Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:

Größe: px
Ab Seite anzeigen:

Download "Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:"

Transkript

1 Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete , 83, 83, , 13, 96, 11 4, 4, 1, 99 1, 1, E Maß für de Uglechhet bzw. Heterogetät kategoraler Date t Smpo ormerte D: k D 1 k 1 k p 1 3 RACE OF RESPODET k = Azahl Kategore, p = relatve Häufgket der Kat. D = : alle Fälle der Modalkategore, D = 1: alle Kategore habe deelbe Häufgket. 1 Häufgket WHITE BLACK RACE OF RESPODET OTHER Quelle: GSS 1993 Müller-Beedct: Stattk I/4 1 Müller-Beedct: Stattk I/4 Streuug ordalkalerter Varable: Spawete, Zetle Zetle grafch 1 Spawete, Varatobrete ( R ) t de Dfferez vo größtem ud klete Wert: R=x max -x m p-zetl C p t de Agabe der Merkmalauprägug, b zu der p 1tel der der Größe ach geordete Werte lege. Kumulatve Prozet 4 95, 55, 15, C1 Z 15, 175, 135, 345, 95, 55, C9 1, 86, 635, 535, 475, 45, 385, etto-ekomme Müller-Beedct: Stattk I/4 3 Müller-Beedct: Stattk I/4 4

2 Bepel: Vetle (tel = 5%) Ekommevertelug Welt-Verglech Relatve abolute v. kumulerte Häufgket Quelle B. Mlaovc: The Have ad Have- ot, Bac Book S. 11,8,6,4, relatver Atel Prozet Ekomme, prozetuale Häufgket 675, 595, 535, 495, 445, 415, 385, 355, 315, 85, 55, 5, 195, 165, 135, 15, 75, 45, 15, p( 7 b uter 8 ) =,4 F(8) =,1 EIK1 Müller-Beedct: Stattk I/4 5 Müller-Beedct: Stattk I/4 6 Streuug ordalkalerter Varable: Quartle, Quartlabtad Der Wert der kumulerte Vertelugfukto F für ee Auprägug x etprcht der Fläche uter der relatve Häufgketvertelugfukto p = (1/)f vo x m b zu x. x~ Uterhalb lege 5% aller Fälle Quartle Uterhalb Q 1 =C 5 lege 5% aller Fälle. Uterhalb Q 3 =C 75 lege 75% aller Fälle. mttlerer Quartlabtad QA Q3 Q1 QA = Q 1 = Merkmalauprägug de Fall mt Ragplatz (+3)/4 Q 3 = Merkmalauprägug de Fall mt Ragplatz (3+1)/4 Müller-Beedct: Stattk I/4 7 Berechug Quartlabtad GESCHLECHT, BEFRAGTE<R> MA FRAU Gültg Gültg BEFR.: ALLGEMEIER SCHULABSCHLUSS KEIE SCHULABSCHL. VOLKS-,HAUPTSCHULAB MITTL.REIFE,REALSCH. FACHHOCHSCHULREIFE ABITUR,HOCHSCHULREI. Geamt KEIE SCHULABSCHL. VOLKS-,HAUPTSCHULAB MITTL.REIFE,REALSCH. FACHHOCHSCHULREIFE ABITUR,HOCHSCHULREI. Geamt 1998 Häufgke Gültge Kumulerte t Prozet Prozete Prozete 38,5,6,6 6 41,4 41,9 44, , 31,6 76,1 9 6, 6,1 8, 64 17,6 17,8 1, ,8 1, 57 3,3 3,3 3, ,7 46,3 49, ,7 33,1 8,8 76 4,4 4,4 87,3 18 1,6 1,7 1, ,6 1, Fraue: (+3)/4 = (1711+3)/4 = 49. Fall hat de Wert Q 1 = = Hauptchule (3+1)/4 = ( )/4 = 184. Fall hat de Wert Q 3 = 3 = Realchule Q A = -3 / =,5 (Kategore, terpolert: Q 1 = +(49-57)/793 =,47 Bldugabchlüe) Q 3 = 3+(184-(793+57))/567 = 3,77 Q A =,47-3,77 / =,65 Müller-Beedct: Stattk I/4 8

3 Berechug Quartlabtad (Date 14) Boxplot X m Q 1 Z Q 3 X max Boxplot eer lktele Vertelug Q 1 Fraue = = Volk-Hauptchule (wel dort de 5% überchrtte) Q 3 Fraue = 5 = Hochchulrefe (wel dort de 75% überchrtte) Q A Fraue = 5 / = 1,5 Bldugabchlüe Aureßer (Symbol o ) d Fälle, dere Merkmalauprägug mehr al 1,5 Q A vo Q 1 ach ute oder vo Q 3 ach obe etfert d. Extremwerte (Symbol * ) Fälle mt mehr al 3 Q A etprechedem Abtad. Müller-Beedct: Stattk I/4 9 Müller-Beedct: Stattk I/4 1 Ekommevertelug ach Gechlecht Bepel Quartle Quelle: ALLBUS 14 Müller-Beedct: Stattk I/4 11 Müller-Beedct: Stattk I/4 1

