Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)"

Transkript

1 Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren: Kryptanalyse mit statistischen Methoden einfach (z.b. Häufigkeitsanalyse) modern: (später) asymmetrisch: (später) Wiederholung: zahlentheoretische Grundlagen Kongruenz modulo ( n ), Restklassen (Teilmengen von Z) Multiplikation, Addition von Restklassen additive und multiplikative Inverse in Z n Verfahren zur Bestimmung der multiplikativen Inversen in Z n : kleiner Satz von Fermat mit Erweiterung 40

2 Wiederholung: Erweiterter Euklidischer Algorithmus zur Berechnung der multiplikativen Inversen a 1 in Z n (für a, n relativ prim, aber n nicht notwendig Primzahl) Fakt Für je zwei Zahlen a, b Z existieren Zahlen x, y Z, so dass gilt ggt(a, b) = d = xa + yb Anwendung des erweiterten Euklidischen Algorithmus zur Berechnung der multiplikativen Inversen von a in Z n : Berechnung von x = a 1 in ax n 1 durch ggt(a, n) = 1 = xa + yn 41

3 Wiederholung: Größter gemeinsamer Teiler ggt(a, b) = d mit 1. d a und d b und 2. für jeden Teiler t mit t a und t b gilt t d Operation ggt ist kommutativ, assoziativ ggt folgende Eigenschaften: 1. ggt(a, a) = a 2. ggt(a, b) = ggt(b, a) 3. für a > b gilt ggt(a, b) = ggt(a b, b) Daraus lässt sich ein Verfahren zur Berechnung des ggt ableiten. Beispiel: ggt(60, 25) 42

4 Wiederholung: Euklidischer Algorithmus Algorithmus : Euklidischer Algorithmus Eingabe : A, B N Ausgabe : a N (Nachbedingung: a = ggt(a, B) a A; b B solange a b : wenn a > b dann a a b sonst b b a Beispiel: A = 15, B = 11, ggt(a, B) =... 43

5 Wiederholung: Erweiterter Euklidischer Algorithmus Algorithmus : Erweiterter Euklidischer Algorithmus Eingabe : A, B N Ausgabe : a, p, q, r, s N (Nachbedingung: a = ggt(a, B) = Ap + Bq = Ar + Bs) a A; b B p 1; q 0; r 0; s 1 solange a b : wenn a > b dann a a b; p p r; q q s sonst b b a; r r p; s s q Beispiele: A = 60, B = 35, ggt(a, B) =..., x =..., y =... in Ax + By = ggt(a, B) A = 15, B = 11, ggt(a, B) =..., x =..., y =... in Ax + By = ggt(a, B) A = 123, B = 45, ggt(a, B) =..., x =..., y =... in 44

6 Erweiterter Euklidischer Algorithmus Anwendung Erweiterter Euklidischer Algorithmus für Eingaben a, n berechnet x, y mit xa + yn = ggt(a, n) Falls ggt(a, n) = 1 gilt: xa + yn = ggt(a, n) = 1, also xa n 1, also x = a 1 (Wert y egal) Der erweiterte Euklidischer Algorithmus eignet sich also zur Bestimmung des multiplikativen Inversen a 1 Z n, falls ggt(a, n) = 1. Beispiele: , , ,

7 Schnelles Potenzieren in Z n Idee Berechnung von a b mod n mögliche Fälle: IA0: b = 0: a 0 = 1 IA1: b = 1: a 1 = a IS0: b gerade, d.h. b = 2b : a b = a 2b = (a b ) 2 n (a b ) 2 mod n IS1: b ungerade, d.h. b = 2b + 1: a b = a 1+2b = a (a b ) 2 n a (a b ) 2 mod n 46

8 Schnelles Potenzieren in Z n Algorithmus Algorithmus : Schnelles Potenzieren Eingabe : a, b Z, n N Ausgabe : r {0,..., n 1} (Nachbedingung: r = a b mod n) x a y b r 1 solange y > 0 : wenn y 2 1 dann r (r x) mod n y y div 2 x (x x) mod n Beispiel: 3 20 mod 7 =... Warum ist dieser Algorithmus schneller als der naive? Was bedeutet schneller? (mehr dazu im Teil Algorithmen und Datenstrukturen) 47

