Kapitel 2. Mathematik für Mikroökonomie

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2. Mathematik für Mikroökonomie"

Transkript

1 Kapitel Mathematik für Mikroökonomie 1

2 Mathematik der Optimierung Ökonomische Theorien basieren auf der Annahme, dass die Agenten versuchen, den optimalen Wert einer Funktion zu wählen. Konsumenten maximieren Nutzen Produzenten maximieren Profit

3 Funktionen mit einer Variablen Der Manager einer Firma will den Profit maximieren: * f = f(q) (q) Maximum Profit von * bei q* q* Menge 3

4 Funktionen mit einer Variablen Der Manager variiert die Menge q um zu sehen wann der maximale Profit eintritt Eine Steigerung der Menge von q 1 nach q erhöht * = f(q) 0 q 1 q 1 q q* Menge 4

5 Funktionen mit einer Variablen Wenn die Menge über q* gesteigert wird, fällt der Profit Eine Mengensteigerung von q* nach q 3 führt zu einer Abnahme von * 3 = f(q) 0 q q* Menge q 3 5

6 Ableitungen Die Ableitung von = f(q) ist der Grenzwert von /q für sehr kleine Änderungen von q d dq df dq f ( q1 h) f ( q1) lim h0 h Der Wert hängt von q 1 ab. 6

7 Der Wert einer Ableitung in einem Punkt Wenn die Ableitung an der Stelle q = q 1 gebildet wird, schreibt man: d dq q q 1 In unserem vorherigen Beispiel, d dq qq 1 0 d dq qq 3 0 d dq qq* 0 7

8 Bedingung erster Ordnung für ein Maximum Damit eine Funktion mit einer Variablen ein Maximum in einem Punkt erreicht, muss die Ableitung in diesem Punkt Null sein. df dq qq* 0 8

9 Bedingung zweiter Ordnung Die Bedingung erster Ordnung (d/dq) ist eine notwendige Bedingung für ein Maximum aber keine hinreichende Bedingung. Wenn die Profitfunktion eine u-form Hätte, würde die Bedingung erster Ordnung zu q* führen, bei dem minimiert! wird. * q* Menge 9

10 Bedingung zweiter Ordnung Damit q* ein Optimum ist, muss also gelten, d 0 für q dq q* und d dq 0 für q q* Bei q*, muss d/dq fallen, also muss die Ableitung von d/dq bei q* negativ sein. Eine zweite Ableitung schreibt man: d dq d f oder dq oder Damit ist die Bedingung zweiter Ordnung für ein lokales Maximum: d f " ( q) qq dq * qq* f "( q) 0 10

11 Funktionen mit mehreren Variablen Viele Zielfunktionen von ökonomischen Agenten hängen von mehreren Variablen ab. Daher gibt es trade-offs. Die Abhängigkeit einer Variablen (y) von einer Reihe anderer (x 1,x,,x n ) schreibt man y f ( x, x,..., x 1 n ) 11

12 Partielle Ableitungen Die partielle Ableitung von y nach x1 schreibt man y x 1 f oder oder f x oder f 1 x 1 1 oder f x, 1 x..., x n lim h0 f ( x 1 h, x,..., x n ) h f ( x 1, x,..., x n ) Wenn man eine partielle Ableitung bildet, werden alle anderen x konstant gehalten ( ceteris paribus Annahme). 1

13 Partielle Ableitungen zweiter Ordnung Eine zweite partielle Ableitung schreibt man ( f / xi ) x j Die Reihenfolge, in der zweite Ableitungen gebildet werden ist unwichtig für das Ergebnis (Young s Theorem). f ij x f j ji f x i f ij 13

14 Das totale Differential Angenommen y = f(x 1,x,,x n ), wenn alle x ein wenig variieren, dann wird der totale Effekt auf y gegeben durch dy f f dx1 dx... x x 1 f x n dx n dy f dx f dx f n dx n 14

15 Notwendige Bedingung für ein Maxiumum Eine notwendige Bedingung für ein Maximum der f(x 1,x,,x n ) ist das dy = 0 für jede Kombination kleiner Änderungen in den x. Das kann nur sein wenn: f1 f... fn An dieser Stelle hat die Funktion einen kritischen Punkt aber diese Bedingung ist nicht hinreichend für ein Maximum. Daher betrachten wir die partiellen Ableitungen zweiter Ordnung von f. 0 15

16 Bedingung zweiter Ordnung Funktion mit einer Variablen y=f(x): Eine notwendige Bedingung folgt aus dy/dy=f (x)=0. Um sicher zu sein, dass der gefundene Punkt ein Maximum ist betrachten wir nun Bewegungen von diesem Punkt weg. Das totale Differential gibt: dy=f (x)dx. Bei einem Maximum muss dy für kleine Erhöhungen von x fallen. Um die Veränderungen in dy zu sehen, betrachten wir die zweite Ableitung von y: d y d[ f '( x) dx] dx dx f "( x) dx dx f "( x) dx Damit d y< 0 muss f (x)dx < 0 und da dx >0 muss f (x) < 0. 16

17 Bedingung zweiter Ordnung Funktion mit mehreren Variablen y=f(x 1, x ): Bedingungen erster Ordnung für ein Maximum sind y/x 1 = f 1 = 0 y/x = f = 0 Damit dieser Punkt ein Maximum ist, muss y abnehmen, wenn wir uns in jede mögliche Richtung von diesem kritischen Punkt entfernen. (Berg-Analogie) f 1 und f müssen am kritischen Punkt abnehmen, aber zusätzliche Bedingung müssen auch für die partiellen Kreuzableitungen gelten. 17

18 Bedingung zweiter Ordnung Das totale Differential von y ist dy = f 1 dx 1 + f dx Das Differential dieser Funktion ist d y = (f 11 dx 1 + f 1 dx )dx 1 + (f 1 dx 1 + f dx )dx d y = f 11 dx 1 + f 1 dx dx 1 + f 1 dx 1 dx + f dx Aus Young s theorem folgt, f 1 = f 1 und d y = f 11 dx 1 + f 1 dx 1 dx + f dx Damit diese Gleichung für alle dx 1 und dx kleiner Null ist, müssen f 11 und f negativ sein. Falls weder dx 1 noch dx Null ist, so ist d y < 0 nur wenn f 11 f - f 1 > 0 18

19 Bedingung zweiter Ordnung f 11 f - f 1 > 0 Ist diese Bedingung und f 11 <0 erfüllt, ist die Matrix der zweiten partiellen Ableitungen (Hesse Matrix) negativ definit und die Zielfunktion konkav. Eine solche Funktion liegt immer unterhalb jeder Ebene, die die Funktion tangiert. Die Extensions in SN, S. 81 zeigen, wie sich diese Bedingungen zweiter Ordnung für mehr als zwei Variablen verhalten. 19

20 Maximierung unter Nebenbedingung Wenn sich eine (implizite) Nebenbedingung zu einer Wahlvariablen auflösen lässt, so kann man einfach in die Zielfunktion substituieren. Oft ist das jedoch nicht möglich. Eine allgemeine Methode um eine Maximierung unter Nebenbedingung durchzuführen ist der Lagrange Multiplikator Ansatz. Angenommen wir suchen Werte x 1, x,, x n, die y = f(x 1, x,, x n ) u.d.n. g(x 1, x,, x n ) = 0 maximieren. 0

21 Der Lagrange Ansatz Die Lagrange Multiplikator Methode impliziert L = f(x 1, x,, x n ) + g(x 1, x,, x n ) wobei der Lagrange Multiplikator ist. Wenn die Nebenbedingung erfüllt ist, dann ist L = f da g(x 1, x,, x n ) = 0. Daher können wir statt der kritischen Werte von f hier auch die von L suchen. 1

22 Der Lagrange Ansatz Bedingungen erster Ordnung (BeOs): L /x 1 = f 1 + g 1 = 0 L /x = f + g = 0... L /x n = f n + g n = 0 L / = g(x 1, x,, x n )= 0

23 Der Lagrange Ansatz Diese Bedingungen können für x 1, x,, x n und gelöst werden. Die gefundenen x werden die Nebenbedingung erfüllen und den Wert von L und somit f maximieren. Der Lagrangemultiplikator gibt den Schattenpreis der Nebenbedingung an. Jede Maximierung unter Nebenbedingung hat ein duales Problem. Z.B. kann man in der Konsumententheorie statt der Maximierung des Nutzens u.d.n. der Budgetrestriktion auch das minimale Budget suchen, welches einen vorgegebenen Nutzenlevel erreicht. 3

24 Maximierung unter linearer Nebenbedingung Angenommen, wir möchten x 1 und x so wählen, dass y = f(x 1, x ) unter der linearen Nebenbedingung c - b 1 x 1 - b x = 0 maximiert wird. Die Lagrange Multiplikator Methode: L = f(x 1, x ) + (c - b 1 x 1 - b x ) Die Bedingungen erster Ordnung sind f 1 - b 1 = 0 f - b = 0 c - b 1 x 1 - b x = 0 4

25 Maximierung unter linearer Nebenbedingung Um ein Maximum sicherzustellen, benötigen wir erneut das zweite totale Differential d y = f 11 dx 1 + f 1 dx 1 dx + f dx Nur die Werte von x 1 und x, die die Nebenbedingung erfüllen, können Alternativen zum kritischen Punkt sein Das totale Differential der Nebenbedingung ist -b 1 dx 1 - b dx = 0 dx = -(b 1 /b )dx 1 Dieses sind die erlaubten relativen Veränderungen in x 1 und x. 5

26 Maximierung unter linearer Nebenbedingung Aus den Bedingungen erster Ordnung f 1 /f = b 1 /b, erhält man dx = -(f 1 /f ) dx 1 Da d y = f 11 dx 1 + f 1 dx 1 dx + f dx können wir für dx substituieren und bekommen d y = f 11 dx 1 -f 1 (f 1 /f )dx 1 + f (f 1 /f )dx 1 oder d y = f 11 f -f 1 f 1 f + f f 1 [dx 1 / f ] Daher muss für d y < 0 gelten dass f 11 f -f 1 f 1 f + f f 1 < 0 6

27 Maximierung unter linearer Nebenbedingung f 11 f -f 1 f 1 f + f f 1 < 0 Ist diese Bedingung erfüllt, so ist die Funktion quasikonkav. Das Set aller Punkte für die die Funktion Werte oberhalb einer bestimmten Konstante annimmt, ist konvex. 7

28 Konkavität und Quasi-Konkavität am Beispiel y=(x 1 x ) k 8

29 Konkavität und Quasi-Konkavität am Beispiel y=(x 1 x ) k Hier x 1,x,k>0, und für jeden Wert von k ist diese Funktion quasi-konkav. Quasi-Konkavität ist eine ordinale Eigenschaft, sie ist robust gegenüber monotonen Transformationen (da diese eine ordinale Ordnung nicht beeinträchtigen). Die Funktion ist allerdings nur konkav wenn k<1/ und sonst konvex (für k>1/). Konkavität oder Konvexität sind kardinale Eigenschaften, monotone Transformationen können die Eigenschaft zerstören. 9

30 Schlussendlich Der Umhüllenden-Satz (Envelope Theorem): Angenommen y = f(x 1, x n,a) dann gilt im Optimum y* dy da f dx1 f dx... x da x da * 1 f x n dxn da f a f a Der Satz von den Impliziten Funktionen: Gegeben eine implizite Funktion f(x,y)=0, dann folgt aus dem totalen Differenzial 0 = f x dx + f y dy oder: dy dx f f x y 30

31 Schlussendlich Eine Funktion f(x 1,x, x n ) nennt man homogen vom Grad k genau dann, wenn f(tx 1,tx, tx n ) = t k f(x 1,x, x n ) Wenn k = 1, führt eine Verdopplung aller Argumente zu einer Verdopplung des Wertes der Funktion. Wenn k = 0 fürt eine Verdopplung aller Argumente zu keiner Änderdung des Wertes der Funktion. Eine homothetische Funktion entsteht durch eine monotone Transformation einer homogenen Funktion. 31

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Extrema von Funktionen mit Nebenbedingung

Extrema von Funktionen mit Nebenbedingung Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

2.6 Theorie des Haushalts

2.6 Theorie des Haushalts .6 Theorie des Haushalts WS 007/08 Nutzenfunktionen und Indifferenzkurven Nutzenfunktion: Hilfsmittel, um Präferenzen zu beschreiben Eine Präferenzordnung lässt sich unter den obigen Annahmen über eine

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Mathematische Methoden der VWL

Mathematische Methoden der VWL Mathematische Methoden der VWL Kapitel 1: Maximierung ohne Nebenbedingungen Till Stowasser Klaus Schmidt, 2001 / Till Stowasser, 2014 LMU, Wintersemester 2014/2015 1 / 30 Syllabus Syllabus 1.1 Funktionen

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Probeklausur: Mikroökonomik A Musterlösung. 1. Teil (Behringer)

Probeklausur: Mikroökonomik A Musterlösung. 1. Teil (Behringer) Mikroökonomik A, Wintersemester 2010/2011 Dr. Stefan Behringer/Dr. Alexander Westkamp 1. Termin 09.02.2011 Probeklausur: Mikroökonomik A Musterlösung 1. Teil (Behringer) Aufgabe 1: a) Nutzen ist ein ordinales

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft)

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) *** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) In manchen Problemen sind nicht alle möglichen Funktionen als Lösung erlaubt, sondern nur Funktionen, die zusätzliche Bedingungen erfüllen.

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema Vorlesung: Analysis II für Ingenieure Wintersemester 09/10 Michael Karow Themen: Taylor-Entwicklung und lokale Extrema Motivierendes Beispiel: die Funktion f(x, y) = x(x 1) 2 2 y 2. Dieselbe Funktion von

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Anwendung der Differentiation in der Marginalanalyse

Anwendung der Differentiation in der Marginalanalyse Anwendung der Differentiation in der Marginalanalyse Bereits in Thema 5 wurde vorgestellt, wie bei einer (ökonomischen) Funktion f über f(x) f(x 0 ) f (x 0 ) (x x 0 ) proportional die Ableitung an der

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Mathematische Methoden der VWL

Mathematische Methoden der VWL Mathematische Methoden der VWL Kapitel 2: Maximierung mit Nebenbedingungen Till Stowasser Klaus Schmidt, 2001 / Till Stowasser, 2014 LMU, Wintersemester 2014/2015 1 / 58 Syllabus Syllabus 2.1 Das Lagrange-Verfahren

Mehr

Wirtschaftsmathematik II

Wirtschaftsmathematik II WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen

Mehr

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1 Präferenzen Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät 1 http://www.mathe.wiwi.uni-sb.de Advanced Quantitative Methods for Economists WS 2014/2015 Ordnung Lexikographische

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

118 Monotone Transformation der Zielfunktion

118 Monotone Transformation der Zielfunktion SoSe 16 (3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,

Mehr

Kapitel 4 Nutzenmaximierung

Kapitel 4 Nutzenmaximierung Kapitel 4 Nutzenmaximierung Vor- und Nachbereitung: Varian, Chapters 4 und 5 (mit Appendix) Frank, Chapter 3 (mit Appendix) Übungsblatt 4 Klaus M. Schmidt, 008 4.1 Die Nutzenfunktion Indifferenzkurven

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 215/16 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 16.2.216, 13:3-15:3 Uhr (12 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib- und Zeichengeräte.

Mehr

d x 2 = 1 y ' x 2 d x 2

d x 2 = 1 y ' x 2 d x 2 2. Variationsrechnung 2.1. Variation ohne Nebenbedingungen Eine Funktion y = y(x) ordnet jedem x-wert eine Zahl (den y-wert) zu. In der Variationsrechnung betrachtet man Funktionale, die jeder Funktion

Mehr

10 Differentialrechnung

10 Differentialrechnung In diesem Kapitel wird das zentrale Instrument der Analysis auf Funktionen mehrerer Veränderlicher erweitert Die Differentialrechnung (engl: calculus) ist auch das wichtigste Handwerkzeug der Wirtschaftswissenschaften

Mehr

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf

Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Gegeben: Die beiden Funktionen (a x) 2, 0 x < 1

Gegeben: Die beiden Funktionen (a x) 2, 0 x < 1 SoSe 216 H-Aufgaben sind weiteres, bunt gemischtes Übungsmaterial, das teilweise auch, wenn die Zeit reicht, in den Tutorien besprochen wird. Im Laufe des Semesters erhalten Sie zu diesen Aufgaben Ergebniskontrollen

