2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

Größe: px
Ab Seite anzeigen:

Download "2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:"

Transkript

1 Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche Verteilung) wenn X d = µ + AZ, wobei Z = (Z 1, Z 2,..., Z k ) T ein Vektor von i.i.d. normalverteilten ZV (Z i N(0,1), i = 1,2,..., k), A IR d k ist eine konstante Matrix und µ IR d ist ein konstanter Vektor. Für so einen Zufallsvektor X gilt: E(X) = µ, cov(x) = Σ = AA T (Σ positiv semidefinit). Notation: X N d (µ,σ). Theorem 1 (Multivariate Normalverteilung: äquiv. Definitionen) 1. X N d (µ,σ) für einen Vektor µ IR d und eine positiv semidefinite Matrix Σ IR d d, dann und nur dann wenn a IR d, a = (a 1, a 2,..., a d ) T, die Zufallsvariable a T X normal verteilt ist. 2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: φ X (t) = E(exp{it T X}) = exp{it T µ 1 2 tt Σt} für einen Vektor µ IR d und eine positiv semidefinite Matrix Σ IR d d. 14

2 3. Ein Zufallsvektor X IR d mit E(X) = µ und cov(x) = Σ, wobei die Determinante von Σ positiv ist (det(σ) := Σ > 0), ist normal verteilt, d.h. X N d (µ,σ), dann und nur dann wenn seine Dichtefunktion folgendermaßen gegeben ist { 1 f X (x) = (2π) d Σ exp (x } µ)t Σ 1 (x µ). 2 Beweis: (siehe zb. Gut 1995) Theorem 2 (Eigenschaften der multivariaten Normalverteilung) Für X N d (µ,σ) gilt: Lineare Kombinationen: Für B IR k d und b IR k. Es gilt dann BX+b N k (Bµ+b, BΣB T ). Randverteilungen: ( Setze X T = X (1)T, X (2)T) für X (1)T = (X 1, X 2,..., X k ) T und X (2)T = (X k+1, X k+2,..., X d ) T und analog ( ( ) µ T = µ (1)T, µ (2)T) Σ (1,1) Σ und Σ = (1,2) Σ (2,1) Σ (2,2). ( ) ( Es gilt dann X (1) N k µ (1),Σ (1,1) und X (2) N d k µ (2),Σ ). (2,2) 15

3 Bedingte Verteilungen: Wenn Σ regulär, dann ist auch der bedingte Z.Vektor X (2) X (1) = x (1) multivariat normal verteilt X (2) X (1) = x (1) N d k ( µ (2,1),Σ (22,1) ) wobei µ (2,1) = µ (2) + Σ (2,1) ( Σ (1,1) ) 1 ( x (1) µ (1) ) und Σ (22,1) = Σ (2,2) Σ (2,1) (Σ (1,1) ) 1Σ (1,2). Quadratische Formen: Wenn Σ regulär, dann gilt D 2 = (X µ) T Σ 1 (X µ) χ 2 d. Die Zufallsvariable D heißt Mahalanobis Distanz. Faltung: Seien X N d (µ,σ) und Y N d ( µ, Σ) zwei unabhängige Zufallsvektoren. Es gilt dann X + Y N d (µ + µ,σ + Σ). 16

4 b) Varianz-gemischte Normalverteilungen Definition 3 Ein Zufallsvektor X IR d hat eine multivariate Varianzgemischte Normalverteilung wenn X d = µ+waz wobei: Z N k (0, I), W 0 ist eine von Z unabhängige positive Zufallsvariable, µ IR d ist ein konstanter Vektor, A IR d k ist eine konstante Matrix, und I ist die Einheitsmatrix. Unter der Bedingung W = w ist X normalverteilt: X N d (µ, w 2 Σ), wobei Σ = AA T. E(X) = µ und cov(x) = E(W 2 AZZ T A T ) = E(W 2 )Σ falls E(W 2 ) < Beispiel 4 Die multivariate t α -Verteilung Sei Y IG(α, β) (Inverse Gamma-Verteilung) mit Dichtefunktion: f α,β (x) = βα Γ(α) x (α+1) exp( β/x) x > 0, α > 0, β > 0 Dann gilt: E(Y ) = β α 1 für α > 1, var(y ) = β 2 (α 1) 2 (α 2) für α > 2 Sei W 2 IG(α/2, α/2). Dann ist die Verteilung von X = µ + WAZ eine multivariate t α Verteilung mit α Freiheitsgraden: X t d (α, µ,σ). cov(x) = E(W 2 )Σ = α α 2 Σ 17

5 c) Sphärische Verteilungen Definition 4 Ein Zufallsvektor X = (X 1, X 2,..., X d ) T hat eine sphärische Verteilung wenn für jede orthogonale Matrix U IR d d die Gleichung UX d = X gilt. Theorem 3 Die folgenden Aussagen sind äquivalent. 1. Der Zufallsvektor X IR d hat eine sphärische Verteilung. 2. Es existiert eine Funktion ψ: IR IR, sodass die charakteristische Funktion von X folgendermaßen gegeben wird: φ X (t) = ψ(t T t) = ψ(t t t2 d ) 3. Für jeden Vektor a IR d gilt a t X d = a X 1 wobei a 2 = a a a2 d. 4. X lässt sich als X d = RS repräsentieren, wobei der Zufallsvektor S IR d gleichmäßig verteilt auf der Einheitskugel S d 1, S d 1 = {x IR d : x = 1}, ist, und R 0 eine von S unabhängige ZV ist. Notation einer sphärischen Verteilung: X S d (ψ) 18

6 Beispiel 5 Normalverteilungen sind sphärische Verteilungen. Sei X N d (0, I). Dann X S d (ψ) mit ψ = exp( x/2). Tatsächlich: φ X (t) = exp{it T tt It} = exp{ t T t/2} = ψ(t T t). Sei X = RS die stochastische Darstellung von X N d (0, I). Es gilt X 2 = d R 2 χ 2 d ; Simulation einer sphärischen Verteilung: (i) Simuliere s aus einer gleichmäßig verteilten Zufallsvektor in S d 1 (zb. in dem y aus einer multivariaten Standard Normalverteilung Y N d (0, I) simuliert und s = y/ y gesetzt wird). (ii) Simuliere r aus R. (iii) Setze x = rs. 19

7 d) Elliptische Verteilungen Definition 5 Ein Zufallsvektor X IR d hat eine elliptische Verteilung wenn X d = µ+ay, wobei Y S k (ψ), µ IR d ist ein konstanter Vektor und A IR d k ist eine konstante Matrix. Die charakteristische Funktion: φ X (t) = E(exp{it T X}) = E(exp{it T (µ+ay )}) = exp{it T µ}e(exp{i(a T t) T Y }) wobei Σ = AA T. = exp{it T µ}ψ(t T Σt), Notation elliptische Verteilungen: X E d (µ,σ, ψ) µ heißt Positionsparameter (location parameter), Σ heißt Dispersionsparameter (dispersion parameter), ψ heißt charakteristischer Generator der elliptischen Verteilung. Falls A IR d d regulär, dann gilt folgende Relation zwischen elliptischen und sphärischen Verteilungen: X E d (µ,σ, ψ) A 1 (X µ) S d (ψ), A IR d d, AA T = Σ 20

8 Theorem 4 ( Stochastische Darstellung der elliptischen Verteilung) Sei X IR d ein d-dimensinaler Zufallsvektor. X E d (µ,σ, ψ) dann und nur dann wenn X d = µ+ras, wobei S IR k ist ein auf der Einheitskugel S k 1 gleichverteilter Zufallsvektor, R 0 ist eine von S unahängige nicht negative Zufallsvariable, A IR d k ist eine konstante Matrix (Σ = AA T ) und µ IR d ist ein konstanter Vektor. Simulation einer elliptischen Verteilung: (i) Simuliere s aus einer gleichmäßig verteilten Zufallsvektor in S d 1 (zb. in dem y aus einer multivariaten Standard Normalverteilung Y N d (0, I) simuliert und s = y/ y gesetzt wird). (ii) Simuliere r aus R. (iii) Setze x = µ + ras. 21

9 Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0, I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor in S k 1 ist und R 2 χ 2 k. Daraus folgt X d = µ+ras und daher X E d (µ,σ, ψ) mit ψ(x) = exp{ x/2}. Beispiel 7 (Multivariate normal variance mixture) Sei Z N d (0, I) ein normal-verteilter Zufallsvektor. Z ist sphärischverteilt mit stochastischer Darstellung Z d = V S wobei V 2 = Z 2 χ 2 d. Sei X = µ+w AZ eine Varianz-gemischte Normalverteilung. Dann gilt X = d µ + V WAS wobei V 2 χ 2 d und V W eine nicht-negative von Z unabhängige ZV ist. D.h., X ist elliptisch verteilt mit R = V W. 22

10 Theorem 5 (Eigenschaften der elliptischen Verteilung) Sei X E k (µ,σ, ψ). X hat folgende Eigenschaften: Lineare Kombinationen: Für B IR k d und b IR k gilt: Randverteilungen: ( Setze X T = X (1)T, X (2)T) für BX + b E k (Bµ + b, BΣB T, ψ). X (1)T = (X 1, X 2,..., X n ) T und X (2)T = (X n+1, X n+2,..., X k ) T und analog ( ( ) µ T = µ (1)T, µ (2)T) Σ (1,1) Σ sowie Σ = (1,2) Σ (2,1) Σ (2,2). Es gilt dann ) ) X 1 N n (µ (1),Σ (1,1), ψ und X 2 N k n (µ (2),Σ (2,2), ψ. 23

11 Bedingte Verteilungen: Wenn Σ regulär, dann ist auch die bedingte Verteilung X (2) X (1) = x (1) elliptisch verteilt: X (2) X (1) = x (1) N k n ( µ (2,1),Σ (22,1), ψ ) wobei µ (2,1) = µ (2) + Σ (2,1) ( Σ (1,1) ) 1 ( x (1) µ (1) ) und Σ (22,1) = Σ (2,2) Σ (2,1) (Σ (1,1) ) 1Σ (1,2). Typischerwise sind ψ und ψ unterschiedlich (siehe Fang, Katz und Ng 1987). 24

12 Quadratische Formen: Wenn Σ regulär, dann gilt D 2 = (X µ) T Σ 1 (X µ) R 2. wobei R die nicht-negative ZV aus der stochastischen Darstellung ) Y = RS der spherischen Verteilung Y mit S U (S (d 1) und X = µ+ay ist. Die Zufallsvariable D heißt Mahalanobis Distanz. Faltung: Seien X E k (µ,σ, ψ) und Y E k ( µ,σ, ψ) zwei unabhängige Zufallsvektoren. Es gilt dann X + Y E k (µ + µ,σ, ψ) wobei ψ = ψ ψ. Achtung: Σ muss i.a. dieselbe für X und Y sein. Anmerkung: Aus X E k (µ, I k, ψ) folgt nicht, dass die Komponenten von X unabhängig sind. Die Komponenten von X sind dann und nur dann unabhängig wenn X multivariat normalverteilt mit der Einheitsmatrix als Kovarianzmatrix ist. 25

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0.

Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Theorem 19 Sei (X 1,X 2 ) T ein normalverteilter Zufallsvektor. Dann gilt: λ U (X 1,X 2 ) = λ L (X 1,X 2 ) = 0. Korollar 2 Sei (X 1,X 2 ) T ein Zufallsvektor mit stetigen Randverteilungen und einer Gauss

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil Dr. Christof Luchsinger Übungsblatt zur Vorlesung Statistische Methoden - freiwilliger Teil Rechnen mit Matrizen, Multivariate Normalverteilung Herausgabe des Übungsblattes: Woche 0, Abgabe der Lösungen:

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

2 Multivariate Normalverteilung

2 Multivariate Normalverteilung 2 Multivariate Normalverteilung 2. Multivariate Normalverteilung Definition 2.. Normalverteilung Eine univariat normalverteilte Zufallsvariable X besitzt ie Dichte ) (x µ)2 f (x) = exp ( x R. 2π σ 2σ 2

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr.

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr. Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof Dr Enno Mammen 0 Exkurs: Orthogonaltransformationen, Projektionen im R n In diesem

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird.

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird. Weihnachtsaufgaben Diese Aufgaben dienen dazu die in der Vorlesung und den Übungen eingeführten Begriffe zu verstehen und zu vertiefen, die Bearbeitung ist freiwillig Das Blatt wurde von den Übungsleitern

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

3 Satz von Fisher Tippett

3 Satz von Fisher Tippett Theorem 3.1 (Satz von Fisher Tippett; extremal types theorem). Eine Verteilung G ist eine Extremwertverteilung genau dann, wenn es c > 0, d R und γ R gibt mit G(t) = G γ (ct + d). { } Dabei ist G γ eine

Mehr

Asymptotische Stochastik (SS 2010)

Asymptotische Stochastik (SS 2010) Institut für Stochastik PD. Dr. Dieter Kadelka Daniel Gentner Asymptotische Stochastik (SS 2010) Lösungen zu Übungsblatt 4 Aufgabe 1 (lokaler Grenzwertsatz von de Moivre und Laplace und eine Verallgemeinerung)

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Stochastik für Studierende der Informatik

Stochastik für Studierende der Informatik Wiederholungs-/Fragestunde Peter Czuppon Uni Freiburg, 05. September 2016 Diese Zusammenfassung wurde mit Hilfe des Skriptes von Prof. Dr. Pfaffelhuber aus dem Sommersemester 2016 erstellt. Ferner deckt

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Finanzzeitreihen Teil 2

Finanzzeitreihen Teil 2 Teil 2 Mathematisches Institut der Universität zu Köln Wintersemester 09/10 Betreuung: Prof. Schmidli, J. Eisenberg Literatur : Quantitative Risk Management Wu Jui Sun Contents 1 Wiederholung 2 1.1 Value

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte

Mehr

1 (2π) m/2 det (Σ) exp 1 ]

1 (2π) m/2 det (Σ) exp 1 ] Multivariate Normalverteilung: m=1: Y N(µ; σ 2 ) Erwartungswert: µ Varianz: σ 2 f Y (y) = f Y1 Y 2...Y m (y 1,y 2,...,y m ) = [ 1 exp 1 ] 2πσ 2 2 (y µ)2 /σ 2 Σ: m m-matrix, symmetrisch, positiv definit.

Mehr

Wiederholung: Transformationsformel für Dichten

Wiederholung: Transformationsformel für Dichten Der folgende Aufschrieb enthält die fehlenden Beweise aus der Vorlesung. Wiederholung: ransforationsforel für Dichten Zur Herleitung der χ und t-verteilung verwenden wir ehrals die ransforationsforel.

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2).

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2). Kapitel II Brownsche Bewegung Literatur: Karatzas, Shreve (1999, Chap. 2). Gegeben: Wahrscheinlichkeitsraum (Ω, A, P) mit Filtration F = (F t ) t I, wobei I = [0, [. Definition 1. W = (W t ) t I Brownsche

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik . Grundbegri e der Stochastik Raum der Ereignisse. Die einelementigen Teilmengen f!g heißen auch Elementarereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. A ist ein geeignetes System von Teilmengen

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Solvency II und die Standardformel

Solvency II und die Standardformel Fakultät Mathematik und Naturwissenschaften Institut für Mathematische Stochastik Solvency II und die Standardformel Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der TU Dresden Sebastian Fuchs

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer Bergische Universität Wuppertal Dozent: M.Sc. Brice Hakwa

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Konfidenzbereiche. Kapitel Grundlagen. Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus,

Konfidenzbereiche. Kapitel Grundlagen. Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, Kapitel 4 Konfidenzbereiche 4.1 Grundlagen Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden

Mehr

Kapitel 12 Erwartungswert und Varianz

Kapitel 12 Erwartungswert und Varianz Kapitel 12 Erwartungswert und Varianz Vorlesung Wahrscheinlichkeitsrechnung I vom 4/10. Juni 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 12.1 Der Erwartungswert Der Erwartungswert einer Zufallsvariablen

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Mathematische Grundlagen Kalman Filter Beispielprogramm. Kalman Filter. Stephan Meyer

Mathematische Grundlagen Kalman Filter Beispielprogramm. Kalman Filter. Stephan Meyer Kalman Filter Stephan Meyer FWPF Ortsbezogene Anwendungen und Dienste Georg-Simon-Ohm-Hochschule Nürnberg 07.12.2007 Outline 1 Mathematische Grundlagen 2 Kalman Filter 3 Beispielprogramm Mathematische

Mehr

Signifikanztests Optimalitätstheorie

Signifikanztests Optimalitätstheorie Kapitel Signifikanztests Optimalitätstheorie Randomisierte Tests In einem statistischen Modell M, A, P ϑ sei ein Testproblem gegeben: H : ϑ Θ gegen H : ϑ Θ ; wobei also durch Θ Θ Θ eine Zerlegung des Parameterbereichs

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt.

1. Grundbegri e. T n i=1 A i = A 1 \ A 2 \ : : : \ A n alle A i treten ein. na = A das zu A komplementäre Ereignis; tritt ein, wenn A nicht eintritt. . Grundbegri e Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt ein, wenn ein! A eintritt. ist auch das sichere Ereignis,

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Statistik in Geodäsie, Geoinformation und Bauwesen

Statistik in Geodäsie, Geoinformation und Bauwesen Wilhelm Benning Statistik in Geodäsie, Geoinformation und Bauwesen 2., überarbeitete und erweiterte Auflage Herbert Wichmann Verlag Heidelberg Matrix-Theorie 1 1.1 Matrizen und Vektoren 1 1.2 Matrixverknüpfungen

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

1 Relevante Beispiele für Verteilungen auf R

1 Relevante Beispiele für Verteilungen auf R Prof. Dr. H. Zähle Vorlesung Sachversicherungsmathemati, Anlage 1 Universität des Saarlandes, SS 2010 1 Relevante Beispiele Verteilungen auf R Wir bezeichnen die Menge aller W-Maße auf (R, B(R)) mit M

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

Stetige Verteilungen, Unabhängigkeit & ZGS

Stetige Verteilungen, Unabhängigkeit & ZGS Mathematik II für Biologen Stetige Verteilungen, & ZGS 19. Juni 2015 Stetige Verteilungen, & ZGS Stetige Zufallsvariable Dichte & Verteilungsfunktion Eigenschaften & Kennzahlen Definition Eigenschaften,

Mehr