Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch"

Transkript

1 Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch

2 Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen Masse und Molzahl Spezifisches Volumen Druck Temperatur Innere Energie und Enthalpie 2.2 Zustandsdiagramme reiner Stoffe Zustandsgebiet reiner Stoffe im p,v,t Diagramm p,t Diagramm p,v Diagramm T,v Diagramm 2

3 2 Zustandsgrößen 2.1 Thermischen Zustandsgrößen Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6, Atome oder Moleküle, N A heißt Avogadro Zahl. Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes Molmasse oder Molekularmasse: M [M ]= kg/kmol Masse: m = M n Definition: 1 Mol des Kohlenstoffisotop 12 C hat die Masse m = 12 g. Damit ist die Molmasse des Kohlenstoffisotop 12 C

4 Gemische: Partialmolzahl n i Gesamtmolzahl: n = Σ n i Molenbruch (auch Stoffmengenanteil): X i = n i / n Es gilt: S X i = 1 Analog: Partialmasse m i Gesamtmasse: m = Σ m i Massenbruch (auch Massenanteil): Y i = m i / m Es gilt: Σ Y i = 1 Mittlere Molmasse definiert durch:

5 Beziehung Massenbruch und Molenbruch Aus folgt: Beispiel: Luft besteht im wesentlichen aus Sauerstoff O 2 und Stickstoff N 2 mit folgenden Volumenanteilen: 21% O 2 und 79% N 2. Die Molekularmassen sind approximativ. Die Volumenanteile entsprechen den Molenbrüchen, wenn wir berücksichtigen, dass ein Mol jeder Gaskomponente dasselbe Volumen nämlich 22,4 Liter einnimmt. Die mittlere Molmasse ist:

6 Beispiel Salzlösung 2g NaCl werden in 100g Wasser gelöst. Geg.: M NaCl = 58,444 kg/kmol, M H2 O = 18,05 kg/kmol Ges.: Molenbrüche der Komponenten in der Salzlösung Lösung: m NaCl = 2 g, m H2 O = 100 g, m = 102 g n NaCl = 2/58,444 mol = 0,0342 mol, n H 20 = 100/18,015 mol = 5,5509 mol In der Lösung dissoziiert NaCl zu Na +, Cl, so dass zusammen 2. 0,0342 = 0,0684 Mole Na + und Cl entstehen. Molzahl des 3 Komponenten Gemisches n = 0,0684 mol + 5,5509 mol = 5,6193 mol Molenbrüche X Na+ = X Cl = 0,0342 / 5,6193 = 0,0061

7 Volumen / Druck Spezifisches Volumen Spezifisches Volumen Dichte molares Volumen Druck [p] = Pascal (Pa) 1 Pa = 1N/m 2 1 bar = 10 5 Pa = 0,1 MPa

8

9 Messung des von Druckdifferenzen mittels Quecksilbermanometers Kräftebilanz Druck = Kraft /Fläche mit folgt

10 Das Billardkugelmodell Der Gasdruck entsteht durch die Stöße der Atome gegen die Wände Kraft eines Teilchens auf die Wand entspricht der zeitlichen Änderung des Impulses Druck von allen Teilchen, die stoßen:

11 Die Teilchen mit der Geschwindigkeitskomponente u definieren das Volumen A Dtu, aus dem die rechte Endfläche des Bilanzraumes getroffen wird. Mit der Teilchendichte N/V ergibt sich für die Anzahl der Stöße und für den Druck Da die Teilchen im Behälter alle möglichen Geschwindigkeiten haben, werden im folgenden mittlere Größen eingeführt.