9 Multiplikative Chiffren Beispiele Kryptographisches System (M, C, K, e, d) mit M = C = {0,..., n 1}, K = {0,..., n 1} e : K M C mit k K, m = m 1 m l M : e(k, m) = e(k, m 1 m l ) = ((m 1 k) mod n) ((m l k) mod n) d : K C M mit k K, c = c 1 c l C : d(k, c) = d(k, c 1 c l ) = ((c 1 k 1 ) mod n) ((c l k 1 ) mod n) Beispiele: Klartext: siebenmal, Schlüssel: 7 Geheimtext:... Klartext: multiplikation, Geheimtext: KIHFYTHYEAFYQN Schlüssel:... verschlüsselte Nachricht: HKS DFSMHS AN SKNSC JFYHMGB ZYSFB HANN AMD, ISNN CAN PM RANOS HAFAMD IAFBSN CMQQ Schlüssel:..., Klartext:... 48

10 Kryptanalyse multiplikativer Chiffren Ciphertext-Only-Angriffe auf multiplikative Chiffren mit Schlüsselmenge K = {0,..., n 1} Meist weniger als n Schlüssel möglich (kleinerer Schlüsselraum) Brute Force: Ausprobieren aller n Schlüssel Häufigkeitsanalyse von Buchstaben, Buchstabengruppen Chosen-Ciphertext-, Chosen-Plaintext- und Known-Plaintext-Angriffe einfach Multiplikative Chiffren sind nicht sicher. mögliche Verbesserung: Kombination von multiplikativen und Verschiebe-Chiffren e((k 1, k 2 ), s) = (k 1 s + k 2 ) mod n Anzahl möglicher Schlüssel < n 2 (kaum besser) 49

11 Permutationschiffren Permutation (Umordnung): bijektive Funktion f : A A Idee: M = C = {0,..., n 1} Schlüssel: Permutation f : {0,..., n 1} {0,..., n 1} auf der Symbolmenge Verschlüsselung: Ersetzung jedes Klartextsymbols s durch f (s) Entschlüsselung: Ersetzung jedes Geheimtextsymbols s durch f 1 (s) Beispiele: Alle Verschiebungen sind spezielle Permutationen. Alle Multiplikationen mod n mit k für ggt(k, n) = 1 sind spezielle Permutationen. f : {0,..., n 1} {0,..., n 1} mit f (x) = x + 1 falls x 2 0 und x < n 1 x 1 falls x 2 1 und x n 1 x falls x 2 1 und x = n 1 50

12 Permutationschiffren Beispiel: Schlüssel: Permutation f = {a z, b y, c x,...} Klartext: klartext verschlüsselter Text:... Kryptanalyse: größerer Schlüsselraum (m! Permutationen bei Alphabetgröße m) Brute-Force-Angriffe etwas aufwendiger Häufigkeitsanalyse Known-Plaintext-Angriffe mit Text hinreichender Größe relativ einfach Problem: Verwaltung großer Schlüssel notwendig 51

13 Transpositionschiffren Idee: Tausch der Positionen der Symbole des Klartextes Würfel-Chiffre: Anordnung des Klartextes m als Matrix (fester Breite, evtl. auffüllen) Schlüssel: Breite k der Matrix Verschlüsseln: zeilenweiser Eintrag von m in eine Matrix der Breite k Schlüsseltext durch spaltenweises Auslesen Entschlüsseln: spaltenweiser Eintrag des verschlüsselten Textes in eine Matrix der Breite k Klartext durch zeilenweises Auslesen Beispiel: Schlüssel: k = 3 Klartext: geheimnis Chiffretext: GENEIIHMS 73

14 Beispiele Chiffretext: DLRARGEEEELUEEWEIRRINR CARNFBSDEKEJWEATWEIRAUL Schlüssel: k = 5 Klartext:? Chiffretext: GSCILENLEETHSBREENGRWTSWMEKEOIDOESNO NMMESIOTMDZMSCLVGMEUEHHEIEENSNAWIEGN Schlüssel:? Klartext:? Kryptanalyse (Brute Force): Ausprobieren aller möglichen Schlüssel (Matrixbreiten) sehr einfach 74

15 Verbesserungen Umordnung der Spalten nach einem Schüsselwort k (bestimmt die Breite der Matrix, evtl. auffüllen) Beispiel: Schlüssel: xkcd Klartext: realprogrammers Geheimtext:? Doppelwürfel: zweifache Nacheinanderausführung des Verfahrens mit verschiedenen Schlüsselwörtern Mehrfachwürfel-Verschlüsselungen sind (bei geeigneter Wahl der Schlüsselwörter) recht sicher. 75

16 Vigenère-Chiffre Idee: Verschiebeschiffre mit Schlüsselwort anschauliche Darstellung: Vigenère-Quadrat Beispiel: Schlüsselwort k: VENUS Klartext m: polyalphabetisch Geheimtext c: KSYSSGT... Sicherheit: Abbildung jedes Vorkommens eines Quelltextsymbols auf verschiedene Geheimtextsymbole polyalphabetische Verschlüsselung, daher Häufigkeitsanalyse schwierig Sicherheit hängt von Wahl des Schlüsselwortes ab 76

17 Angriffe auf Vigenère-Chiffren Ciphertext-only-Angriff: Angriffspunkt: Länge k des Schlüsselwortes (z.b. Kasiski-Test: Primteiler der Abstände gleicher Symbolfolgen im Chiffretext) Entschlüsselung (Häufigkeitsanalyse) jeder der k Teilfolgen des Chiffretextes (c 0, c k, c 2 k,...) (c 1, c k +1, c 2 k +1,...). (c k 1, c 2 k 1, c 3 k 1,...) große Mengen Chiffretext notwendig Sicherheit wächst mit Schlüssellänge k : k = 1: einfache Verschiebechiffre (sehr unsicher) k = m : One-Time-Pad (sicher) 77

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Rainer 20.11.2007 Inhaltsverzeichnis 1 Grundlagen 2 2 Substitutionschiffren 2 2.1 Monoalphabetische Substitutionen....................... 3 2.1.1 Verschiebechiffren............................

Mehr

Modulprüfung (Grundlagen der Informationsverarbeitung und -sicherheit) am 9. 2. 2011 um 14:00 15:30 Uhr im HS 1 (Tivoli) Viel Erfolg!

Modulprüfung (Grundlagen der Informationsverarbeitung und -sicherheit) am 9. 2. 2011 um 14:00 15:30 Uhr im HS 1 (Tivoli) Viel Erfolg! Organisatorisches Modulprüfung (Grundlagen der Informationsverarbeitung und -sicherheit) am 9. 2. 2011 um 14:00 15:30 Uhr im HS 1 (Tivoli) Viel Erfolg! Auswertung Studentenfragebögen Vorbereitung auf die

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Kryptographie I Symmetrische Kryptographie

Kryptographie I Symmetrische Kryptographie Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,

Mehr

Leseprobe. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): 978-3-446-42756-3. ISBN (E-Book): 978-3-446-43196-6

Leseprobe. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): 978-3-446-42756-3. ISBN (E-Book): 978-3-446-43196-6 Leseprobe Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Seminar für LAK. Angewandte Mathematik

Seminar für LAK. Angewandte Mathematik LV-Nummer: 250115 Wintersemester 2009/2010 Ao. Univ.-Prof. Dr. Peter Schmitt Seminar für LAK Angewandte Mathematik Martin Kletzmayr Matrikelnummer: 0304008 Studienkennzahl: A 190 313 406 Email: martin.kletzmayr@gmx.net

Mehr

Grundbegriffe der Kryptographie

Grundbegriffe der Kryptographie Grundbegriffe der Kryptographie Vorlesungsskript von Eike Best April-Juli 2004 Oldenburg, April 2004 E. Best Das Skript wird ständig gepflegt. Wenn Ihnen beim Lesen Fehler auffallen, schicken Sie bitte

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Seminar Kryptographie und Datensicherheit Einfache Kryptosysteme und ihre Analyse Christoph Kreitz 1. Grundlagen von Kryptosystemen 2. Buchstabenorientierte Systeme 3. Blockbasierte Verschlüsselung 4.

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

Einführung in die. Kryptographie WS 2016/ Lösungsblatt

Einführung in die. Kryptographie WS 2016/ Lösungsblatt Technische Universität Darmstadt Fachgebiet Theoretische Informatik Prof. Johannes Buchmann Thomas Wunderer Einführung in die Kryptographie WS 6/ 7. Lösungsblatt 8..6 Ankündigungen Arithmetik modulo n

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 22. November 2017 WS 2017/2018

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 22. November 2017 WS 2017/2018 IT-Sicherheit WS 2017/2018 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 22. November 2017 Kerckhoffssches Prinzip Die Sicherheit eines

Mehr

Kryptologie. Nicolas Bellm. 24. November 2005

Kryptologie. Nicolas Bellm. 24. November 2005 24. November 2005 Inhalt Einleitung 1 Einleitung 2 Klassische Skytale Monoalphabetische Verfahren Polyalphabetische Verfahren 3 Moderne Symmetrische Assymetrische 4 Ausblick Einleitung Einleitung Die ist

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Kryptographie I Symmetrische Kryptographie

Kryptographie I Symmetrische Kryptographie Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2009/10 Krypto I - Vorlesung 01-12.10.2009 Verschlüsselung, Kerckhoffs, Angreifer,

Mehr

Kryptographie I Symmetrische Kryptographie

Kryptographie I Symmetrische Kryptographie Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2012/13 Krypto I - Vorlesung 01-08.10.2012 Verschlüsselung, Kerckhoffs, Angreifer,

Mehr

Verschlüsselung. Chiffrat. Eve

Verschlüsselung. Chiffrat. Eve Das RSA Verfahren Verschlüsselung m Chiffrat m k k Eve? Verschlüsselung m Chiffrat m k k Eve? Aber wie verteilt man die Schlüssel? Die Mafia-Methode Sender Empfänger Der Sender verwendet keine Verschlüsselung

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Wiederholung asymmetrische Verfahren mit Schlüsselpaar: öffentlicher Schlüssel geheimer Schlüssel (löst Schlüsseltauschproblem) sichere Übermittlung

Wiederholung asymmetrische Verfahren mit Schlüsselpaar: öffentlicher Schlüssel geheimer Schlüssel (löst Schlüsseltauschproblem) sichere Übermittlung Wiederholung asymmetrische Verfahren mit Schlüsselpaar: öffentlicher Schlüssel geheimer Schlüssel (löst Schlüsseltauschproblem) sichere Übermittlung über unsichere Kanäle: Verschlüsselung mit öffentlichem

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Kapitel 2: Zahlentheoretische Algorithmen Gliederung

Kapitel 2: Zahlentheoretische Algorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Kryptographie mit elliptischen Kurven

Kryptographie mit elliptischen Kurven Kryptographie mit elliptischen Kurven Gabor Wiese Universität Regensburg Kryptographie mit elliptischen Kurven p. 1 Problemstellung Kryptographie mit elliptischen Kurven p. 2 Problemstellung Caesar Kryptographie

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Vorlesungsmodul Sicherheit in der Informationstechnik - VorlMod SichInf - Matthias Ansorg

Vorlesungsmodul Sicherheit in der Informationstechnik - VorlMod SichInf - Matthias Ansorg Vorlesungsmodul Sicherheit in der Informationstechnik - VorlMod SichInf - Matthias Ansorg 13. Oktober 2004 bis 26. März 2005 2 Studentische Mitschrift zur Vorlesung Sicherheit in der Informationstechnik

Mehr

3. Lösungsblatt

3. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF JOHANNES BUCHMANN NABIL ALKEILANI ALKADRI Einführung in die Kryptographie WS 7/ 8 3 Lösungsblatt 67 P Matrizen und Determinanten

Mehr

Kryptografische Algorithmen

Kryptografische Algorithmen Kryptografische Algorithmen Lerneinheit 2: Kryptoanalyse klassischer Kryptosysteme Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 21.9.2015 Einleitung Inhalt

Mehr

Kryptographie I Symmetrische Kryptographie

Kryptographie I Symmetrische Kryptographie Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2011/12 1 Basierend auf Folien von Alexander May. Krypto I - Vorlesung 01-10.10.2011

Mehr

Klassische Kryptographie

Klassische Kryptographie Sommersemester 2008 Geschichte Seit der Antike: Verbreiteter, aber unsystematischer Einsatz kryptographischer Methoden (z.b. durch Caesar). Ende 19. Jhdt.: Systematisierung und Formalisierung. 2. Weltkrieg:

Mehr

IT-Sicherheit - Sicherheit vernetzter Systeme -

IT-Sicherheit - Sicherheit vernetzter Systeme - IT-Sicherheit - Sicherheit vernetzter Systeme - Kapitel 4: Grundlagen der Kryptologie Helmut Reiser, LRZ, WS 09/10 IT-Sicherheit 1 Inhalt 1. Kryptologie: Begriffe, Klassifikation 2. Steganographie 3. Kryptographie,

Mehr

Geheimtexte und Verschlüsselungen anfertigen und knacken

Geheimtexte und Verschlüsselungen anfertigen und knacken Geheimtexte und Verschlüsselungen anfertigen und knacken - Kick und Klick Freizeit 2007 - - Prof. Dr. Alfred Scheerhorn - 1 Kryptologie Die Kryptologie ist die Wissenschaft von der Verschleierung von Nachrichten

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Kryptographische Verfahren auf Basis des Diskreten Logarithmus

Kryptographische Verfahren auf Basis des Diskreten Logarithmus Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Kryptographische Algorithmen

Kryptographische Algorithmen Kryptographische Algorithmen Lerneinheit 1: Klassische Kryptosysteme Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2016/2017 19.9.2016 Sichere Kommunikation Sichere Kommunikation

Mehr

1. Praktikum zur IT-Sicherheit 1

1. Praktikum zur IT-Sicherheit 1 Prof. Dr. Heiko Knospe WS 2004/05 Vigenère Chiffre 1. Praktikum zur IT-Sicherheit 1 Bei der Vigenère Chiffre der Länge n werden Klartext- und Chiffretexte durch Worte über dem Alphabet Σ = {A, B,..., Z}

Mehr

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen:

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Peano-Zahlen, Listen, Bäume Rekursive Funktionen strukturelle

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit: Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Integrität: Garantie der Korrektheit (unverändert,

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005 Kryptologie GFS im Fach Mathematik Nicolas Bellm 12. November - 16. November 2005 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Wie bleibt unser Geheimnis geheim?

Wie bleibt unser Geheimnis geheim? Wie bleibt unser Geheimnis geheim? Jan Tobias Mühlberg Wie bleibt unser Geheimnis geheim? MuT, Wintersemester 2009/10 Jan Tobias Mühlberg & Johannes Schwalb muehlber@swt-bamberg.de Lehrstuhl: Prof. Lüttgen,

Mehr

RSA Primzahlen zur Verschlüsselung von Nachrichten

RSA Primzahlen zur Verschlüsselung von Nachrichten RSA Primzahlen zur Verschlüsselung von Nachrichten Anton Schüller 1 Ulrich Trottenberg 1,2 Roman Wienands 2 Michael Koziol 2 Rebekka Schneider 2 1 Fraunhofer-Institut Algorithmen und Wissenschaftliches

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Kryptographie. Vorlesung 7: Der AES Algorithmus. Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca

Kryptographie. Vorlesung 7: Der AES Algorithmus. Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca Kryptographie Vorlesung 7: Der AES Algorithmus Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 1/48 KONSTRUKTION ENDLICHER KÖRPER Wir beschreiben, wie man zu jeder

Mehr

Vorlesung Kryptologie: Kapitel 1: Historische Chiffren

Vorlesung Kryptologie: Kapitel 1: Historische Chiffren Vorlesung Kryptologie: Kapitel 1: Historische Chiffren von Peter Hellekalek Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail: peter.hellekalek@sbg.ac.at

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

AUFGABEN ZUR KRYPTOLOGIE

AUFGABEN ZUR KRYPTOLOGIE AUFGABEN ZUR KRYPTOLOGIE Aufgabe 1 Der folgende Geheimtext ging hervor aus der Verschlüsselung eines deutschen Klartexts mit einem monoalphabetischen Chiffrierungsverfahren. nyv syv svdvu yst vyuv sglmdv

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Kap. II: Kryptographie

Kap. II: Kryptographie Chr.Nelius: Zahlentheorie (SoSe 2017) 39 Kap. II: Kryptographie 9. Allgemeines und Beispiele Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum

Mehr

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009 19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden

Mehr

Kryptografische Algorithmen

Kryptografische Algorithmen Kryptografische Algorithmen Lerneinheit 5: Weitere symmetrische Kryptosysteme Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 21.9.2015 Einleitung Einleitung Diese

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

Verteilte Systeme: KE 4

Verteilte Systeme: KE 4 Verteilte Systeme: KE 4 Sicherheit und Verschlüsselung Ziele der Kryptographie Verschiebechiffre Substitutionschiffre Vigenere Permutationschiffre Stromchiffren DES RSA Sichere Kanäle, digitale Signaturen

Mehr

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems

Paul-Klee-Gymnasium. Facharbeit aus der Mathematik. Thema: Asymmetrische Verschlüsselungsverfahren. am Beispiel des RSA-Kryptosystems Paul-Klee-Gymnasium Facharbeit aus der Mathematik Thema: Asymmetrische Verschlüsselungsverfahren am Beispiel des RSA-Kryptosystems Verfasser : Martin Andreas Thoma Kursleiter : Claudia Wenninger Abgegeben

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13. Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie

Mehr

Automatentheorie und Kryptologie. Computer und Mediensicherheit, FHS Hagenberg

Automatentheorie und Kryptologie. Computer und Mediensicherheit, FHS Hagenberg Jürgen Ecker Automatentheorie und Kryptologie Computer und Mediensicherheit, FHS Hagenberg Skriptum zu den Vorlesungen in den Wintersemestern 2002/2003 und 2003/2004 und im Sommersemester 2003 ii Inhaltsverzeichnis

Mehr

9 Kryptographische Verfahren

9 Kryptographische Verfahren 9 Kryptographische Verfahren Kryptographie, Kryptologie (griech.) = Lehre von den Geheimschriften Zweck: ursprünglich: vertrauliche Nachrichtenübertragung/speicherung rechnerbezogen: Vertraulichkeit, Authentizität,

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Einführung in die Kryptologie

Einführung in die Kryptologie Einführung in die Kryptologie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:

Mehr

Digitale Signaturen. Sven Tabbert

Digitale Signaturen. Sven Tabbert Digitale Signaturen Sven Tabbert Inhalt: Digitale Signaturen 1. Einleitung 2. Erzeugung Digitaler Signaturen 3. Signaturen und Einweg Hashfunktionen 4. Digital Signature Algorithmus 5. Zusammenfassung

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Einführung in die moderne Kryptographie

Einführung in die moderne Kryptographie c by Rolf Haenni (2006) Seite 1 Von der Caesar-Verschlüsselung zum Online-Banking: Einführung in die moderne Kryptographie Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science

Mehr

Moderne mathematische Verfahren in der Kryptographie unter Anwendungsaspekten

Moderne mathematische Verfahren in der Kryptographie unter Anwendungsaspekten Moderne mathematische Verfahren in der Kryptographie unter Anwendungsaspekten Wissenschaftliche Hausarbeit im Rahmen des ersten Staatsexamens für das Amt des Studienrates vorgelegt von Torsten Brandes

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr