Algorithmische Geometrie: Lineare Optimierung (I)

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Geometrie: Lineare Optimierung (I)"

Transkript

1 Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010,

2 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus

3 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus

4 Gießprozess Plastik oder Metall verflüssigen in Form füllen auskühlen lassen aus der Form nehmen Ohne Zerstörung der (einteiligen) Form?

5 Definition 5.1: gießbare Körper existieren: Form F R 3, Richtung d R 3 \ {0}, gedrehter Körper P P F ist Quader P geradlinig bewegt in Richtung d schneidet nicht das Innere von F Oberseite von P: horizontale Oberfläche der Schmelze andere Seitenflächen: gewöhnliche Seiten von P

6 Gießproblem gegeben: Poyeder P o gesucht: Auswahl einer Oberseite, gedrehtes Polyeder P Lösungsrichtung d

7 Lemma 5.2 Das Polyeder P kann genau dann von seiner Form F in Richtung d gelöst werden, wenn d mit jeder Außennormalen η(f ) einer gewöhnlichen Seite f von P einen Winkel von mindestens π/2 bildet. Beweis. Bedingung notwendig: Anfang der Bewegung hinreichend: Zeitpunkt direkt vor der Kollision Folgerung: mehrere Translationen bringen nicht mehr als eine einzige!

8 Von 3D zu 2D d = (dx, d y, 1) Außennormale η = ( η x, η y, η z ) liefert Bedingung η x d x + η y d y + η z 0. ist meißt eine Halbenbene in R 2. η x d x + η y d y η z

9 Satz 5.3 Sei P ein Polyeder mit n Seiten. Entscheidung, ob P gießbar ist: O(n 2 ) erwartete Zeit Speicheraufwand in O(n) Wenn ja, Bestimmung Form F und zulässige Richtung d: O(n 2 ) erwartete Zeit Speicheraufwand in O(n)

10 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus

11 Notation H = {h 1,..., h n } Halbebenen h i := { (x, y) : a i x + b i y c i } nicht a i = b i = 0

12 Algorithmus 5.4 (Prinzip Teile und Herrsche ) Eingabe: eine Menge H von n Halbebenen der Ebene Ausgabe: das konvexe polyhedrale Gebiet C := h H h 1: Funktion DURCHSCHNITTVONHALBEBENEN(H) 2: Wenn H = 1 dann 3: C h 1, wobei H = {h 1 }. 4: sonst 5: teile H in Teilmengen H 1 und H 2 mit n/2 beziehungsweise n/2 Halbebenen auf. 6: C 1 DURCHSCHNITTVONHALBEBENEN(H 1 ) 7: C 2 DURCHSCHNITTVONHALBEBENEN(H 2 ) 8: C DURCHSCHNITTKONVEXERGEBIETE(C 1, C 2 )

13 Einfache Laufzeitabschätzung DURCHSCHNITTKONVEXERGEBIETE: fast Spezialfall von Durchschnitt von Polygonen (Unbeschränktheit fehlt!) Folgerung 3.13: Laufzeit O((n + k) log n) k O(n) wegen Konvexität, höchstens 4 Schnittpunkte Zeit in O(n log n). Rekursion für Laufzeitabschätzung T { O(1), falls n = 1 T (n) = O(n log n) + 2T (n/2), falls n > 1 ergibt T (n) O(n(log n) 2 ) (siehe z.b. Akra-Bazzi-Theorem bzw. Verallgemeinerung vom Master-Theorem).

14 Satz 5.5 Der Durchschnitt zweier konvexer polyhedraler Gebiete der Ebene kann in Zeit in O(n) berechnet werden. Dabei ist n als Summe der Kantenanzahlen die Komplexität der Eingabe. Beweis. Gleitebenenverfahren für C = C 1 C 2 Darstellung: (je) zwei sortierte Listen Rand links/rechts Eckpunkte brauchen nicht gespeichert zu werden Status: 4 Positionen in Halbebenen-Listen Ereignisse: Ecken von C 1 und von C 2 lokale Operationen in konstanter Zeit

15 Beweisalgorithmus Satz 5.5 Beispiel: sei p oberer Endpunkt von Kante e aus C 1. Suchen Kanten von C mit Anfang p oder Schnitt von e mit Statuskanten l, r von C 2 p zwischen Kanten von C 2?

16 Beweisalgorithmus Satz 5.5 Beispiel: sei p oberer Endpunkt von Kante e aus C 1. Suchen Kanten von C mit Anfang p oder Schnitt von e mit Statuskanten l, r von C 2 p zwischen Kanten von C 2? Halbebene zu e zur linken Liste von C! e r = {q}?

17 Beweisalgorithmus Satz 5.5 Beispiel: sei p oberer Endpunkt von Kante e aus C 1. Suchen Kanten von C mit Anfang p oder Schnitt von e mit Statuskanten l, r von C 2 p zwischen Kanten von C 2? Halbebene zu e zur linken Liste von C! e r = {q}? Beginnen in q Kanten (p rechts Gerade von r)?

18 Beweisalgorithmus Satz 5.5 Beispiel: sei p oberer Endpunkt von Kante e aus C 1. Suchen Kanten von C mit Anfang p oder Schnitt von e mit Statuskanten l, r von C 2 p zwischen Kanten von C 2? Halbebene zu e zur linken Liste von C! e r = {q}? Beginnen in q Kanten (p rechts Gerade von r)? e zur linken Liste und r zur rechten Liste! e l = {q}?

19 Beweisalgorithmus Satz 5.5 Beispiel: sei p oberer Endpunkt von Kante e aus C 1. Suchen Kanten von C mit Anfang p oder Schnitt von e mit Statuskanten l, r von C 2 p zwischen Kanten von C 2? Halbebene zu e zur linken Liste von C! e r = {q}? Beginnen in q Kanten (p rechts Gerade von r)? e zur linken Liste und r zur rechten Liste! e l = {q}? p links Gerade von l? Ja: e zur linken Liste! Nein: l zur linken Liste!

20 Folgerung 5.6 Der gemeinsame Durchschnitt einer Menge von n Halbebenen kann in Zeit in O(n log n) und mit Speicherplatz in O(n) berechnet werden. Beweis. Rekursion T (n) = { O(1), falls n = 1 O(n) + 2T (n/2), falls n > 1. ergibt T (n) O(n log(n))

21 Folgerung 5.6 Der gemeinsame Durchschnitt einer Menge von n Halbebenen kann in Zeit in O(n log n) und mit Speicherplatz in O(n) berechnet werden. Beweis. Rekursion T (n) = { O(1), falls n = 1 O(n) + 2T (n/2), falls n > 1. ergibt T (n) O(n log(n)): Sei T (n) = f (n) + 2T (n/2) mit f (n) c 1 n falls n n 1. n 0 := max(2, n 1 ) c := max{c 1, T (n 0 )/(n 0 log n 0 ),..., T (2n 0 )/(2n 0 log(2n 0 )) ergibt sofort T (n) cn log n für n 0 n 2n 0 und per Induktion für n > 2n 0 T (n) f (n) + 2T ( n 2 ) c 1n + 2c n 2 log(n ) cn + cn(log n 1) = cn log n 2

22 Zufrieden mit Folgerung 5.6? Dualität: Zeitschranke O(n log n) für schlimmsten Fall Bestimmung konvexer Hüllen geht nicht besser nicht ganzer Durchschnitt notwendig geht es für durchschnittliche Probleminstanzen besser?

23 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus

24 Lineare Optimierungsaufgabe (LOA) im R d Maximiere c 1 x 1 + c 2 x c d x d unter den Bedingungen a 1,1 x a 1,d x d b 1.. a n,1 x a n,d x d b n Begriffe: zulässiger Bereich C, (un)zulässige Punkte p C (p / C), Zielfunktion optimaler Punkt

25 LOA (H, c) im R 2 Maximiere f c (x, y) := c x x + c y y unter den Bedingungen a i x + b i y c i i = 1... n c = (c x, c y ) h i := { (x, y) : a i x + b i y c i } H = {h 1,..., h n } C = h H h Randlinie l i := { (x, y) : a i x + b i y = c i }

26 Vier Lösungs-Fälle von (H, c) 1. Unzulässige LOA 2. Unbeschränkte LOA 3. Kante mit optimalen Punkten 4. eindeutige optimale Lösung

27 Ideen für inkrementellen Algorithmus Einschränkungen schrittweise hinzufügen aktuelle optimale Lösung des Teilsystems diese muss eindeutig sein

28 Problem Unbeschränkte Teil-LOA: zusätzliche Einschränkungen { { p : p x M } Wenn c x > 0 m 1 := { p : p x M } sonst { { p : p y M } Wenn c y > 0 m 2 := { p : p y M } sonst

29 Problem mehrdeutige optimale Lösungen: lexikographische Ordnung Bezeichnungen Maximiere (c x x + c y y, x, y) unter den Bedingungen (x, y) m 1, m 2, a i x + b i y c i i = 1... i max H i := {m 1, m 2, h 1,..., h i } C 0 := m 1 m 2, C i := C 0 h 1 h i v i : eindeutige optimale Lösung von (H i, c) C 0 C 1 C n = C

30 Lemma Falls v i 1 h i ist, so ist v i = v i 1. 2 Falls v i 1 h i ist, dann ist entweder C i = oder v i l i. Beweis. Punkt 1 trivial wegen C i C i 1. Punkt 2 indirekt: C i und v i l i Strecke v i 1 v i : Zielfunktion streng monoton fallend v i 1 v i schneidet Gerade l i

31 Lemma 5.8 Eine 1-dimensionale lineare Optimierungsaufgabe kann in linearer Zeit gelöst werden. Beweis. LOA: x a i für i = 1,..., k und x b i für i = k + 1,..., n a := max{a 1,..., a k } und b := min{b k+1,..., b n } a > b: LOA nicht zulässig sonst x = a oder x = b Optimallösung.

32 Algorithmus 5.9 Eingabe: LOA (H {m 1, m 2 }, c) in der Ebene Ausgabe: Falls (H {m 1, m 2 }, c) nicht zulässig ist, soll dies gemeldet werden. Sonst wird die lexikographisch kleinste Optimallösung geliefert. 1: Funktion 2DBESCHRÄNKTELOA(H, c, m 1, m 2 ) 2: v 0 sei die Ecke von C 0. 3: h 1,..., h n seien die Halbebenen aus H. 4: Für i 1 bis n mache 5: Wenn v i 1 h i dann 6: v i v i 1 7: sonst 8: v i der Punkt p auf l i, der f c (p) maximiert, unter den Bedingungen in H i 1. 9: Wenn so es ein p nicht gibt, dann 10: melde, dass (H {m 1, m 2 }, c) nicht zulässig ist, Ende! 11: Liefere v n als Ergebnis.

33 Lemma 5.10 Algorithmus 5.9 bestimmt die Lösung einer beschränkten linearen Optimierungsaufgabe mit n Einschränkungen und 2 Variablen in einer Zeit in O(n 2 ) und mit Speicherplatz in O(n). Beweis. Induktiv mit Lemma 5.7: v i ist der optimale Punkt von C i Lemma 5.8: Schleifendurchlauf-Zeit O(i) Summe O(n 2 ).

34 Randomisierte Lineare Optimierung nächste Woche

35 Algorithmus 5.11 Eingabe: LOA (H {m 1, m 2 }, c) in der Ebene Ausgabe: Falls (H {m 1, m 2 }, c) nicht zulässig ist, soll dies gemeldet werden. Sonst wird die lexikographisch kleinste Optimallösung geliefert. 1: Funktion 2DRANDOMISIERTEBESCHRÄNKTELOA(H, c, m 1, m 2 ) 2: v 0 sei die Ecke von C 0. 3: Berechne eine zufällige Permutation h 1,..., h n der Halbebenen durch ZUFÄLLIGEVERTAUSCHUNG(H[1,..., n]). 4: Für i 1 bis n mache 5: Wenn v i 1 h i dann 6: v i v i 1 7: sonst 8: v i der Punkt p auf l i, der f c (p) maximiert, unter den Bedingungen in H i 1. 9: Wenn so es ein p nicht gibt, dann 10: melde, dass (H {m 1, m 2 }, c) nicht zulässig ist, Ende! 11: Liefere v n als Ergebnis.

36 Algorithmus 5.12 Eingabe: Array A[1,..., n]. Ausgabe: Das Array A[1,..., n] mit den selben Elementen, aber in einer zufälligen Anordnung neu sortiert, wobei alle Permutationen dabei gleich wahrscheinlich sind. 1: Funktion ZUFÄLLIGEVERTAUSCHUNG(A) 2: Für k n absteigend bis 2 mache 3: j RANDOM(k) RANDOM(k) liefert gleichverteilt ein Element aus {1,..., k}. 4: Vertausche A[k] mit A[j].

37 Lemma 5.13 Die spezielle 2-dimensionale lineare Optimierungsaufgabe (H {m 1, m 2 }, c) mit n Einschränkungen kann in O(n) randomisierter erwarteter Zeit immer mit linearem Speicherbedarf gelöst werden.

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Lineare Programmierung

Lineare Programmierung Übung Algorithmische Geometrie Lineare Programmierung LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 14.05.2014 Übersicht Übungsblatt 4 Lineares

Mehr

Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2)

Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Nico Düvelmeyer WS 2009/2010, 22.12.2009 Überblick 1 Fertigstellung Kapitel 7 2 Definition Voronoi Diagramm 3 Grundlegende

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Aufgabensammlung zur algorithmischen Geometrie

Aufgabensammlung zur algorithmischen Geometrie 1 Aufgabensammlung zur algorithmischen Geometrie 2012WS Andreas Kriegl 1. Konvexe Hülle als Durchschnitt. Zeige, daß der Durchschnitt konvexer Mengen wieder konvex ist und somit die konvexe Hülle einer

Mehr

Algorithmische Geometrie: Schnittpunkte von Strecken

Algorithmische Geometrie: Schnittpunkte von Strecken Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben

Mehr

Algorithmische Geometrie: Einstimmung

Algorithmische Geometrie: Einstimmung Algorithmische Geometrie: Einstimmung Nico Düvelmeyer WS 2009/2010, 20.10.2009 Überblick 1 Organisatorisches 2 Fachgebiet Typische Untersuchungsgegenstände Typische Anwendungsgebiete 3 Inhalte der Vorlesung

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

7. Triangulation von einfachen Polygonen

7. Triangulation von einfachen Polygonen 1 7. Triangulation von einfachen Polygonen 2 Ziel Bessere Laufzeit als O(n log n) durch schnelleres Berechnen der Trapezzerlegung des Polygons. 3 Idee Finde Methode, den Anfangspunkt einer Strecke in der

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Distanzprobleme in der Ebene

Distanzprobleme in der Ebene Distanzprobleme in der Ebene (Literatur: deberg et al., Kapitel 7,9) Christian Knauer 1 Motivation: Alle nächsten Nachbarn Gegeben: Eine Menge von Punkten P in der Ebene Berechne: Zu jedem Punkt aus P

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

1.2. Mengen, Zahlen, Intervalle und Produkte

1.2. Mengen, Zahlen, Intervalle und Produkte 1.2. Mengen, Zahlen, Intervalle und Produkte Zahlen Einige Zahlenmengen werden mit besonderen Buchstaben bezeichnet. Die kleinste aller Mengen ist die leere Menge { }, die überhaupt kein Element enthält.

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Exponentielle Suche 4/26/10. Beweis für. Situation: Idee: suche zunächst "rechten Rand" r, so dass k < Ar Algo: Analyse:

Exponentielle Suche 4/26/10. Beweis für. Situation: Idee: suche zunächst rechten Rand r, so dass k < Ar Algo: Analyse: Beweis für 9 Exponentielle Situation: n sehr groß esuchtes i, mit Ai = k, ist relativ klein Idee: suche zunächst "rechten Rand" r, so dass k < Ar Algo: 1 2 4 8 i 16 Index r = 1 while A[r] < key: r *= 2

Mehr

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon)

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon) M. Pester 29 6 Konvexe Hülle 6.1 Begriffe Per Definition ist die konvexe Hülle für eine Menge S von lich vielen Punkten die kleinste konvexe Menge, die S enthölt (z.b. in der Ebene durch ein umspannes

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (1) Geometrie Vorlesung Computergraphik 3 S. Müller KOBLENZ LANDAU KOBLENZ LANDAU Organisatorisches Vorlesung CG 2+3 Die Veranstaltung besteht aus 2 Teilen, wobei in der Mitte und am Ende eine Klausur

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Definition Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Seminar über Algorithmen WS 2005/2006 Vorgetragen von Oliver Rieger und Patrick-Thomas Chmielewski basierend auf der Arbeit

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 11, 18.11.08 Friedhelm Meyer auf der Heide 1 Randomisierte Algorithmen Friedhelm Meyer auf

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

für n-elementige Punktmenge jedenfalls Ω(n log n), da mit VD die konvexe Hülle in linearer Zeit bestimmbar.

für n-elementige Punktmenge jedenfalls Ω(n log n), da mit VD die konvexe Hülle in linearer Zeit bestimmbar. Konstruktion des Voronoi-Diagramms Untere Schranke für den Zeitaufwand: für n-elementige Punktmenge jedenfalls Ω(n log n), da mit VD die konvexe Hülle in linearer Zeit bestimmbar. Wenn man die n Punkte

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Der Eulersche Polyedersatz in beliebiger Dimension

Der Eulersche Polyedersatz in beliebiger Dimension Der Eulersche Polyedersatz in beliebiger Dimension Rolf Stefan Wilke 17. Juli 2007 Definition. Sei P R d ein Polytop der Dimension d. Es bezeichne f k (P ) die Anzahl der k-dimensionalen Seitenflächen.

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie I Markus Götze Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Polygone ccw Pick's Theorem Konvexe Hülle Hallo Welt für Fortgeschrittene

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

Konvexe Hülle im R 3 + WSPD

Konvexe Hülle im R 3 + WSPD Übung Algorithmische Geometrie Konvexe Hülle im R 3 + WSPD LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 12.07.2012 Ablauf Konvexe Hülle im R 3

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Liniensegmentschnitt. Doppelt verkettete Kantenliste. Überlagerung von 2 ebenen Graphen. Boolsche Operatoren für einfache Polygone (LEDA)

Liniensegmentschnitt. Doppelt verkettete Kantenliste. Überlagerung von 2 ebenen Graphen. Boolsche Operatoren für einfache Polygone (LEDA) Liniensegmentschnitt Motivation, Überlagerung von Karten, Problemformulierung Ein einfaches Problem und dessen Lösung mit Hilfe des Sweep-Line Prinzips Output-sensitiver Liniensegmentschnittalgorithmus

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 43 Punkt-in-Polygon-Suche Übersicht! Praxisbeispiel/Problemstellung! Zählen von Schnittpunkten " Schnitt einer Halbgerade mit der Masche " Aufwandsbetrachtung! Streifenkarte " Vorgehen und

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Wann sind Codes eindeutig entschlüsselbar?

Wann sind Codes eindeutig entschlüsselbar? Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C

Mehr

Kapitel 3: Sortierverfahren Gliederung

Kapitel 3: Sortierverfahren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene

Mehr

2.4. Triangulierung von Polygonen

2.4. Triangulierung von Polygonen Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität)

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität) Über-/Rückblick Algorithmenbegriff: Berechenbarkeit Turing-Maschine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentechniken Algorithmenanalyse (Berechnung der Komplexität) Rekursion Iteration

Mehr

Untere Schranke für allgemeine Sortierverfahren

Untere Schranke für allgemeine Sortierverfahren Untere Schranke für allgemeine Sortierverfahren Prinzipielle Frage: wie schnell kann ein Algorithmus (im worst case) überhaupt sein? Satz: Zum einer Folge von n Keys mit einem allgemeinen Sortierverfahren

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Triangulierung von Polygonen und das Museumsproblem

Triangulierung von Polygonen und das Museumsproblem Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?

Mehr

Algorithmische Geometrie 5. Triangulierung von Polygonen

Algorithmische Geometrie 5. Triangulierung von Polygonen Algorithmische Geometrie 5. Triangulierung von Polygonen JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt Algebra, Analytische Geometrie. 1. Sei 1, 0, 9 A := 1, 2, 3,. 2, 2, 2, Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik VORLESUNG 13 Smoothed Analysis des Simplex-Algorithmus Nach Heiko Röglin, Universität Bonn, Vorlesungsskript Introduction to Smoothed Analysis vom 9. Januar 2012 78 Wiederholung Simplex-Algorithmus! Korrektheit:!

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

8. Modelle für feste Körper

8. Modelle für feste Körper 8. Modelle für feste Körper Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle

Mehr

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.05.2011 Geometrie in Datenbanken In einer Personaldatenbank

Mehr

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der

Mehr