12 Wegen der Isotropie der Geschwindigkeitsverteilung ist die mittlere kinetische Energie der Teilchen Mit u 2 = ½<u 2 > (der Faktor ½ berücksichtigt, dass für die Anzahl der Stöße nur die Teilchen mit positiver Geschwindigkeitskomponente herangezogen werden dürfen) folgt für den Druck Mit folgt

13 2.1.4 Temperatur Die Temperatur ist ein Maß für die mittlere kinetische Energie der Moleküle Festlegung der Temperaturskala Bei ϑ = 0 C(Celsius Skala) und p = 1,013 bar gefriert reines Wasser Flüssigkeit und Eis liegen gleichzeitig vor Festlegung der Celsius Skala (K): J [ C] = T [K] 273,15 K Festlegung der Kelvin Skala am Tripelpunkt des Wassers: T Tr = 273,16 K Temperaturmessung mittels Thermoelement Materialpaarungen z.b. Kupfer und Konstantan (Cu 55 Ni 45 )

14 2.1.5 Innere Energie und Enthalpie Innere Energie U : Σ mikroskopischer Energien, im wesentlichen thermische und latente Energien Einheit: [U] = Joule 1 J = 1Nm = kg (m/s) 2 Wie der Druck, das Volumen und die Temperatur, ist auch die Innere Energie U eine Zustandsgröße Die Enthalpie H ist definiert als

15 Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen Masse und Molzahl Spezifisches Volumen Druck Temperatur Innere Energie und Enthalpie 2.2 Zustandsdiagramme reiner Stoffe Zustandsgebiet reiner Stoffe im p,v,t Diagramm p,t Diagramm p,v Diagramm T,v Diagramm 15

16 2.2 Zustandsdiagramme reiner Stoffe Reinstoffe finden in energieumwandelnden Anlagen als Arbeitsfluide Anwendung Beispiele: Dampfkraftanlagen (Wasser und Wasserdampf) Kältemaschinen, Wärmepumpen (Kältemittel z. B. Freon) Zustandspostulat Der Zustand eines einfachen kompressiblen Systems ist durch die Vorgabe von zwei unabhängigen intensiven Zustandsgrößen eindeutig bestimmt

17 Anwendung des Zustandspostulats Der Zustand eines einfachen kompressiblen Systems ist durch die Vorgabe von zwei unabhängigen intensiven Zustandsgrößen eindeutig bestimmt Zustandsgrößen und Zustandsgleichungen Es bestehen experimentell oder theoretisch ermittelte Beziehungen zwischen Druck, Temperatur und Volumen oder Diese Beziehung wird thermische Zustandsgleichung genannt ähnliche Zustandsgleichungen für die Energie, z.b. werden als kalorische Zustandsgleichung bezeichnet

18 2.2.1 Zustandsgebiet reiner Stoffe im p,v,t Diagramm p,v,t Fläche eines reinen Stoffes

19 p,v,t Fläche eines reinen Stoffes (schematisch)

20 2.2.2 p,t Diagramm p,v,t Fläche in p,t Ansicht p T

21 p,t Diagramm eines reinen Stoffes (schematisch) Beispiel: Wasser (Anomalie von Wasser)

22 Verdampfen und Kondensieren Dampfdruckkurven und kritische Zustandsdaten reiner Stoffe p K [bar] T K [K] v K [m 3 /kg] He-3 2,27 5,19 14,3 H 2 13,0 33,2 32,2 N 2 33,9 126,2 3,19 CO 2 73,7 304,2 2,14 H 2 O 220,4 647,3 3,11 CH 4 46,0 190,6 6,17 C 2 H 4 50,3 282,4 4,6 Beispiel: Hauptantriebsstufe, das Vulkan Triebwerk, der Ariane Rakete arbeitet mit überkritisch eingespritztem Wasserstoff und flüssigem Sauerstoff

23 Schmelzen und Erstarren p,v,t Fläche (p,t Ansicht) Neben der Dampfdruckkurve kann im p,t Diagramm auch der Übergang zwischen flüssigem und festem Zustand (Schmelzen und Erstarren) dargestellt werden. Die Schmelzdruckkurve ist nahezu vertikal, d. h. der Übergang fest flüssig findet nahezu unabhängig vom Druck bei gleicher Schmelztemperatur statt.

24 Sublimation und Tripelpunkt Bei kleinen Drücken kann ein Übergang zwischen festem und gasförmigem Zustand stattfinden, den man als Sublimation (in beide Richtungen) bezeichnet Dieser Vorgang kann auch im p,t Diagramm dargestellt werden. Oberster Punkt dieser Kurve ist der Tripelpunkt, an dem alle drei Aggregatzustände gleichzeitig auftreten

25 Anomalie von Wasser Schmelztemperatur sinkt bei höherem Druck (negative Steigung der Schmelzdruckkurve) spezifisches Volumen von Eis ist größer als das von Wasser Ursache ist die Anordnung der Moleküle: Eis formt Kristalle mit großen Zwischenräumen, Wasser zwischen 0 C und 4 C beginnt sich schon entsprechend anzuordnen. Wasser Eis

26 2.2.3 p,v Diagramm p,v Ansicht der p,v,t Fläche Nassdampfgebiet

27 p,v Diagramm Beispiel Isotherme Kondensation durch Kompression mit Wärmeentzug

28 p,v Diagramm eines reinen Stoffes

29 2.2.4 T,v Diagramm Beispiel Isobare Kondensation durch Wärmeentzug

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Thermodynamik I. Prof. Dr.-Ing. Heinz Pitsch. Kapitel 2. Zustandsgrößen

Thermodynamik I. Prof. Dr.-Ing. Heinz Pitsch. Kapitel 2. Zustandsgrößen Thermodynamik I Kapitel 2 Zustandsgrößen Prof. Dr.-Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches Volumen 2.1.3

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2 Zustandsgrößen. Prof. Dr.- Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2 Zustandsgrößen. Prof. Dr.- Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2 Zustandsgrößen Prof. Dr.- Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

3.4 Änderung des Aggregatzustandes

3.4 Änderung des Aggregatzustandes 34 Änderung des Aggregatzustandes Man unterscheidet 3 Aggregatzustände: Fest Flüssig Gasförmig Temperatur: niedrig mittel hoch Molekülbindung: Gitter lose Bindung keine Bindung schmelzen sieden erstarren

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! 1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen

Mehr

-aus theoretischen Ansätzen - Approximationen

-aus theoretischen Ansätzen - Approximationen 2.3 Bestimmung von Zustandsgrößen Zustand wird bestimmt durch zwei unabhängige, intensive Zustandsgrößen Bestimmung anderer Zustandsgrößen aus Stoffmodellen Zustandsgleichungen Stoffmodelle aus - Experimenten

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 14. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs

A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

2.3 Stoffmodelle für Reinstoffe Die Dampftabelle ... MPa C m 3 /kg m 3 /kg ... 0, ,23 0, ,

2.3 Stoffmodelle für Reinstoffe Die Dampftabelle ... MPa C m 3 /kg m 3 /kg ... 0, ,23 0, , 2.3 Stoffmodelle für Reinstoffe 2. 3. 1 Die Dampftabelle Beispiel Wasser: 60 kg Nassdampf bei p = 2 bar = 0,2 MPa und V= 3 m 3, v = 0,05 m 3 /kg Drucktafel (Tab. A1.2)... MPa C m 3 /kg m 3 /kg...............

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti Ulf Wiedwald 16. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 16. 07. 2007

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von Aufgabe 1: Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H O von 0 C bis zum Siedepunkt (100 C) zu erwärmen. Die spezifische Wärmekapazität von Wasser c = 4.18 J K - 1 g -1. Lösung

Mehr

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik.

Die bei chemischen Reaktionen auftretenden Energieumsätze werden nicht durch stöchiometrische Gesetze erfasst. Sie sind Gegenstand der Thermodynamik. Die Stöchiometrie ist die Lehre von der Zusammensetzung chemischer Verbindungen, sowie der Massen-, Volumen- und Ladungsverhältnisse bei chemischen Reaktionen. Die bei chemischen Reaktionen auftretenden

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand 1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand Wie erfolgt die Beschreibung des Zustands eines Systems? über Zustandsgrößen (makroskopische Eigenschaften, die den Zustand eines Systems kennzeichnen)

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Thermodynamik 2 Klausur 19. September 2013

Thermodynamik 2 Klausur 19. September 2013 Thermodynamik 2 Klausur 19. September 2013 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken.

Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken. 8.4 Phasenübergänge und Phasengleichgewichte 8.4.1 Phasenübergang bei reinem Stoff Wir wollen unsere folgenden Betrachtung auf die drei Phasen - fest, - flüssig, - gasförmig beschränken. Die Erfahrung

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik für Nicht-Physikerinnen und Nicht-Physiker Prof. W. Meyer 5. Juni 2014 Wärmelehre Lernziele Alle Körper haben eine Temperatur Die Temperatur

Mehr

Aggregatzustände. Festkörper. Flüssigkeit. Gas

Aggregatzustände. Festkörper. Flüssigkeit. Gas Festkörper Festkörper: - weitreichend geordnetes Kristallgitter - feste Positionen, geringe Abstände - starke Wechselwirkung zwischen Atomen - Schwingungen um Positionen Flüssigkeit: - keine weitreichende

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007

Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007 Antrieb und Wärmebilanz bei Phasenübergängen Speyer, 19-20. März 2007 Michael Pohlig, WHG-Durmersheim michael@pohlig.de Literatur: Physik in der Oberstufe; Duden-PAETEC Schmelzwärme wird auch als Schmelzenergie

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V.

Gesetz von Boyle. Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V. Gesetz von Boyle Empirisch wurde beobachtet, dass bei konstanter Temperatur gilt: p.v = Konstant bzw V 1 / p bzw p 1 / V Isothermen Gesetz von Gay-Lussac Jacques Charles und Joseph-Louis Gay-Lussac fanden

Mehr

Kapitel 10 - Gase. Kapitel 10 - Gase. Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller Bewegung

Kapitel 10 - Gase. Kapitel 10 - Gase. Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller Bewegung Kapitel 0 - Gase Gase bestehen aus räumlich weit voneinander getrennten Atome/Moleküle in schneller ewegung Druck Kraft pro Fläche in Pa(scal) oder bar Normdruck = 760mm = 0,35 KPa =,035 bar = atm Messung

Mehr

Übungsaufgaben Chemie Nr. 3

Übungsaufgaben Chemie Nr. 3 Übungsaufgaben Chemie Nr. 3 22) Wie hoch ist die Molarität der jeweiligen Lösungen, wenn die angegebene Substanzmenge in Wasser gelöst und auf 200 ml aufgefüllt wurde? a) 58.44g NaCl (Kochsalz) b) 100

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Formelzeichen Bedeutung Wert / SI-Einheit

Formelzeichen Bedeutung Wert / SI-Einheit CHEMISCHE THERMODYNAMI SYMBOLE UND ONSTANTEN PROF. DR. WOLFGANG CHRISTEN Formelzeichen Bedeutung Wert / SI-Einheit AA Fläche m 2 AA Freie Energie, Helmholtz-Energie Nm = aa Beschleunigung m aa ii CC pp

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

- Chemisches Potential der idealen Gasphase: Phasengleichgewichte nichtidealer Gemische

- Chemisches Potential der idealen Gasphase: Phasengleichgewichte nichtidealer Gemische Inhalt von Abschnitt 3.3 3.3-0 3.3 Phasenübergänge und Phasengleichgewichte 3.3.1 Phasenübergang bei reinem Stoff 3.3.2 Phasengleichgewichte reiner Stoffe 3.3.3 Phasengleichgewichte von Stoffgemischen

Mehr

Grundlagen der Chemie Lösungen Prof. Annie Powell

Grundlagen der Chemie Lösungen Prof. Annie Powell Lösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Inhalte Konzentrationsmaße Wasser als Lösungsmittel Solvatation,

Mehr

Materie ist die Gesamtheit aller Stoffe: Energie bei chemischen Reaktionen:

Materie ist die Gesamtheit aller Stoffe: Energie bei chemischen Reaktionen: A.1.1 1 Stoffbegriff / Materie / Energie Materie ist die Gesamtheit aller Stoffe: Jeder Stoff füllt einen Raum V (Einheit: m³) aus Jeder Stoff besitzt eine Masse m (Einheit: kg) Dichte = Masse / Volumen

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11

Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11 Übungen zur Vorlesung Physikalische Chemie 1 (B. Sc.) Lösungsvorschlag zu Blatt 11 Prof. Dr. Norbert Hampp Jens Träger Sommersemester 2007 02. 07. 2007 Aufgabe 1 a) Die Dampfdrücke nach dem Raoult schen

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

2. Thermodynamik chemischer Prozesse, chemisches Gleichgewicht

2. Thermodynamik chemischer Prozesse, chemisches Gleichgewicht 2. Thermodynamik chemischer Prozesse, chemisches Gleichgewicht - Stoff- und Energiebilanzen - Chemische Umwandlungen - Stöchiometrie und vollständige Verbrennung - Bildungsenthalpien - Chemisches Potenzial

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Alles was uns umgibt!

Alles was uns umgibt! Was ist Chemie? Womit befasst sich die Chemie? Die Chemie ist eine Naturwissenschaft, die sich mit der Materie (den Stoffen), ihren Eigenschaften und deren Umwandlung befasst Was ist Chemie? Was ist Materie?

Mehr

II. Der nullte Hauptsatz

II. Der nullte Hauptsatz II. Der nullte Hauptsatz Hauptsätze... - sind thermodyn. Gesetzmäßigkeiten, die als Axiome (Erfahrungssätze) formuliert wurden - sind mathematisch nicht beweisbar, basieren auf Beobachtungen und Erfahrungen

Mehr

Grundlagen der Wärmelehre

Grundlagen der Wärmelehre Ausgabe 2007-09 Grundlagen der Wärmelehre (Erläuterungen) Die Wärmelehre ist das Teilgebiet der Physik, in dem Zustandsänderungen von Körpern infolge Zufuhr oder Abgabe von Wärmeenergie und in dem Energieumwandlungen,

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Tutorium Physik 1. Wärme

Tutorium Physik 1. Wärme 1 Tutorium Physik 1. Wärme WS 15/16 1.Semester BSc. Oec. und BSc. CH 2 Themen 1. Einführung, Umrechnen von Einheiten / Umformen von Formeln 2. Kinematik, Dynamik 3. Arbeit, Energie, Leistung 4. Impuls

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Fachrichtung Klima- und Kälteanlagenbauer

Fachrichtung Klima- und Kälteanlagenbauer Fachrichtung Klima- und Kälteanlagenbauer 1-7 Schüler Datum: 1. Titel der L.E. : 2. Fach / Klasse : Fachrechnen, 3. Ausbildungsjahr 3. Themen der Unterrichtsabschnitte : 1. Zustandsänderung 2. Schmelzen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit Wärme Ob etwas warm oder kalt ist können wir fühlen. Wenn etwas wärmer ist, so hat es eine höhere Temperatur. Temperaturen können wir im Bereich von etwa 15 Grad Celsius bis etwa 45 Grad Celsius recht

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt

Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: Marcel.Engelhardt@mytum.de

Mehr

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung.

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. Teilchenmodell Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. *Zwischen den Teilchen wirken anziehende bzw. abstoßende Kräfte.

Mehr

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen.

Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. 1) DEFINITIONEN DIE CHEMISCHE REAKTION Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. Der Massenerhalt: Die Masse ändert sich im Laufe einer Reaktion

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

Physik III - Anfängerpraktikum- Versuch 203

Physik III - Anfängerpraktikum- Versuch 203 Physik III - Anfängerpraktikum- Versuch 203 Sebastian Rollke (103095) und Daniel Brenner (105292) 1. Februar 2005 Inhaltsverzeichnis 1 Vorbetrachtung 2 2 Theorie 2 2.1 Die mikroskopischen Vorgänge bei

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

11. Der Phasenübergang

11. Der Phasenübergang 11. Der Phasenübergang - Phasendiagramme, Kritischer Punkt und ripelpunkt - Gibbssche Phasenregel - Phasenübergänge 1. und 2. Ordnung - Das Phasengleichgewicht - Clausius-Clapeyron-Gleichung - Pictet-routon-Regel,

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Phasenumwandlungsenthalpie

Phasenumwandlungsenthalpie Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 7 Phasenumwandlungsenthalpie Die Enthalpieänderung beim Übergang eines Systems in einen anderen Aggregatzustand kann unter der Voraussetzung,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 12: Wärmelehre Dr. Daniel Bick 09. Dezember 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. Dezember 2016 1 / 35 Übersicht 1 Wellen 2 Wärmelehre

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr