierung Qualitätssicherung Build & Deployment Fazit & Empfehlungen JBoss Seam in Projekten,

Mehr

Wissen intelligent suchen & schneller nutzen. Semantic Enterprise Search & Information Discovery

Wissen intelligent suchen & schneller nutzen. Semantic Enterprise Search & Information Discovery Wissen intelligent suchen & schneller nutzen Semantic Enterprise Search & Information Discovery CID GmbH CID Consulting GmbH Pattern Science AG 200 Mitarbeiter 1997 gegründet 4 Standorte Hauptsitz in Freigericht,

Mehr

Alles außer Java! JVM-Sprachen sagen Happy Birthday

Alles außer Java! JVM-Sprachen sagen Happy Birthday JUGS 20 Jahre Java Alles außer Java! JVM-Sprachen sagen Happy Birthday Jan-Paul Buchwald BeOne Stuttgart GmbH 15 Jahre JVM Sprachen Jython Rhino 2001: JRuby Groovy Scala 2007: Clojure 1992 2002 2012 1992:

Mehr

32 Bachelorstudiengang Allgemeine Informatik

32 Bachelorstudiengang Allgemeine Informatik 32 Bachelorstudiengang Allgemeine Informatik (1) Im Studiengang Allgemeine Informatik umfasst das Grundstudium zwei. (2) Der Gesamtumfang der für den erfolgreichen Abschluss des Studiums erforderlichen

Mehr

Präsentation des Dissertationsvorhabens Erste Schritte. Carola Carstens Hildesheim, 15. Oktober 2007

Präsentation des Dissertationsvorhabens Erste Schritte. Carola Carstens Hildesheim, 15. Oktober 2007 Präsentation des Dissertationsvorhabens Erste Schritte Carola Carstens Hildesheim, 15. Oktober 2007 Überblick Rahmenbedingungen Institut Thematische Interessen Erste Schritte Erfassung des State of the

Mehr