4 Streuug metrcher Varable: Varaz, Stadardabwechug Bepel Varaz ud adere Kewerte Varaz ee Dateatze t defert al De Größe SAQ x x x x 1 Stadardabwechug t de Wurzel au der Varaz: 1 SAQ 1 x heßt SAQ = Summe der Abtadquadrate (egl.: SS = um of quare) x Müller-Beedct: Stattk I/4 13 Müller-Beedct: Stattk I/4 14 Stadardabwechug grafch Mttelwert ± Stadardabwechug Varatokoeffzet, Kovaraz Stadarderug, tadarderede Traformato vo Date t de Traformato, xx x Stadarderte Date habe Mttelwert ud Stadardabw. 1. Varatokoeffzet V t defert (für chtegatve ratoalkalerte Date) al V 1 X ud eget ch zum Verglech vo Streuuge. Müller-Beedct: Stattk I/4 15 Kovaraz xy zweer Varable X ud Y t defert durch xy (x X)(y 1 Y) 1 x y Müller-Beedct: Stattk I/ x y

5 Streudagramm mt Quadrate Bepel: Alter vo Eheparter Alterkombato der erte zwe Hauhaltperoe 1 1 Alterkombato der Eheparter 8 II I 8.HAUSH.PERSO: ALTER y III 3 4 x 5 6 IV 7 8.HAUSH.PERSO: ALTER r =,9 ALTER: BEFRAGTE<R> Müller-Beedct: Stattk I/4 17 ALTER: BEFRAGTE<R> Müller-Beedct: Stattk I/4 18 Zuammehagmaß für metrche Date: Korrelato Stattcher Zuammehag Korrelato r heßt de folgede Maßzahl für de Zuammehag zweer metrcher Varable: (x x)(y y) 1 xy r x y (x x) (y y) 1 1 r heßt auch Produkt-Momet-Korrelato oder Pearo-cher Korrelatokoeffzet De Korrelato t de auf Werte zwche -1 ud 1 ormerte Kovaraz. Sprachgebrauch: r = -1: perfekter > -1 b - 5: tarker -,5 b -,3: mttlerer -,3 b -,1: chwacher -,1 b > : ehr chwacher verer Zuammehag r = : überhaupt ke Zuammehag > b,1: ehr chwacher,1 b,3: chwacher,3 b,5: mttlerer,5 b < 1: tarker r = 1: perfekter glechgerchteter Zuammehag Müller-Beedct: Stattk I/4 19 Azahl GESCHLECHT, BEFRAGTE<R> Geamt Azahl GESCHLECHT, BEFRAGTE<R> Geamt MA FRAU MA FRAU Kreuztabelle Iteree a Sporteduge tark chwach Geamt Iteree a achrchteeduge tark chwach Geamt Stattcher Zuammehag vo zwe Varable legt vor, we ch de bedgte Verteluge der ee Varable für verchedee Werte der adere Varable uterchede. Da Gegetel heßt tattche Uabhäggket. Müller-Beedct: Stattk I/4

6 Zuammehagmaß für kategorale Date: Prozetatzdfferez Prozetatzdfferez: Bepel Ee Verfeldertafel (x = uabhägge, y = abhägge Varable): y 1 y Summe x 1 a b a+b x c d c+d Summe a+c b+d a+b+c+d d Sport = 58,3 16,8 = 41,5 % De Prozetatzdfferez d t auf Verfeldertafel defert: d = a *1/(a+b) - c *1/(c+d) = b *1/(a+b) - d *1/(c+d) d achrchte = 81,5 74,5 = 7 % Mmum d = : volltädge Uabhäggket Maxmum d = 1: perfekter Zuammehag Müller-Beedct: Stattk I/4 1 Müller-Beedct: Stattk I/4 Hauaufgabe: Hauaufgabe: 1. Se habe de Schulote zweer Schulklae vorlege. Darau wurde jewel zwe Stchprobe gezoge: Stchprobe Klae A: 4, 4, 3, 3 Stchprobe Klae B: 6, 6, 1, 1 Bereche Se de Mttelwert der bede Stchprobe. Wa ergbt ch au dem Mttelwertverglech, gbt e Uterchede? Bereche Se etprechede Streuugmaße (Varaz, Stadardabwechug, Spawete). Vergleche Se ereut de bede Stchprobe. Bereche Se (uter Verwedug vo M x, M y al Datum für alle Fälle eer Klae): a) Varaz ud Stadardabwechug vo X ud Y. We vel % der Leekompetez-Score treue zwche y ud y? y y b) de Quartlabtad für X ud Y ud terpretere Se h. c) de Kovaraz. Wa beagt da Vorzeche? d) de Korrelato ud terpretere Se de Wert.. Au de PISA-Date für Deutchlad werde Azahl Bücher zu Haue (X) ud Leekompetez (Y) (Score, um 5 zetrert) Meklae gruppert ud de Häufgkettabelle auf der ächte Fole dargetellt. De folgede Kewerte wurde beret (uter Verwedug der Mttelpukte der jewelge Meklae al Datum für alle Fälle der Klae) ermttelt (=3416): x 5,98 1 (y y) 1 x y x y Müller-Beedct: Stattk I/4 3 Müller-Beedct: Stattk I/4 4

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Regression und Korrelation

Regression und Korrelation Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L,

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Einführung in die deskriptive Statistik

Einführung in die deskriptive Statistik Eführug de dekrptve Stattk Übercht: 1. Grudlage: Mee, Skalere, edeoale Häufgketverteluge 1.1. Mee 1.. Skaleveau 1.3. Mewertklae 1.4. Uvarate Häufgketverteluge 1.5. Graphche Dartellug vo uvarate Häufgketverteluge

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Quantitative Geochemie mit Excel

Quantitative Geochemie mit Excel Kompaktkurs Quattatve Geocheme mt Excel Vom Meßwert zur petrogeetsche Modellerug geochemscher Date. ag: DAENAUFBEEIUNG Dateegabe ud Normerug Statstsche Kegröße Auswertug ees ICP-MS Datesatzes (Stöchometrsche

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Zweidimensionale Verteilungen

Zweidimensionale Verteilungen Bblografsce Iformato der Deutsce Natoalbblotek De Deutsce Natoalbblotek verzecet dese Publkato der Deutsce Natoalbblografe; detallerte bblografsce Date sd m Iteret über abrufbar. De Iformatoe

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse

Hochschule München Fakultät Wirtschaftsingenieurwesen Datenanalyse Hochschule Müche Fakultät Wrtschaftsgeeurwese Dateaalyse Prof. Dr. Volker Abel Verso. Ihaltsverzechs Ihaltsverzechs. Auswertug ud Modellerug vo Zähldate.... Auswertug vo prozetuale Häufgkete.... Auswertug

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Lineare Regression und Korrelation (s. auch Applet auf Arbeitsblatt 1 : Lineare Regression

Lineare Regression und Korrelation (s. auch Applet auf  Arbeitsblatt 1 : Lineare Regression Leare Regreo ud Korrelato (. auch Applet auf www.mathematk.ch) Fragetellug: Lerzele: De leare Regreo bechäftgt ch mt der folgede Fragetellug: Gegebe d Pukte ( / ), =,.., m (,)- Koordatetem ( > ). Geucht

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Leitfaden zur Auswertung analytischer Ergebnisse

Leitfaden zur Auswertung analytischer Ergebnisse Praktkum Waercheme/Waeraaltk m Bachelor-Studegag Water Scece; Cheme Praktkumleter: PD Dr. Urula Telgheder; Dr. Jörg Hppler Letfade zur Auwertug aaltcher Ergebe Dr. Urula Telgheder Stad: 5.09.013-1 - Lte

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

11. STATISTIK. 11.1. Begriffsbestimmung. Statistik

11. STATISTIK. 11.1. Begriffsbestimmung. Statistik . STATISTIK.. Begrffsbestmmug De Statst st we auch de Wahrschelchetsrechug e Wssesgebet der sogeate Stochast. De Stochast a ma als de Lehre vo zufällge Vorgäge bzw. Eregsse beschrebe. Als zufällge Eregsse

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Statistik. Vorlesungsmitschrift - Kurzfassung. Prof. Dr. rer. nat. B. Grabowski

Statistik. Vorlesungsmitschrift - Kurzfassung. Prof. Dr. rer. nat. B. Grabowski Sttstk Vorlesugstschrft - Kurzfssug Prof. Dr. rer. t. B. Grbowsk HTW des Srldes 5 Ltertur LITERATUR. Deses (vorlesugsbegletede) Skrpt de Tele I - Deskrptve Sttstk, II - Whrschelchketsrechug, III- Schleßede

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

9. Verzeichnis wichtiger Formelzeichen und Abkürzungen

9. Verzeichnis wichtiger Formelzeichen und Abkürzungen 9. Verzechs wchtger Formelzeche ud Abürzuge 9 Verzechs wchtger Formelzeche ud Abürzuge Formelzeche a a a y a * arcta2(y,) = arcta( y/ ) für arcta( y/ ) + π für < b B BL = O c H H y Läge des Uterarms des

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Physikalisch-Technische Bundesanstalt, Braunschweig

Physikalisch-Technische Bundesanstalt, Braunschweig Üerscht üer essuscherhetserechuge vo der Darstellug der Ehet des Drehmometes üer de Wetergae s h zur Aedug ud Bespel eer Ope-ource-Aedug dafür Drk Röske Physkalsch-Techsche Budesastalt, Brauscheg Darstellug

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Institut für Statistik und Ökonometrie

Institut für Statistik und Ökonometrie Isttut für Statstk ud Ökoometre Zähldatemodelle (Cout Data Models) Asätze ud Aweduge Verea Dexhemer Arbetspaper Nr. 3 (Ma 00) Johaes Guteberg-Uverstät Fachberech Rechtsud Wrtschaftswsseschafte Haus Recht

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

IV. VERSICHERUNGSUNTERNEHMUNG

IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG Vers.-Oek.Tel-I-Ka-IV--5 Dr. Rurecht Wtzel; HS 09.0.009 IV. VERSICHERUNGSUNTERNEHMUNG IV. VERSICHERUNGSUNTERNEHMUNG. Überblck ) I desem Katel wede wr us der Aalyse der Verscherugsuterehmug

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Vorlesung Multivariate Analyse

Vorlesung Multivariate Analyse Vorlesug Multvarate Aalse Kaptel I Dateauswertug mt STATA Prof. Dr. Josef Brüderl Uverstät Mahem Herbstsemester 7 Methode-Currculum B.A. Sozologe Bassmodul: Methode ud Statstk: VL Dateerhebug (): 5 ÜK

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Inhaltsverzeichnis. 1 Allgemeine Messtechnik

Inhaltsverzeichnis. 1 Allgemeine Messtechnik Ihaltsverzechs I Allgemee Messtechk. Grudsätzlches. Grudbegrffe des Messes.. Iteratoales Ehetesystem (SI), Begrffe des Normes, Eche, Justere, Kalbrere.. Das Meßgerät als System, der Begrff der Übertragug.3

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen

F ORMELSKRIPT. Spektraler Transmissionsgrad einer planparallelen Platte aus isotropem homogenen ORMESRI Zuammehäge zwche de etale Stoffezahle etale Reflexogad ( ( geamt ( ( fü läche etale Retamogad ( a ( b a b Setale amogad ee laaallele latte au otoem homogee Medum ( ( mt

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung

Tilgungsrechnung 2. Bearbeitet von Martin Kubsch. 12.01.2005 Tilgungsrechnung 2 1. Formelsammlung. Jahres-, Quartals,- Halbjahres oder Monatsrechnung Tlgugsrechug Bearbetet vo Mart Kubsch.0.00 Tlgugsrechug Formelsammlug Uterjährge Tlgug a) m r = m z Azahl glech Jahres-, Quartals,- Halbjahres oder Moatsrechug b) m z > m r (mehr Zs- als Tlgugsperode)

Mehr

Statistische Formelsammlung

Statistische Formelsammlung Statstsche Formelsammlug Statstk ud Auf Bass des Vorlesugsskrpts vo M. Stöckl WS / SS 003/004; Bortz (005) 6. Auflage, Statstk für Huma- ud Sozalwsseschaftler; Hrsg (004). Statstsche Methode de Sozalwsseschafte,

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen

Wie gelingt es den Buchmachern (oder FdJ 1 ) IMMER zu gewinnen We gelgt es de Buchacher (oder FdJ IMMER zu gewe Eletug Schrebwese ud Varable Erwarteter Gew des Buchachers 4 4 De Stratege der Buchacher 5 4 Der ehrlche Buchacher 6 4 "real lfe" Buchacher6 4 La FdJ 9

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

MEBAK-Methodensammlung Grundlagen der Statistik. 1. Definitionen. 2. Charakterisierung der Verteilung. 2.1 Normalverteilung (Gauß-Verteilung)

MEBAK-Methodensammlung Grundlagen der Statistik. 1. Definitionen. 2. Charakterisierung der Verteilung. 2.1 Normalverteilung (Gauß-Verteilung) . Defiitioe Zufallvariable Eie Zufallvariable it eie Größe, die bei eiem Zufallexperimet auftrete ka, z. B. die Läge der Bredauer eier Glühbire oder da Ergebi eier Petizidbetimmug. Grudgeamtheit Eie Grudgeamtheit

Mehr