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen Kapitel 8.3 Anwendungen der partiellen Differentiation (Teil 1): Kettenregel und Linearisierung

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

4.5 Lokale Extrema und die Hessesche Form

4.5 Lokale Extrema und die Hessesche Form 80 Kapitel 4. Differentialrechnung in mehreren Variablen 4.5 Lokale Extrema und die Hessesche Form Sei ab jetzt U R n offen und f:u R eine Funktion. Unter einem lokalen Extremum der Funktion f verstehen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester

Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester Mathematik für Wirtschaftswissenschaftler II (Analysis) 2. Klausur Sommersemester 2011 30.09.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

Präferenzen und Nutzen. Kapitel 3. Präferenzrelationen. Präferenzrelationen. Präferenzen und Nutzen. Darstellung individueller Präferenzen

Präferenzen und Nutzen. Kapitel 3. Präferenzrelationen. Präferenzrelationen. Präferenzen und Nutzen. Darstellung individueller Präferenzen Präferenzen und Nutzen Kapitel 3 Präferenzen und Nutzen Darstellung individueller Präferenzen Ordinale Ordnung vom Besten zum Schlechtesten Charakterisierung von Nutzenfunktionen Kardinale Ordnung, Alternativen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Dualität bei konvexer Optimierung

Dualität bei konvexer Optimierung Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Analysis Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester 2013 Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Vorwort Die modernen Wirtschaftswissenschaften nutzen in

Mehr

Hinweise zur Mathematik

Hinweise zur Mathematik Hinweise zur Mathematik Max Albert, Henrik Egbert, Lothar Grall & Andreas Hildenbrand WS 14/15 1 Mikroökonomische Theorie II Vorlesung und Übung setzen den Stoff der Mathematikveranstaltung des ersten

Mehr

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen 6.1 Funktionen von mehreren Variablen Eine Abbildung f : D R, D R n, ordnet jedem n-tupel x = (x 1, x 2,...,x n ) D (eindeutig) eine

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch

Der metrische Raum (X, d) ist gegeben. Zeigen Sie, dass auch TECHNISCHE UNIVERSITÄT BERLIN SS 07 Institut für Mathematik Stand: 3. Juli 007 Ferus / Garcke Lösungsskizzen zur Klausur vom 6.07.07 Analysis II. Aufgabe (5 Punkte Der metrische Raum (X, d ist gegeben.

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Die Budgetbeschränkung, die Nutzenmaximierung. 17. März 2017

Die Budgetbeschränkung, die Nutzenmaximierung. 17. März 2017 Die Budgetbeschränkung, die Nutzenmaximierung 17. März 2017 Die Budgetbeschränkung, die Nutzenmaximierung Budgetbeschränkung: p x = p 1 x 1 + + p n x n y y > 0... nominales Einkommen (Einkommen in Währungseinheiten);

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

4.4 Lokale Extrema und die Hessesche Form

4.4 Lokale Extrema und die Hessesche Form 74 Kapitel 4 Differentialrechnung in mehreren Variablen 44 Lokale Extrema und die Hessesche Form Sei jetzt wieder U R n offen und f:u R eine Funktion Unter einem lokalen Extremum der Funktion f verstehen

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.3 Anwendungen (Teil 1): Kettenregel und Linearisierung www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen QM I (Wirtschaftsmathematik) Extremwerte ohne Nebenbedingungen

Mehr

Prüfungsklausur Mathematik II für Wirtschaftsingenieure,

Prüfungsklausur Mathematik II für Wirtschaftsingenieure, HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik II für Wirtschaftsingenieure, 15.7.2014 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 1 2 3 4 5 6 gesamt erreichbare P. 10

Mehr

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =

Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) = Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

1 Maximierung ohne Nebenbedingungen

1 Maximierung ohne Nebenbedingungen VWL III 1-1 Prof. Ray Rees 1 Maximierung ohne Nebenbedingungen Literatur: Schulbücher zur Mathematik ab der 10. Klasse Hoy et.al. (2001), Chapter 4-6, 11, 12. Chiang (1984), Chapter 9-11. Binmore (1983),

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr